Dose–Response Relationship of Resistance Training on Metabolic Phenotypes, Body Composition and Lipid Profile in Menopausal Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Type and Sample Characteristics
2.2. Data Collection and Analyzed Variables
2.2.1. Blood Pressure (BP)
2.2.2. Lipid Profile and Fasting Blood Glucose
2.2.3. Anthropometric and Body Composition Assessment
2.2.4. Practice of Resistance Training (RT)
2.2.5. Metabolic Phenotypes
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Total Sample and According to MH and MUH Phenotypes
3.2. Comparison between Anthropometric Indices and Body Composition According Differences of Volume RT
3.3. Frequencies of Adequacy and Inadequacy Acoording Differences of Volumes RT
3.4. Association between Lipid Profile and Metabolic Phenotype According Differences of Volume RT
3.5. Correlations and Prevalence Ratio between Body and Lipid Variables According Differences of Volume RT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Minkin, M.J. Menopause: Hormones, lifestyle, and optimizing aging. Obstet. Gynecol. Clin. 2019, 46, 501–514. [Google Scholar] [CrossRef]
- Shifren, J.L.; Gass, M.L.S. The North American Menopause Society Recommendations for Clinical Care of Midlife Women. Menopause 2014, 21, 1038–1062. [Google Scholar] [CrossRef]
- Lwow, F.; Jedrzejuk, D.; Milewicz, A.; Szmigiero, L. Lipid accumulation product (LAP) as a criterion for the identification of the healthy obesity phenotype in postmenopausal women. Exp. Gerontol. 2016, 82, 81–87. [Google Scholar] [CrossRef]
- Peppa, M.; Koliaki, C.; Papaefstathiou, A.; Garoflos, E.; Katsilambros, N.; Raptis, S.A.; Hadjidakis, D.I.; Dimitriadis, G.D. Body composition determinants of metabolic phenotypes of obesity in nonobese and obese postmenopausal women. Obesity 2012, 21, 1807–1814. [Google Scholar] [CrossRef]
- Molina-Molina, E.; Furtado, G.E.; Jones, J.G.; Portincasa, P.; Vieira-Pedrosa, A.; Teixeira, A.M.; Barros, M.P.; Bachi, A.L.L.; Sardão, V.A. The advantages of physical exercise as a preventive strategy against NAFLD in postmenopausal women. Eur. J. Clin. Investig. 2021, 52, e13731. [Google Scholar] [CrossRef]
- Moon, S.; Oh, C.-M.; Choi, M.-K.; Park, Y.-K.; Chun, S.; Choi, M.; Yu, J.M.; Yoo, H.J. The influence of physical activity on risk of cardiovascular disease in people who are obese but metabolically healthy. PLoS ONE 2017, 12, e0185127. [Google Scholar] [CrossRef] [Green Version]
- Martinéz-Gomes, D.; Ortega, F.B.; Hamer, M.; Lopez-Garcia, E.; Struijk, E.; Sadarangani, K.P.; Lavie, C.J.; Rodríguez-Artalejo, F. Physical activity and risk of metabolic phenotypes of obesity: A prospective Taiwanese cohort study in more 200,000 adults. Mayo Clin. Proc. 2019, 94, 2209–2219. [Google Scholar] [CrossRef]
- Cadenas-Sanchéz, C.; Migueles, J.H.; Ortega, F.B. Further evidence on cardiorrespiratory fitness as a key factor for metabolically healthy obese phenotype independentof race. J. Adolesc. Health 2019, 64, 290–291. [Google Scholar] [CrossRef] [Green Version]
