White Light-Photolysis for the Removal of Polycyclic Aromatic Hydrocarbons from Proximity Firefighting Protective Clothing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. White Light-Photolysis Experiments
2.3. Three-Layer Fabric White Light-Photolysis Decontamination
2.4. Three-Layer Fabric Mechanical Decontamination
2.5. Extract Analysis
2.5.1. UV-VIS Spectroscopy
2.5.2. Gas Chromatography-Mass Spectrometry
2.6. Fabric Evaluation
2.6.1. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy
2.6.2. Tearing Strength
2.6.3. Scanning Electron Microscopy with Energy Dispersive X-ray Spectrometry SEM/EDS
2.7. Statistical Evaluation
3. Results and Discussion
3.1. White Light-Photolysis Experiments
3.2. White Light-Photolysis Kinetics
3.3. Evaluation of Fiber Integrity
3.3.1. FTIR/ATR
3.3.2. Tearing Strength
3.3.3. SEM/EDS
3.4. Three-Layer Fabric Decontamination: Mechanical Decon vs. White Light-Photolysis Decon
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization; International Agency for Research on Cancer. Painting, Firefighting, and Shiftwork; IARC Press: Lyon, France, 2010; Volume 98, ISBN 978-92-832-1298-0. [Google Scholar]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impact, Effect on Human Health and Remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Oanh, N.T.K.; Reutergårdh, L.B.; Dung, N.T. Emission of Polycyclic Aromatic Hydrocarbons and Particulate Matter from Domestic Combustion of Selected Fuels. Environ. Sci. Technol. 1999, 33, 2703–2709. [Google Scholar] [CrossRef]
- Meire, R.O.; Azeredo, A.; Torres, J.P.M. Aspectos Ecotoxicológicos de Hidrocarbonetos Policíclicos Aromáticos. Oecologia Bras. 2007, 11, 188–201. [Google Scholar] [CrossRef]
- Lima, A.L.C.; Farrington, J.W.; Reddy, C.M. Combustion-Derived Polycyclic Aromatic Hydrocarbons in the Environment—A Review. Environ. Forensics 2005, 6, 109–131. [Google Scholar] [CrossRef]
- Peng, N.; Li, Y.; Liu, Z.; Liu, T.; Gai, C. Emission, Distribution and Toxicity of Polycyclic Aromatic Hydrocarbons (PAHs) during Municipal Solid Waste (MSW) and Coal Co-Combustion. Sci. Total Environ. 2016, 565, 1201–1207. [Google Scholar] [CrossRef]
- World Health Organization; International Agency for Research on Cancer. Polynuclear Aromatic Compounds, Part I, Chemical, Environmental and Experimental Data; IARC Press: Lyon, France, 1983; Volume 32, ISBN 92 832 12320. [Google Scholar]
- Fent, K.W.; Eisenberg, J.; Snawder, J.; Sammons, D.; Pleil, J.D.; Stiegel, M.A.; Mueller, C.; Horn, G.P.; Dalton, J. Systemic Exposure to Pahs and Benzene in Firefighters Suppressing Controlled Structure Fires. Ann. Occup. Hyg. 2014, 58, 830–845. [Google Scholar] [CrossRef]
- Kirk, K.M.; Logan, M.B. Firefighting Instructors Exposures to Polycyclic Aromatic Hydrocarbons during Live Fire Training Scenarios. J. Occup. Environ. Hyg. 2015, 12, 227–234. [Google Scholar] [CrossRef]
- Stec, A.A.; Dickens, K.E.; Salden, M.; Hewitt, F.E.; Watts, D.P.; Houldsworth, P.E.; Martin, F.L. Occupational Exposure to Polycyclic Aromatic Hydrocarbons and Elevated Cancer Incidence in Firefighters. Sci. Rep. 2018, 8, 2476. [Google Scholar] [CrossRef]
