Arterial Stiffness Assessment by Pulse Wave Velocity in Patients with Metabolic Syndrome and Its Components: Is It a Useful Tool in Clinical Practice?
Abstract
:1. Introduction
1.1. Metabolic Syndrome
1.2. Assessment of Arterial Stiffness
1.3. The Purpose of This Paper
2. Impact of Metabolic Syndrome Components on Arterial Stiffness
2.1. Elevated Blood Pressure
2.2. Central Obesity
2.3. Lipid Metabolism Disorders
2.4. Impaired Carbohydrate Metabolism
3. Metabolic Syndrome and Pulse Wave Velocity
4. Importance of Analyzed Research in Routine Clinical Practice
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Després, J.P.; Lemieux, I.; Bergeron, J.; Pibarot, P.; Mathieu, P.; Larose, E.; Rodés-Cabau, J.; Bertrand, O.F.; Poirier, P. Abdominal obesity and the metabolic syndrome: Contribution to global cardiometabolic risk. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.; Dziura, J.; Burgert, T.S.; Tamborlane, W.V.; Taksali, S.E.; Yeckel, C.W.; Allen, K.; Lopes, M.; Savoye, M.; Morrison, J.; et al. Obesity and the metabolic syndrome in children and adolescents. N. Engl. J. Med. 2004, 350, 2362–2374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viner, R.M.; Segal, T.Y.; Lichtarowicz-Krynska, E.; Hindmarsh, P. Prevalence of the insulin resistance syndrome in obesity. Arch. Dis. Child. 2005, 90, 10–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Ferranti, S.D.; Gauvreau, K.; Ludwig, D.S.; Neufeld, E.J.; Newburger, J.W.; Rifai, N. Prevalence of the metabolic syndrome in American adolescents: Findings from the Third National Health and Nutrition Examination Survey. Circulation 2004, 110, 2494–2497. [Google Scholar] [CrossRef] [Green Version]
- Cook, S.; Weitzman, M.; Auinger, P.; Nguyen, M.; Dietz, W.H. Prevalence of a metabolic syndrome phenotype in adolescents: Findings from the third National Health and Nutrition Examination Survey, 1988–1994. Arch. Pediatr. Adolesc. Med. 2003, 157, 821–827. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Balkau, B.; Charles, M.A. Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet. Med. 1999, 16, 442–443. [Google Scholar]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Reinehr, T.; de Sousa, G.; Toschke, A.M.; Andler, W. Comparison of metabolic syndrome prevalence using eight different definitions: A critical approach. Arch. Dis. Child. 2007, 92, 1067–1072. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galassi, A.; Reynolds, K.; He, J. Metabolic syndrome and risk of cardiovascular disease: A meta-analysis. Am. J. Med. 2006, 119, 812–819. [Google Scholar] [CrossRef]
- Wilson, P.W.; D’Agostino, R.B.; Parise, H.; Sullivan, L.; Meigs, J.B. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 2005, 112, 3066–3072. [Google Scholar] [CrossRef]
- Dal Canto, E.; Ceriello, A.; Rydén, L.; Ferrini, M.; Hansen, T.B.; Schnell, O.; Standl, E.; Beulens, J.W. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur. J. Prev. Cardiol. 2019, 26, 25–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubiak, G.K.; Pawlas, N.; Cieślar, G.; Stanek, A. Pathogenesis and clinical significance of in-stent restenosis in patients with diabetes. Int. J. Environ. Res. Public Health 2021, 8, 11970. [Google Scholar] [CrossRef] [PubMed]
- Jakubiak, G.K.; Osadnik, K.; Lejawa, M.; Osadnik, T.; Goławski, M.; Lewandowski, P.; Pawlas, N. “Obesity and insulin resistance” is the component of the metabolic syndrome most strongly associated with oxidative stress. Antioxidants 2022, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Dubois-Deruy, E.; Peugnet, V.; Turkieh, A.; Pinet, F. Oxidative stress in cardiovascular diseases. Antioxidants 2020, 9, 864. [Google Scholar] [CrossRef]