- Ortega, F.B.; Cadenas-Sanchez, C.; Migueles, J.H.; Labayen, I.; Ruiz, J.R.; Sui, X.; Blair, S.N.; Martínez-Vizcaino, V.; Lavie, C.J. Role of Physical Activity and Fitness in the Characterization and Prognosis of the Metabolically Healthy Obesity Phenotype: A Systematic Review and Meta-Analysis. Prog. Cardiovasc. Dis. 2018, 61, 190–205. [Google Scholar] [CrossRef]
- Dam, T.V.; Dalgaard, L.B.; Ringgaard, S.; Johansen, F.T.; Bengtsen, M.B.; Mose, M.; Lauritsen, K.M.; Ørtenblad, N.; Gravholt, C.H.; Hansen, M. Transdermal estrogen therapy improves gains in skeletal muscle mass after 12 weeks of resistance training in early postmenopausal women. Front. Physiol. 2021, 11, 596130. [Google Scholar] [CrossRef]
- Burrup, R.; A Tucker, L.; Le Cheminant, J.D.; Bailey, B.W. Strength training and body composition in middle-age women. J. Sports Med. Phys. Fit. 2018, 58, 82–91. [Google Scholar] [CrossRef]
- Nunes, P.R.P.; Barcelos, L.C.; Oliveira, A.A.; Furlanetto Júnior, R.; Martins, F.M.; Orsatti, C.L.; Resende, E.A.M.R.; Orsatti, F.L. Effect of resistance training on muscular strengthand indicators of abdominal adiposity, metabolic risk, and inflammation in postmenopausal women: Controlledand randomized clinical trial of efficacy of training volume. Age 2016, 38, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Son, W.; Pekas, E.J.; Park, S. Twelve weeks of resistance band exercise training improves ageassociatedhormonal decline, blood pressure, and body composition inpostmenopausal women with stage 1 hypertension: A randomizedclinical trial. Menopause 2020, 17, 199–207. [Google Scholar] [CrossRef]
- Kneffel, Z.; Murlasits, Z.; Reed, J.; Krieger, J. A meta-regression of the effects of resistance training frequency on muscle strenght and hypertrophy in adults over 60 years of age. J. Sports Sci. 2021, 39, 351–358. [Google Scholar] [CrossRef]
- Barroso, W.K.S.; Rodrigues, C.I.S.; Bortollo, L.A.; Mota-Gomes, M.A.; Brandão, A.A.; Feitosa, A.D.d.M.; Machado, C.A.; Poli-de-Figueiredo, C.E.; Amodeo, C.; Júnior, D.M.; et al. Diretrizes brasileiras de hipertensão arterial—2020. Arq. Bras. De Cardiol. 2021, 116, 516–658. [Google Scholar] [CrossRef]
- Faludi, A.A.; Izar, M.C.O.; Saraiva, J.F.K.; Chacra, A.P.M.; Bianco, H.T.; Neto, A.A.; Bertolami, A.; Pereira, A.C.; Lottenberg, A.M.; Sposito, A.C.; et al. Atualização da diretriz brasileira de dislipidemias e prevenção da aterosclerose—2017. Arq. Bras. De Cardiol. 2017, 109, 1–76. [Google Scholar] [CrossRef]
- SOCIEDADE BRASILEIRA DE DIABETES (SBD). Diretrizes da Sociedade Brasileira de Diabetes 2019–2020. Available online: https://www.diabetes.org.br/profissionais/images/DIRETRIZES-COMPLETA-2019-2020.pdf (accessed on 1 April 2021).