- Fent, K.W.; Toennis, C.; Sammons, D.; Robertson, S.; Bertke, S.; Calafat, A.M.; Pleil, J.D.; Geer Wallace, M.A.; Kerber, S.; Smith, D.L.; et al. Firefighters’ and Instructors’ Absorption of PAHs and Benzene during Training Exercises. Int. J. Hyg. Environ. Health 2019, 222, 991–1000. [Google Scholar] [CrossRef]
- Banks, A.P.W.; Wang, X.; Engelsman, M.; He, C.; Osorio, A.F.; Mueller, J.F. Assessing Decontamination and Laundering Processes for the Removal of Polycyclic Aromatic Hydrocarbons and Flame Retardants from Firefighting Uniforms. Environ. Res. 2021, 194, 110616. [Google Scholar] [CrossRef]
- Fent, K.W.; Alexander, B.; Roberts, J.; Robertson, S.; Toennis, C.; Sammons, D.; Bertke, S.; Kerber, S.; Smith, D.; Horn, G. Contamination of Firefighter Personal Protective Equipment and Skin and the Effectiveness of Decontamination Procedures. J. Occup. Environ. Hyg. 2017, 14, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.C.; Fent, K.W.; Bertke, S.; Horn, G.P.; Smith, D.L.; Kerber, S.; La Guardia, M.J. Firefighter Hood Contamination: Efficiency of Laundering to Remove PAHs and FRs. J. Occup. Environ. Hyg. 2019, 16, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Calvillo, A.; Haynes, E.; Burkle, J.; Schroeder, K.; Calvillo, A.; Reese, J.; Reponen, T. Pilot Study on the Efficiency of Water-Only Decontamination for Firefighters’ Turnout Gear. J. Occup. Environ. Hyg. 2019, 16, 199–205. [Google Scholar] [CrossRef]
- Corpo de Bombeiros Militar Do Distrito Federal Bid. Available online: https://www4.cbm.df.gov.br/2016-06-24-19-5004/licitacoes-cbmdf?task=document.viewdoc&id=13139 (accessed on 5 September 2020).
- Horn, G.P.; Kerber, S.; Andrews, J.; Kesler, R.M.; Newman, H.; Stewart, J.W.; Fent, K.W.; Smith, D.L. Impact of Repeated Exposure and Cleaning on Protective Properties of Structural Firefighting Turnout Gear. Fire Technol. 2020, 57, 791–813. [Google Scholar] [CrossRef]
- Mayer, A.C.; Horn, G.P.; Fent, K.W.; Bertke, S.J.; Kerber, S.; Kesler, R.M.; Newman, H.; Smith, D.L. Impact of Select PPE Design Elements and Repeated Laundering in Firefighter Protection from Smoke Exposure. J. Occup. Environ. Hyg. 2020, 17, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Stull, J.O.; Crown, E. Evaluation of the Cleaning Effectiveness and Impact of Esporta and Industrial Cleaning Techniques on Firefighter Protective Clothing: Technical Report; International Personnel Protection, Incorporated: Albuquerque, NM, USA, 2006. [Google Scholar]
- de Lucena, M.A.M.; Zapata, F.; Mauricio, F.G.M.; Ortega-Ojeda, F.E.; Quintanilla-López, M.G.; Weber, I.T.; Montalvo, G. Evaluation of an Ozone Chamber as a Routine Method to Decontaminate Firefighters’ Ppe. Int. J. Environ. Res. Public Health 2021, 18, 10587. [Google Scholar] [CrossRef] [PubMed]
- Engwall, M.A.; Pignatello, J.J.; Grasso, D. Degradation and Detoxification of the Wood Preservatives Creosote and Pentachlorophenol in Water by the Photo-Fenton Reaction. Water Res. 1999, 33, 1151–1158. [Google Scholar] [CrossRef]
- Mojiri, A.; Zhou, J.L.; Ohashi, A.; Ozaki, N.; Kindaichi, T. Comprehensive Review of Polycyclic Aromatic Hydrocarbons in Water Sources, Their Effects and Treatments. Sci. Total Environ. 2019, 696, 133971. [Google Scholar] [CrossRef]