- Penson, P.E.; Pirro, M.; Banach, M. LDL-C: Lower is better for longer-even at low risk. BMC Med. 2020, 18, 320. [Google Scholar] [CrossRef]
- Jakubiak, G.K.; Cieślar, G.; Stanek, A. Nitrotyrosine, nitrated lipoproteins, and cardiovascular dysfunction in patients with type 2 diabetes: What do we know and what remains to be explained? Antioxidants 2022, 11, 856. [Google Scholar] [CrossRef]
- Lopes-Vicente, W.R.P.; Rodrigues, S.; Cepeda, F.X.; Jordão, C.P.; Costa-Hong, V.; Dutra-Marques, A.C.B.; Carvalho, J.C.; Alves, M.J.N.N.; Bortolotto, L.A.; Trombetta, I.C. Arterial stiffness and its association with clustering of metabolic syndrome risk factors. Diabetol. Metab. Syndrome 2017, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Agbaje, A.O.; Barker, A.R.; Mitchell, G.F.; Tuomainen, T.P. Effect of arterial stiffness and carotid intima-media thickness progression on the risk of dysglycemia, insulin resistance, and dyslipidemia: A temporal causal longitudinal study. Hypertension 2022, 79, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Townsend, R.R.; Wilkinson, I.B.; Schiffrin, E.L.; Avolio, A.P.; Chirinos, J.A.; Cockcroft, J.R.; Heffernan, K.S.; Lakatta, E.G.; McEniery, C.M.; Mitchell, G.F.; et al. Recommendations for improving and standardizing vascular research on arterial stiffness: A scientific statement from the American Heart Association. Hypertension 2015, 66, 698–722. [Google Scholar] [CrossRef] [Green Version]
- Laurent, S.; Cockcroft, J.; Van Bortel, L.; Boutouyrie, P.; Giannattasio, C.; Hayoz, D.; Pannier, B.; Vlachopoulos, C.; Wilkinson, I.; Struijker-Boudier, H.; et al. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006, 27, 2588–2605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Townsed, R.R. Arterial stiffness: Recomendations and standarization. Pulse 2017, 4 (Suppl. S1), 3–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Lacolley, P.; Protogerou, A.D.; Safar, M.E. Arterial stiffness in hypertension and function of large arteries. Am. J. Hypertens. 2020, 33, 291–296. [Google Scholar] [CrossRef]
- Myslinski, W.; Stanek, A.; Feldo, M.; Mosiewicz, J. Ankle-brachial index as the best predictor of first acute coronary syndrome in patients with treated systemic hypertension. BioMed Res. Int. 2020, 2020, 6471098. [Google Scholar] [CrossRef]
- Oh, Y.S.; Berkowitz, D.E.; Cohen, R.A.; Figueroa, C.A.; Harrison, D.G.; Humphrey, J.D.; Larson, D.F.; Leopold, J.A.; Mecham, R.P.; Ruiz-Opazo, N.; et al. A Special report on the NHLBI initiative to study cellular and molecular mechanisms of arterial stiffness and its association with hypertension. Circ. Res. 2017, 121, 1216–1218. [Google Scholar] [CrossRef]
- Kaess, B.M.; Rong, J.; Larson, M.G.; Hamburg, N.M.; Vita, J.A.; Levy, D.; Benjamin, E.J.; Vasan, R.S.; Mitchell, G.F. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA 2012, 308, 875–881. [Google Scholar] [CrossRef] [Green Version]
- Weisbrod, R.M.; Shiang, T.; Al Sayah, L.; Fry, J.L.; Bajpai, S.; Reinhart-King, C.A.; Lob, H.E.; Santhanam, L.; Mitchell, G.; Cohen, R.A.; et al. Arterial stiffening precedes systolic hypertension in diet-induced obesity. Hypertension 2013, 62, 1105–1110. [Google Scholar] [CrossRef] [Green Version]