- Ribeiro, V.B.; Kogure, G.S.; Lopes, I.P.; Silva, R.C.; Pedroso, D.C.C.; Ferriani, R.A.; Furtado, C.L.M.; Dos Reis, R.M. Association of measures of central fat accumulation indices with body fat distribution and metabolic, hormonal, and inflammatory parameters in women with polycystic ovary syndrome. Arch. Endocrinol. Metab. 2019, 63, 417–426. [Google Scholar] [CrossRef]
- Kuriyan, R. Body composition techniques. Indian J. Med. Res. 2018, 148, 648–658. [Google Scholar] [CrossRef]
- Dickey, R.A.; Bartuska, D.G.; Bray, G.W.; Callaway, C.W.; Davidson, E.T.; Feld, S.; Ferraro, R.T.; Hodgson, S.F.; Jellinge, P.S.; Kennedy, F.P.; et al. AACE/ACE position statement on the prevention, diagnosis, and treatment of obesity. Endocr. Pract. 1998, 4, 297–350. [Google Scholar]
- World Health Organization. Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications: Report of a WHO Consultation; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Sociedade Brasileira de Cardiologia. I Diretriz Brasileira de Diagnóstico e Tratamento da Síndrome Metabólica. Arq. Bras. Cardiol. 2005, 84, 1–28. [Google Scholar]
- Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults. Executive summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation and Treatment of High Cholesterol. JAMA 2001, 85, 2486–2497. [Google Scholar]
- Krakauer, N.Y.; Krakauer, J.C. A new body shape index predicts mortality hazard independently of body mass índex. PLoS ONE 2012, 7, e39504. [Google Scholar] [CrossRef]
- Valdez, R. A simple model-based índex of abdominal adiposity. J. Clin. Endocrinol. 1991, 44, 955–956. [Google Scholar] [CrossRef]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A. Visceral adiposity índex: A reliable indicador of visceral fat function associated with cardiometabolic risk. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.S. “The lipid accumulation” product performs better than the body mass index for recognizing cardiovascular risk: A population-based comparison. BMC Cardiovasc. Disord. 2005, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Eickemberg, M.; Amorim, L.D.A.F.; Almeida, M.d.C.C.d.; Aquino, E.M.L.d.; Fonseca, M.d.J.M.d.; Santos, I.d.S.; Chor, D.; Diniz, M.d.F.S.; Barreto, S.M.; Matos, S.M.A.d. Indicadores de adiposidade abdominal e espessura médio-intimal de carótidas: Resultados do Estudo Longitudinal de Saúde do Adulto-ELSA-Brasil. Arq. Bras. De Cardiol. 2019, 112, 220–227. [Google Scholar]
- AMERICAN COLLEGE OF SPORTS MEDICINE (ACSM). American College of Sports Medicine Position Stand: Progression Models in Resistance Training for Healthy Adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [Google Scholar] [CrossRef]
- Brellenthin, A.G.; Lee, D.; Bennie, J.A.; Sui, X.; Blair, S.N. Resistance exercise, alone and in combination with aerobic exercise, and obesity in Dallas, Texas, US: A prospective cohort study. PLoS Med. 2021, 18, e1003687. [Google Scholar] [CrossRef]