- Shemer, H.; Linden, K.G. Aqueous Photodegradation and Toxicity of the Polycyclic Aromatic Hydrocarbons Fluorene, Dibenzofuran, and Dibenzothiophene. Water Res. 2007, 41, 853–861. [Google Scholar] [CrossRef]
- Jacobs, L.E.; Weavers, L.K.; Chin, Y.P. Direct and Indirect Photolysis of Polycyclic Aromatic Hydrocarbons in Nitrate-Rich Surface Waters. Environ. Toxicol. Chem. 2008, 27, 1643–1648. [Google Scholar] [CrossRef]
- Eker, G.; Sengul, B. Removal of Polycyclic Aromatic Hydrocarbons (PAHs) from Industrial Soil with Solar and UV Light. Polycycl. Aromat. Compd. 2020, 40, 1238–1250. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, C.; Chen, Z.; Li, X.; Li, P. Photodegradation of Pyrene on Soil Surfaces under UV Light Irradiation. J. Hazard. Mater. 2010, 173, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Dong, D.; Meng, X.; Su, X.; Zheng, X.; Li, Y. Photolysis of Polycyclic Aromatic Hydrocarbons on Soil Surfaces under UV Irradiation. J. Environ. Sci. 2013, 25, 569–575. [Google Scholar] [CrossRef]
- Sanches, S.; Leitão, C.; Penetra, A.; Cardoso, V.V.; Ferreira, E.; Benoliel, M.J.; Crespo, M.T.B.; Pereira, V.J. Direct Photolysis of Polycyclic Aromatic Hydrocarbons in Drinking Water Sources. J. Hazard. Mater. 2011, 192, 1458–1465. [Google Scholar] [CrossRef]
- Miller, J.S.; Olejnik, D. Photolysis of Polycyclic Aromatic Hydrocarbons in Water. Water Res. 2001, 35, 233–243. [Google Scholar] [CrossRef]
- NFPA 1851; Standard on Selection, Care, and Maintenance of Protective Ensembles for Structural Fire Fighting and Proximity Fire Fighting. National Fire Protection Association (NFPA): Quincy, MA, USA, 2020.
- Method 8270E (SW-846); Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS). U.S. EPA Test Methods; EPA: Washington, DC, USA, 2018; p. 64.
- ASTM D2261; Standard Test Method for Tearing Strength of Woven Fabrics by the Tongue (Single Rip) Method (Constant-Rate-of-Traverse Tensile Testing Machine). American Society for Testing & Mater (ASTM): West Conshohocken, PA, USA, 2017.
- Davis, R.; Chin, J.; Lin, C.C.; Petit, S. Accelerated Weathering of Polyaramid and Polybenzimidazole Firefighter Protective Clothing Fabrics. Polym. Degrad. Stab. 2010, 95, 1642–1654. [Google Scholar] [CrossRef]
- Nazaré, S.; Flynn, S.; Davis, R.; Chin, J. Accelerated Weathering of Firefighter Protective Clothing Containing Melamine Fiber Blends; NIST Technical Note 1751; US Department of Commerce; National Institute of Standards and Technology: Washington, DC, USA, 2012. [Google Scholar] [CrossRef]
- Villar-Rodil, S.; Paredes, J.I.; Martinez-Alonso, A.; Tascón, J.M.D. Atomic Force Microscopy and Infrared Spectroscopy Studies of the Thermal Degradation of Nomex Aramid Fibers. Chem. Mater. 2001, 13, 4297–4304. [Google Scholar] [CrossRef]
- Mosquera, M.E.G.; Jamond, M.; Martínez-Alonso, A.; Tascón, J.M.D. Thermal Transformations of Kevlar Aramid Fibers During Pyrolysis: Infrared and Thermal Analysis Studies. Chem. Mater. 1994, 6, 1918–1924. [Google Scholar] [CrossRef]
- NFPA 1971; Standard on Protective Ensembles for Structural Fire Fighting and Proximity Fire Fighting. National Fire Protection Association (NFPA): Quincy, MA, USA, 2018.