- Tomiyama, H.; Shiina, K.; Nakano, H.; Iwasaki, Y.; Matsumoto, C.; Fujii, M.; Chikamori, T.; Yamashina, A. Arterial stiffness and pressure wave reflection in the development of isolated diastolic hypertension. J. Hypertens. 2020, 38, 2000–2007. [Google Scholar] [CrossRef]
- Gavish, B.; Izzo, J.L., Jr. Arterial stiffness: Going a step beyond. Am. J. Hypertens. 2016, 29, 1223–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanek, A.; Fazeli, B.; Bartuś, S.; Sutkowska, E. The role of endothelium in physiological and pathological states: New data. BioMed Res. Int. 2018, 2018, 1098039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burt, V.L.; Whelton, P.; Roccella, E.J.; Brown, C.; Cutler, J.A.; Higgins, M.; Horan, M.J.; Labarthe, D. Prevalence of hypertension in the US adult population. Results from the Third National Health and Nutrition Examination Survey, 1988–1991. Hypertension 1995, 25, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Franklin, S.S.; Gustin, W.; Wong, N.D.; Larson, M.G.; Weber, M.A.; Kannel, W.B.; Levy, D. Hemodynamic patterns of age-related changes in blood pressure. The Framingham Heart Study. Circulation 1997, 96, 308–315. [Google Scholar] [CrossRef] [Green Version]
- Smulyan, H.; Asmar, R.G.; Rudnicki, A.; London, G.M.; Safar, M.E. Comparative effects of aging in men and women on the properties of the arterial tree. J. Am. Coll. Cardiol. 2001, 37, 1374–1380. [Google Scholar] [CrossRef] [Green Version]
- Asmar, R.; Topouchian, J.; Pannier, B.; Benetos, A.; Safar, M.; Scientific, Quality Control, Coordination and Investigation Committees of the Complior Study. Pulse wave velocity as endpoint in large-scale intervention trial. The Complior study. Scientific, Quality Control, Coordination and Investigation Committees of the Complior Study. J. Hypertens. 2001, 19, 813–818. [Google Scholar] [CrossRef]
- Albaladejo, P.; Asmar, R.; Safar, M.; Benetos, A. Association between 24-hour ambulatory heart rate and arterial stiffness. J. Hum. Hypertens. 2000, 14, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Bielecka-Dabrowa, A.; Bartlomiejczyk, M.A.; Sakowicz, A.; Maciejewski, M.; Banach, M. The role of adipokines in the development of arterial stiffness and hypertension. Angiology 2020, 71, 754–761. [Google Scholar] [CrossRef]
- Chen, H.; Wu, W.; Fang, W.; Chen, Z.; Yan, X.; Chen, Y.; Wu, S. Does an increase in estimated pulse wave velocity increase the incidence of hypertension? J. Hypertens. 2021, 39, 2388–2394. [Google Scholar] [CrossRef]
- Farah, B.Q.; Cucato, G.G.; Andrade-Lima, A.; Soares, A.H.G.; Wolosker, N.; Ritti-Dias, R.M.; Correia, M.A. Impact of hypertension on arterial stiffness and cardiac autonomic modulation in patients with peripheral artery disease: A cross-sectional study. Einstein (Sao Paolo) 2021, 19, eA06100. [Google Scholar] [CrossRef]
- Kubalski, P.; Hering, D. Repeatability and reproducibility of pulse wave velocity in relation to hemodynamics and sodium excretion in stable patients with hypertension. J. Hypertens. 2020, 38, 1531–1540. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulos, C.; Terentes-Printzios, D.; Laurent, S.; Nilsson, P.M.; Protogerou, A.D.; Aznaouridis, K.; Xaplanteris, P.; Koutagiar, I.; Tomiyama, H.; Yamashina, A.; et al. Association of estimated pulse wave velocity with survival: A secondary analysis of SPRINT. JAMA Netw. Open 2019, 2, e1912831. [Google Scholar] [CrossRef] [PubMed]
- Braam, B.; Lai, C.F.; Abinader, J.; Bello, A.K. Extracellular fluid volume expansion, arterial stiffness and uncontrolled hypertension in patients with chronic kidney disease. Nephrol. Dial. Transplant. 2020, 35, 1393–1398. [Google Scholar] [CrossRef] [PubMed]