- Diniz, M.F.H.S.; Beleigoli, A.M.R.; Robeiro, A.L.P. Factors associated with metabolically healthy status in obesity, overweight, and normal weight at baseline of ELSA-Brasil. Medicine 2016, 95, e4010. [Google Scholar] [CrossRef]
- Callegari-Jacques, S.M. Bioestatística: Princípios e Aplicações; Artmed: Porto Alegre, Brazil, 2003. [Google Scholar]
- Ko, S.; Kim, H. Menopause-Associated Lipid Metabolic Disorders and Foods Beneficial for Postmenopausal Women. Nutrients 2020, 12, 202. [Google Scholar] [CrossRef] [Green Version]
- Brandão, I.; Martins, M.J.; Monteiro, R. Metabolically healthy obesity—Heterogeneity in definitions and unconventional factors. Metabolites 2020, 10, 48. [Google Scholar] [CrossRef] [Green Version]
- Harmon, B.E.; Shvetsov, Y.B.; Lim, U.; Leak, C.L.; Diego, E.R.N.S.; Monroe, K.R.; Wilkens, L.R.; Marchand, L.L. The joint association of cardiometabolic healthand weight on mortality in the multiethnic cohort. Ethn. Health 2022, 27, 658–671. [Google Scholar] [CrossRef]
- Nkwana, M.R.; Monyeki, K.D.; Lebelo, S.L. Body roundness index, a body shape index, conicity index, and their association with nutritional status and cardiovascular risk factors in south african rural young adults. Int. J. Environ. Res. Public Health 2021, 18, 281. [Google Scholar] [CrossRef]
- Ílhan, G.A.; Yildizhan, B. Visceral adiposity indicators as predictors of metabolicsyndrome in postmenopausal women. Turk. J. Obs. Gynecol. 2019, 16, 164–168. [Google Scholar] [CrossRef]
- Rasaei, N.; Mirzababaei, A.; Arghavani, H.; Tajik, S.; Keshavarz, S.A.; Yekaninejad, M.S.; Imani, H.; Mirzaei, K. A comparison of the sensitivity and specificity of anthropometric measurements to predict unhealthy metabolic phenotype in overweight and obese women. Diabetes Metab. Syndr. Clin. Res. Rev. 2018, 12, 1147–1153. [Google Scholar] [CrossRef]
- Gadelha, A.B.; Myers, J.; Moreira, S.; Dutra, M.T.; Safons, M.P.; Lima, R.M. Comparison of adiposity indices and cut-off values in the prediction of metabolic syndrome in postmenopausal women. Diabetes Metab. Syndr. Clin. Res. Rev. 2016, 10, 143–148. [Google Scholar] [CrossRef]
- Quaye, L.; Owiredu, W.K.B.A.; Amidu, N.; Dapare, P.P.M.; Adams, Y. Comparative abilities of body mass index, waist circumference, abdominal volume index, body adiposity index, and conicity index as predictive screening tools for metabolic syndrome among apparently healthy ghanaian adults. J. Obes. 2019, 2019, 8143179. [Google Scholar] [CrossRef]
- Amirabdollahian, F.; Haghighatdoost, F. Anthropometric indicators of adiposity related to body weight and body shape as cardiometabolic risk predictors in british young adults: Superiority of waist-to-height ratio. J. Obes. 2018, 2018, 8370304. [Google Scholar] [CrossRef] [Green Version]
- Campa, F.; Maietta Latessa, P.; Greco, G.; Mauro, M.; Mazzuca, P.; Spiga, F.; Toselli, S. Effects of different resistance training frequencies on body composition, cardiometabolic risk factors, and handgrip strenght in overweight and obese women: A randomized controlled trial. J. Funct. Morphol. Kinesiol. 2020, 5, 51. [Google Scholar] [CrossRef]