- The TeflonTM Brand and Continuous Innovation. Available online: https://www.chemours.com/en/industries-applications/application-development/continuous-innovation (accessed on 1 June 2021).
- Military Fire Department of the Federal District (CBMDF). Fire Fighting Techniques. Firef. Instr. Man. 2009, p. 234. Available online: https://www.cbm.df.gov.br/manuais-operacionais-prevencao-e-combate-a-incendio/ (accessed on 5 January 2022).
Distance between the Jaws | 75 mm |
---|---|
Speed | 50 mm/min |
Dynamometer Type | CRT |
Calculation Methodology | Average of 5 peaks |
Software Used | Bluehill 3 |
Dimensions of each jaw | Front: 2.5 mm × 7.5 mm Back: 2.5 mm × 7.5 mm |
Tear Direction | Parallel to the warp and to the weft |
Band (cm−1) | Assignment |
---|---|
3307 | N-H stretch |
2918–2850 | C-H sp3 stretch |
1724 | C=O amide stretch |
1640 | C=C aromatic stretch |
1537–1472 | N-H deformation in plane and C-N stretch |
1411 and 1304 | C-N aromatic stretch |
1017–820 | C-H vibration out-of-plane |
Warp | Weft | |
---|---|---|
Untreated sample of fabric | 260.97 ± 10.1 | 218.39 ± 28.8 |
After 30 days WLP decon | 192.62 ± 31.8 | 181.52 ± 22.9 |
ΔN (absolute) | 68.35 | 36.87 |
ΔN (%) | 26% | 17% |
Sample | Mean (μm) | Standard Deviation (μm) |
---|---|---|
Untreated | 14.15 | 2.71 |
BLK 0% | 13.90 | 1.50 |
BLK 0.35% | 13.68 | 1.19 |
BLK 3.5% | 14.35 | 1.62 |
WLP 0% | 14.00 | 2.57 |
WLP 0.35% | 14.36 | 1.26 |
WLP 3.5% | 13.85 | 1.95 |
WLP 0% for 30 days | 14.53 | 1.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arouca, A.M.; Aleixo, V.E.D.; Vieira, M.L.; Talhavini, M.; Weber, I.T. White Light-Photolysis for the Removal of Polycyclic Aromatic Hydrocarbons from Proximity Firefighting Protective Clothing. Int. J. Environ. Res. Public Health 2022, 19, 10054. https://doi.org/10.3390/ijerph191610054
Arouca AM, Aleixo VED, Vieira ML, Talhavini M, Weber IT. White Light-Photolysis for the Removal of Polycyclic Aromatic Hydrocarbons from Proximity Firefighting Protective Clothing. International Journal of Environmental Research and Public Health. 2022; 19(16):10054. https://doi.org/10.3390/ijerph191610054
Chicago/Turabian StyleArouca, Aline Marcelino, Victor Emmanuel Delfino Aleixo, Maurício Leite Vieira, Márcio Talhavini, and Ingrid Távora Weber. 2022. "White Light-Photolysis for the Removal of Polycyclic Aromatic Hydrocarbons from Proximity Firefighting Protective Clothing" International Journal of Environmental Research and Public Health 19, no. 16: 10054. https://doi.org/10.3390/ijerph191610054
APA StyleArouca, A. M., Aleixo, V. E. D., Vieira, M. L., Talhavini, M., & Weber, I. T. (2022). White Light-Photolysis for the Removal of Polycyclic Aromatic Hydrocarbons from Proximity Firefighting Protective Clothing. International Journal of Environmental Research and Public Health, 19(16), 10054. https://doi.org/10.3390/ijerph191610054