- Grillo, A.; Salvi, L.; Coruzzi, P.; Salvi, P.; Parati, G. Sodium intake and hypertension. Nutrients 2019, 11, 1970. [Google Scholar] [CrossRef] [Green Version]
- Jennings, A.; Berendsen, A.M.; de Groot, L.C.P.G.M.; Feskens, E.J.M.; Brzozowska, A.; Sicinska, E.; Pietruszka, B.; Meunier, N.; Caumon, E.; Malpuech-Brugère, C.; et al. Mediterranean-style diet improves systolic blood pressure and arterial stiffness in older adults. Hypertension 2019, 73, 578–586. [Google Scholar] [CrossRef]
- Lopes, S.; Afreixo, V.; Teixeira, M.; Garcia, C.; Leitão, C.; Gouveia, M.; Figueiredo, D.; Alves, A.J.; Polonia, J.; Oliveira, J.; et al. Exercise training reduces arterial stiffness in adults with hypertension: A systematic review and meta-analysis. J. Hypertens. 2021, 39, 214–222. [Google Scholar] [CrossRef]
- Vamvakis, A.; Gkaliagkousi, E.; Lazaridis, A.; Grammatikopoulou, M.G.; Triantafyllou, A.; Nikolaidou, B.; Koletsos, N.; Anyfanti, P.; Tzimos, C.; Zebekakis, P.; et al. Impact of intensive lifestyle treatment (diet plus exercise) on endothelial and vascular function, arterial stiffness and blood pressure in stage 1 hypertension: Results of the HINTreat randomized controlled trial. Nutrients 2020, 12, 1326. [Google Scholar] [CrossRef]
- Willum-Hansen, T.; Staessen, J.A.; Torp-Pedersen, C.; Rasmussen, S.; Thijs, L.; Ibsen, H.; Jeppesen, J. Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation 2006, 113, 664–670. [Google Scholar] [CrossRef]
- Kim, H.L.; Ahn, D.W.; Kim, S.H.; Lee, D.S.; Yoon, S.H.; Zo, J.H.; Kim, M.A.; Jeong, J.B. Association between body fat parameters and arterial stiffness. Sci. Rep. 2021, 11, 20536. [Google Scholar] [CrossRef]
- Stanek, A.; Brożyna-Tkaczyk, K.; Myśliński, W. The role of obesity-induced perivascular adipose tissue (PVAT) dysfunction in vascular homeostasis. Nutrients 2021, 13, 3843. [Google Scholar] [CrossRef]
- Vianna, C.A.; Horta, B.L.; Gonzalez, M.C.; França, G.V.A.; Gigante, D.P.; Barros, F.L. Association of pulse wave velocity with body fat measures at 30 y of age. Nutrition 2019, 61, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Sánchez, L.; Gómez-Sánchez, M.; Rodríguez-Sánchez, E.; Patino-Alonso, C.; Alonso-Dominguez, R.; Sanchez-Aguadero, N.; Lugones-Sánchez, C.; Llamas-Ramos, I.; García-Ortiz, L.; Gómez-Marcos, M.A.; et al. Relationship of different anthropometric indices with vascular ageing in an adult population without cardiovascular disease-EVA Study. J. Clin. Med. 2022, 11, 2671. [Google Scholar] [CrossRef] [PubMed]
- Nagayama, D.; Watanabe, Y.; Yamaguchi, T.; Suzuki, K.; Saiki, A.; Fujishiro, K.; Shirai, K. Issue of waist circumference for the diagnosis of metabolic syndrome regarding arterial stiffness: Possible utility of a body shape index in middle-aged nonobese Japanese urban residents receiving health screening. Obes. Facts 2022, 15, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Moreno, M.I.; Vilches-Perez, A.; Gallardo-Escribano, C.; Vargas-Candela, A.; Lopez-Carmona, M.D.; Pérez-Belmonte, L.M.; Ruiz-Moreno, A.; Gomez-Huelgas, R.; Bernal-Lopez, M.R. Metabolically healthy obesity: Presence of arterial stiffness in the prepubescent population. Int. J. Environ. Res. Public Health 2020, 17, 6995. [Google Scholar] [CrossRef]
- Aroor, A.R.; Jia, G.; Sowers, J.R. Cellular mechanisms underlying obesity-induced arterial stiffness. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R387–R398. [Google Scholar] [CrossRef]