- Ahn, N.; Kim, H.S.; Kim, K. Exercise training—Induced changes in metabolic syndrome parameters, carotid wall thickness, and thyroid function in middle-aged women with subclinical hypothyroidism. Pflug. Arch. Eur. J. Physiol. 2019, 471, 479–489. [Google Scholar] [CrossRef]
- Henríquez, S.; Monsalves-Alvarez, M.; Jimenez, T.; Barrera, G.; Hirsch, S.; de la Maza, M.P.; Leiva, L.; Rodriguez, J.M.; Silva, C.; Bunout, D. Effects of two training modalities on body fat and insulin resistance in postmenopausal women. J. Strenght Cond. Res. 2017, 31, 2955–2964. [Google Scholar] [CrossRef] [PubMed]
- Orsatti, F.; Nahas, E.; Maestá, N.; Neto, J.N.; Orsatti, C.; Portari, G.V.; Burini, R.C. Effects of resistance training frequency on body composition and metabolics and inflammatory markers in overweight postmenopausal women. J. Sports Med. Phys. Fit. 2014, 54, 317–325. [Google Scholar]
- Consitt, L.A.; Dudley, C.; Saxena, G. Impact of endurance and resistance training on skeletal muscle glucose metabolism in older adults. Nutrients 2019, 11, 2636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Townsend, L.K.; Wright, D.C. Looking on the “brite” side exercise-inducing browning of white adipose tissue. Pflug. Arch. Eur. J. Physiol. 2019, 471, 455–465. [Google Scholar] [CrossRef]
- Froehle, A.W.; Hopkins, S.R.; Natarajan, L.; Schoeninger, M.J. Moderate to high levels of exercise are associated with higher resting energy expenditure in community-dwelling postmenopausal women. Appl. Physiol. Nutr. Metab. 2013, 38, 1147–1153. [Google Scholar] [CrossRef] [Green Version]
- Thomas, E.; Gentile, A.; Lakicevic, N.; Moro, T.; Bellafiore, M.; Paoli, A.; Drid, P.; Palma, A.; Bianco, A. The effect of resistance training programs on lean body mass in postmenopausal and elderly women: A meta-analysis of observational studies. Aging Clin. Exp. Res. 2021, 33, 2941–2952. [Google Scholar] [CrossRef]
- Ralston, G.W.; Kilgore, L.; Wyatt, F.B.; Buchan, D.; Baker, J.S. Weekly training frequency effects on strenght gain: A meta-analysis. Sports Med. Open 2018, 4, 36. [Google Scholar] [CrossRef]
- Carvalho, L.P.; Borghi-Silva, A.; Dupontgand, S.; Di Thommazo-Luporini, L.; Mendes, R.G.; Aubertin-Leheudre, M. Influence of menopausal status on the main contributors of muscle quality. Climateric 2018, 21, 298–302. [Google Scholar] [CrossRef]
- Fonseca, M.I.; de Almeida-Pititto, B.; Bensenor, I.M.; Toth, P.P.; Jones, S.R.; Blaha, M.J.; Lotufo, P.A.; Kulkarni, K.R.; Ferreira, S.R. Changes in lipoprotein subfractions following menopause in the longitudinal study of adult health (ELSA-Brasil). Maturitas 2019, 130, 32–37. [Google Scholar] [CrossRef]
- Guglielmi, V.; Sbraccia, P. Obesity phenotypes: Depot-differences in adipose tissue and theirclinical implications. Eat. Weight. Disord. Stud. Anorex. Bulim. Obes. 2018, 23, 3–14. [Google Scholar] [CrossRef]
Total | MH | MUH | |
---|---|---|---|
100% (n = 31) | 74.2% (n = 23) | 25.8% (n = 8) | |
Mean ± SD | Mean ± SD | Mean ± SD | |
Descriptive characteristics | |||
Age (years) | 52.29 ± 4.56 | 51.26 ± 4.44 | 55. 25 ± 3.73 * |
BMI (kg/m2) | 26.14 ± 4.93 | 25.74 ± 4.93 | 27.29 ± 5.09 |
WC (cm) | 80.31 ± 7.62 | 79.85 ± 7.56 | 81.62 ± 8.14 |
Resistance training | |||
Time_years RT (years) | 11.29 ± 14.11 | 11.70 ± 13.60 | 3.81 ± 3.66 * |
Time_week RT(min/week) | 289.35 ± 216.22 | 304.78 ± 234.20 | 245.00 ± 157.93 |
Freq_week RT (days/week) | 4.00 ± 1.15 | 4.08 ± 1.23 | 3.75 ± 0.88 |
Metabolic and clinic profile | |||
HDL-c (mg/dL) | 66.66 ± 16.14 | 72.13 ± 13.59 | 48.37 ± 7.55 * |
TG (mg/dL) | 82.90 ± 47.05 | 73.65 ± 29.88 | 109.50 ± 74.78 |
LDL-c (mg/dL) | 115.00 ± 29.32 | 110.04 ± 26.28 | 129.25 ± 34.66 |
VLDL-c (mg/dL) | 20.29 ± 11.49 | 18.13 ± 9.01 | 26.50 ± 15.84 |
TC (mg/dL) | 201.25 ± 35.34 | 200.30 ± 31.30 | 204.00 ± 47.56 |
Blood glucose (mg/dL) | 88.41 ± 6.21 | 88.69 ± 6.01 | 87.62 ± 7.13 |
SBP (mmHg) | 122.70 ± 7.80 | 121.91 ± 8.02 | 125.00 ± 7.11 |
DBP (mmHg) | 78.61 ± 5.85 | 79.00 ± 5.70 | 77.50 ± 6.54 |
Anthropometric indices | |||
VAI | 1.02 ± 0.63 | 0.81 ± 0.37 | 1.63 ± 0.85 * |
CI | 1.14 ± 0.02 | 1.14 ± 0.02 | 1.13 ± 0.03 |
BSI | 0.11 ± 0.00 | 0.11 ± 0.00 | 0.11 ± 0.00 |
LAP | 21.64 ± 15.26 | 19.28 ± 13.83 | 28.43 ± 18.06 |
Body composition | |||
FM (kg) | 25.06 ± 8.41 | 24.43 ± 8.67 | 26.89 ± 7.86 |
FFM (kg) | 41.93 ± 5.35 | 41.68 ± 5.56 | 42.65 ± 4.99 |
MM (kg) | 39.61 ± 5.15 | 39.36 ± 5.38 | 40.34 ± 4.69 |
%BF | 37.92 ± 6.18 | 37.44 ± 6.68 | 39.42 ± 4.40 |
TFM (kg) | 12.87 ± 6.66 | 11.33 ± 5.48 | 17.32 ± 8.08 * |
%TF | 36.49 ± 10.40 | 35.88 ± 9.27 | 38.25 ± 13.75 |
AFM (kg) | 3.14 ± 5.47 | 1.97 ± 1.17 | 6.52 ± 10.32 |
%AF | 40.87 ± 12.65 | 40.30 ± 10.63 | 42.53 ± 18.06 |
GFM (kg) | 6.95 ± 8.81 | 5.53 ± 1.42 | 11.06 ± 17.33 |
%GF | 48.23 ± 9.82 | 50.46 ± 5.14 | 41.80 ± 15.02 * |
A/G | 0.84 ± 0.19 | 0.79 ± 0.15 | 0.98 ± 0.22 * |
<2 Years | ≥2 Years | <300 min/week | ≥300 min/week | ≤3 days/week | >3 days/week | |
---|---|---|---|---|---|---|
48.4% (n = 15) | 51.6% (n = 16) | 74.2% (n = 23) | 25.8% (n = 8) | 35.5% (n = 11) | 64.5% (n = 20) | |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
Anthropometric indices | ||||||
BMI (kg/m2) | 27.41 ± 5.37 | 24.95 ± 4.32 | 26.77 ± 5.37 | 24.32 ± 2.96 | 27.49 ± 5.99 | 25.40 ± 4.23 |
WC (cm) | 82.06 ± 8.65 | 78.67 ± 6.35 | 81.17 ± 8.33 | 77.84 ± 4.62 | 82.31 ± 9.64 | 79.21 ± 6.26 |
VAI | 1.06 ± 0.57 | 0.98 ± 0.70 | 0.98 ± 0.69 | 1.13 ± 0.44 | 1.14 ± 0.76 | 0.96 ± 0.56 |
LAP | 24.14 ± 17.59 | 19.30 ± 12.84 | 22.24 ± 16.93 | 19.94 ± 9.66 | 24.84 ± 14.93 | 19.89 ± 15.53 |
CI | 1.13 ± 0.02 | 1.14 ± 0.03 | 1.13 ± 0.03 | 1.14 ± 0.02 | 1.14 ± 0.03 | 1.14 ± 0.02 |
BSI | 0.11 ± 0.00 | 0.11 ± 0.00 | 0.11 ± 0.00 | 0.11 ± 0.00 | 0.11 ± 0.00 | 0.11 ± 0.00 |
Body composition | ||||||