- Liang, K.W.; Lee, W.J.; Lee, I.T.; Lin, S.Y.; Wang, J.S.; Lee, W.L.; Sheu, W.H. Regaining body weight after weight reduction further increases pulse wave velocity in obese men with metabolic syndrome. Medicine 2018, 97, e12730. [Google Scholar] [CrossRef]
- González-Blázquez, R.; Alcalá, M.; Cárdenas-Rebollo, J.M.; Viana, M.; Steckelings, U.M.; Boisvert, W.A.; Unger, T.; Fernández-Alfonso, M.S.; Somoza, B.; Gil-Ortega, M. AT2R stimulation with C21 prevents arterial stiffening and endothelial dysfunction in the abdominal aorta from mice fed a high-fat diet. Clin. Sci. 2021, 135, 2763–2780. [Google Scholar] [CrossRef]
- Ballesteros-Martínez, C.; Rodrigues-Díez, R.; Beltrán, L.M.; Moreno-Carriles, R.; Martínez-Martínez, E.; González-Amor, M.; Martínez-González, J.; Rodríguez, C.; Cachofeiro, V.; Salaices, M.; et al. Microsomal prostaglandin E synthase-1 is involved in the metabolic and cardiovascular alterations associated with obesity. Br. J. Pharmacol. 2022, 179, 2733–2753. [Google Scholar] [CrossRef]
- Gómez-Sánchez, L.; Rodríguez-Sánchez, E.; Ramos, R.; Marti-Lluch, R.; Gómez-Sánchez, M.; Lugones-Sánchez, C.; Tamayo-Morales, O.; Llamas-Ramos, I.; Rigo, F.; García-Ortiz, L.; et al. The association of dietary intake with arterial stiffness and vascular ageing in a population with intermediate cardiovascular risk—A MARK study. Nutrients 2022, 14, 244. [Google Scholar] [CrossRef]
- Heiston, E.M.; Gilbertson, N.M.; Eichner, N.Z.M.; Malin, S.K. A low-calorie diet with or without exercise reduces postprandial aortic waveform in females with obesity. Med. Sci. Sports Exerc. 2021, 53, 796–803. [Google Scholar] [CrossRef]
- Stanek, A.; Brożyna-Tkaczyk, K.; Zolghadri, S.; Cholewka, A.; Myśliński, W. The role of intermittent energy restriction diet on metabolic profile and weight loss among obese adults. Nutrients 2022, 14, 1509. [Google Scholar] [CrossRef] [PubMed]
- Saladini, F.; Palatini, P. Arterial distensibility, physical activity, and metabolic syndrome. Curr. Hypertens. Rep. 2018, 20, 39. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Sanchez-Gonzalez, M.A.; Son, W.M.; Kwak, Y.S.; Park, S.Y. The effects of a 12-week combined exercise training program on arterial stiffness, vasoactive substances, inflammatory markers, metabolic profile, and body composition in obese adolescent girls. Pediatr. Exerc. Sci 2018, 30, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Le Master, E.; Ahn, S.J.; Levitan, I. Mechanisms of endothelial stiffening in dyslipidemia and aging: Oxidized lipids and shear stress. Curr. Top. Membr. 2020, 86, 185–215. [Google Scholar] [CrossRef]
- Nagayama, D.; Watanabe, Y.; Saiki, A.; Shirai, K.; Tatsuno, I. Lipid parameters are independently associated with cardio-ankle vascular index (CAVI) in healthy Japanese subjects. J. Atheroscler. Thromb. 2018, 25, 621–633. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Wang, D.; Sun, Y.; Ma, Q.; Wang, K.; Liao, Y.; Chen, C.; Jia, H.; Chu, C.; Zheng, W.; et al. Triglyceride-glucose index trajectory and arterial stiffness: Results from Hanzhong Adolescent Hypertension Cohort Study. Cardiovasc. Diabetol. 2022, 21, 33. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, S.; Chi, C.; Fan, X.; Tang, J.; Ji, H.; Teliewubai, J.; Zhang, Y.; Xu, Y. Association between macro- and microvascular damage and the triglyceride glucose index in community-dwelling elderly individuals: The Northern Shanghai Study. Cardiovasc. Diabetol. 2019, 18, 95. [Google Scholar] [CrossRef]