FM (kg) | 27.71 ± 8.93 | 22.58 ± 7.32 * | 26.13 ± 8.86 | 22.00 ± 6.51 | 28.49 ± 9.11 | 23.18 ± 7.59 |
FFM (kg) | 42.71 ± 5.93 | 41.21 ± 4.83 | 42.65 ± 5.53 | 39.87 ± 4.49 | 41.43 ± 6.10 | 42.21 ± 5.05 |
MM (kg) | 40.36 ± 5.70 | 38.91 ± 4.66 | 40.30 ± 5.35 | 37.64 ± 4.23 | 39.06 ± 5.97 | 39.91 ± 4.79 |
%BF | 39.96 ± 5.44 | 36.08 ± 6.37 | 38.54 ± 6.46 | 36.27 ± 5.23 | 41.40 ± 6.10 | 36.06 ± 5.46 ‡ |
TFM (kg) | 15.33 ± 7.56 | 10.57 ± 4.87 * | 13.61 ± 7.10 | 10.76 ± 4.96 | 16.31 ± 7.46 | 10.98 ± 5.49 ‡ |
%TF | 38.43 ± 11.58 | 34.68 ± 9.17 | 36.80 ± 11.06 | 35.62 ± 8.86 | 39.74 ± 12.97 | 34.71 ± 8.54 |
AFM (kg) | 4.51 ± 7.68 | 1.86 ± 1.12 * | 3.60 ± 6.30 | 1.82 ± 0.98 | 5.39 ± 8.86 | 1.91 ± 1.18 |
%AF | 43.31 ± 14.91 | 38.60 ± 10.05 | 41.29 ± 13.64 | 39.67 ± 9.91 | 44.24 ± 16.42 | 39.03 ± 10.03 |
GFM (kg) | 8.97 ± 12.51 | 5.06 ± 1.08 | 7.68 ± 10.17 | 4.86 ± 0.76 | 10.15 ± 14.59 | 5.19 ± 1.14 |
%GF | 47.98 ± 12.65 | 48.46 ± 4.92 | 47.99 ± 10.56 | 48.91 ± 4.60 | 47.19 ± 14.65 | 48.80 ± 4.82 |
A/G | 0.88 ± 0.19 | 0.79 ± 0.18 | 0.85 ± 0.18 | 0.81 ± 0.21 | 0.91 ± 0.17 | 0.80 ± 0.18 |
<2 Years | ≥2 Years | <300 min/week | ≥300 min/week | ≤3 days/week | >3 days/week | |
---|---|---|---|---|---|---|
48.4% (n = 15) | 51.6% (n = 16) | 74.2% (n = 23) | 25.8% (n = 8) | 35.5% (n = 11) | 64.5% (n = 20) | |
Lipid profile | ||||||
HDL-c (mg/dL) | ||||||
Adequate | 73.3 (11) | 87.5 (14) | 82.6 (19) | 75.0 (6) | 72.7 (8) | 85.0 (17) |
Inadequate | 26.7 (4) | 12.5 (2) | 17.4 (4) | 25.0 (2) | 27.3 (3) | 15.0 (3) |
TG (mg/dL) | ||||||
Adequate | 93.3 (14) | 93.8 (15) | 91.3 (21) | 100.0 (8) | 90.9 (10) | 95.0 (19) |
Inadequate | 6.7 (1) | 6.2 (1) | 8.7 (2) | 0.0 (0) | 9.1 (1) | 5.0 (1) |
LDL-c (mg/dL) | ||||||
Adequate | 86.7 (13) | 93.8 (15) | 87.0 (20) | 100.0 (8) | 81.8 (9) | 95.0 (19) |
Inadequate | 13.3 (2) | 6.2 (1) | 13.0 (3) | 0.0 (0) | 18.2 (2) | 5.0 (1) |
TC (mg/dL) | ||||||
Adequate | 46.7 (7) | 37.5 (6) | 34.8 (8) | 62.5 (5) | 36.4 (4) | 45.0 (9) |
Inadequate | 53.3 (8) | 62.5 (10) | 65.2 (15) | 37.5 (3) | 63.6 (7) | 55.0 (11) |
Metabolic phenotype | ||||||
MH | 66.7 (10) | 81.3 (13) | 73.9 (17) | 75.0 (6) | 63.6 (7) | 80.0 (16) |
MUH | 33.3 (5) | 18.7 (3) | 26.1 (6) | 25.0 (2) | 36.4 (4) | 20.0 (4) |
Time_Years RT | Time_Week RT | Freq_Week RT | |||||
---|---|---|---|---|---|---|---|
r | r | r | |||||
Anthropometric indices | |||||||
BMI (kg/m2) | −0.36 * | −0.27 | −0.25 | ||||
WC (cm) | −0.32 | −0.23 | −0.31 | ||||
CI | 0.23 | 0.23 | 0.17 | ||||
BSI | 0.27 | 0.14 | 0.23 | ||||
VAI | −0.20 | 0.03 | −0.01 | ||||
LAP | −0.24 | −0.09 | −0.16 | ||||
Body composition | |||||||
FM (kg) | −0.45 * | −0.30 | −0.41 * | ||||
FFM (kg) | −0.21 | −0.27 | −0.20 | ||||
MM (kg) | −0.21 | −0.27 | −0.20 | ||||
TFM (kg) | −0.42 | −0.27 | −0.38 | ||||
AFM(kg) | −0.21 | −0.17 | −0.23 | ||||
GFM(kg) | −0.17 | −0.15 | −0.21 | ||||
%TF | −0.37 * | −0.14 | −0.25 | ||||
%AF | −0.39 * | −0.14 | −0.24 | ||||
%GF | −0.09 | 0.04 | 0.00 | ||||
%BF | −0.49 * | −0.25 | −0.41 * | ||||
A/G | −0.44 * | −0.19 | −0.29 | ||||
Lipid profile | |||||||
HDL-c (mg/dL) | 0.39 * | −0.03 | −0.03 | ||||
TG (mg/dL) | −0.11 | 0.02 | −0.04 | ||||
LDL-c (mg/dL) | −0.27 | −0.21 | −0.16 | ||||
VLDL-c (mg/dL) | −0.00 | −0.10 | −0.16 | ||||
TC (mg/dL) | −0.04 | −0.24 | −0.20 |
Time_Years RT | |||
---|---|---|---|
PR | IC 95% (Lower–Upper) | ||
Metabolic phenotypes | 1.43 | (0.70–2.92) | |
HDL-c (mg/dL) | 1.51 | (0.73–3.10) | |
TG (mg/dL) | 1.03 | (0.24–4.35) | |
LDL-c (mg/dL) | 1.43 | (0.58–3.50) | |
CT (mg/dL) | 0.82 | (0.40–1.69) | |
BMI (kg/m2) | 2.26 | (0.92–5.56) | |
WC (cm) | 1.89 | (1.01–3.54) | |
%BF | 1.98 | (0.81–4.86) | |
VAI | 1.30 | (0.56–2.97) | |
LAP | 1.22 | (0.58–2.56) | |
A/G | 1.30 | (0.56–2.97) | |
Time_week RT | |||
Metabolic phenotypes | 1.01 | (0.63–1.62) | |
HDL-c (mg/dL) | 0.87 | (0.47–1.61) | |
TG (mg/dL) | 1.38 | (1.10–1.72) | |
LDL-c (mg/dL) | 1.40 | (1.10–1.77) | |
CT (mg/dL) | 1.35 | (0.84–2.18) | |
BMI (kg/m2) | 1.54 | (0.95–2.51) | |
WC (cm) | 1.09 | (0.66–1.79) | |
%BF | 0.93 | (0.62–1.41) | |
VAI | 1.09 | (0.66–1.79) | |
LAP | 1.06 | (0.69–1.64) | |
A/G | 1.09 | (0.66–1.79) | |
Freq_week RT | |||
Metabolic phenotypes | 1.64 | (0.64–4.15) | |
HDL-c (mg/dL) | 1.56 | (0.58–4.17) | |
TG (mg/dL) | 1.45 | (0.33–6.33) | |
LDL-c (mg/dL) | 2.07 | (0.79–5.44) | |
CT (mg/dL) | 1.26 | (0.46–3.43) | |
BMI (kg/m2) | 2.19 | (0.71–6.74) | |
WC (cm) | 1.95 | (0.77–4.88) | |
%BF | 3.25 | (0.83–12.61) | |
VAI | 1.15 | (0.34–3.82) | |
LAP | 2.03 | (0.83–5.00) | |
A/G | 1.95 | (0.77–4.88) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magalhães, A.C.L.d.; Carvalho, V.F.; Cruz, S.P.d.; Ramalho, A. Dose–Response Relationship of Resistance Training on Metabolic Phenotypes, Body Composition and Lipid Profile in Menopausal Women. Int. J. Environ. Res. Public Health 2022, 19, 10369. https://doi.org/10.3390/ijerph191610369
Magalhães ACLd, Carvalho VF, Cruz SPd, Ramalho A. Dose–Response Relationship of Resistance Training on Metabolic Phenotypes, Body Composition and Lipid Profile in Menopausal Women. International Journal of Environmental Research and Public Health. 2022; 19(16):10369. https://doi.org/10.3390/ijerph191610369
Chicago/Turabian StyleMagalhães, Ana Carla Leocadio de, Vilma Fernandes Carvalho, Sabrina Pereira da Cruz, and Andrea Ramalho. 2022. "Dose–Response Relationship of Resistance Training on Metabolic Phenotypes, Body Composition and Lipid Profile in Menopausal Women" International Journal of Environmental Research and Public Health 19, no. 16: 10369. https://doi.org/10.3390/ijerph191610369
APA StyleMagalhães, A. C. L. d., Carvalho, V. F., Cruz, S. P. d., & Ramalho, A. (2022). Dose–Response Relationship of Resistance Training on Metabolic Phenotypes, Body Composition and Lipid Profile in Menopausal Women. International Journal of Environmental Research and Public Health, 19(16), 10369. https://doi.org/10.3390/ijerph191610369