- Guo, W.; Zhu, W.; Wu, J.; Li, X.; Lu, J.; Qin, P.; Zhu, C.; Xu, N.; Zhang, Q. Triglyceride glucose index is associated with arterial stiffness and 10-year cardiovascular disease risk in a Chinese population. Front. Cardiovasc. Med. 2021, 8, 585776. [Google Scholar] [CrossRef]
- Sekizuka, H.; Hoshide, S.; Kabutoya, T.; Kario, K. Determining the relationship between triglycerides and arterial stiffness in cardiovascular risk patients without low-density lipoprotein cholesterol-lowering therapy. Int. Heart J. 2021, 62, 1320–1327. [Google Scholar] [CrossRef]
- Pavlovska, I.; Kunzova, S.; Jakubik, J.; Hruskova, J.; Skladana, M.; Rivas-Serna, I.M.; Medina-Inojosa, J.R.; Lopez-Jimenez, F.; Vysoky, R.; Geda, Y.E.; et al. Associations between high triglycerides and arterial stiffness in a population-based sample: Kardiovize Brno 2030 study. Lipids Health Dis. 2020, 19, 170. [Google Scholar] [CrossRef]
- Sang, Y.; Cao, M.; Wu, X.; Ruan, L.; Zhang, C. Use of lipid parameters to identify apparently healthy men at high risk of arterial stiffness progression. BMC Cardiovasc. Disord. 2021, 21, 34. [Google Scholar] [CrossRef] [PubMed]
- Kılıç, A.; Baydar, O.; Elçik, D.; Apaydın, Z.; Can, M.M. Role of dyslipidemia in early vascular aging syndrome. Turk. J. Med. Sci. 2021, 51, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Oram, J.F. HDL apolipoproteins and ABCA1: Partners in the removal of excess cellular cholesterol. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 720–727. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Zhong, Y.; Kuang, C.; Liao, J.; Chen, Z.; Yang, Q. Lipoprotein ratios are better than conventional lipid parameters in predicting arterial stiffness in young men. J. Clin. Hypertens. 2017, 19, 771–776. [Google Scholar] [CrossRef] [Green Version]
- Harrison, S.C.; Holmes, M.V.; Humphries, S.E. Mendelian randomisation, lipids, and cardiovascular disease. Lancet 2012, 380, 543–545. [Google Scholar] [CrossRef]
- Dobiásová, M.; Frohlich, J.; Sedová, M.; Cheung, M.C.; Brown, B.G. Cholesterol esterification and atherogenic index of plasma correlate with lipoprotein size and findings on coronary angiography. J. Lipid. Res. 2011, 52, 566–571. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, M.K.; Eräranta, A.; Koskela, J.; Tikkakoski, A.J.; Nevalainen, P.I.; Kähönen, M.; Mustonen, J.; Pörsti, I. Atherogenic index of plasma is related to arterial stiffness but not to blood pressure in normotensive and never-treated hypertensive subjects. Blood Press. 2019, 28, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Hill, M.A.; Yang, Y.; Zhang, L.; Sun, Z.; Jia, G.; Parrish, A.R.; Sowers, J.R. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism 2021, 119, 154766. [Google Scholar] [CrossRef]
- Naka, K.K.; Papathanassiou, K.; Bechlioulis, A.; Pappas, K.; Tigas, S.; Makriyiannis, D.; Antoniou, S.; Kazakos, N.; Margeli, A.; Papassotiriou, I. Association of vascular indices with novel circulating biomarkers as prognostic factors for cardiovascular complications in patients with type 2 diabetes mellitus. Clin. Biochem. 2018, 53, 31–37. [Google Scholar] [CrossRef]
- Stehouwer, C.D.; Henry, R.M.; Ferreira, I. Arterial stiffness in diabetes and the metabolic syndrome: A pathway to cardiovascular disease. Diabetologia 2008, 51, 527–539. [Google Scholar] [CrossRef]
- Antonio-Villa, N.E.; Bello-Chavolla, O.Y.; Vargas-Vázquez, A.; Mehta, R.; Fermín-Martínez, C.A.; Martagón-Rosado, A.J.; Barquera-Guevara, D.A.; Aguilar-Salinas, C.A.; Metabolic Syndrome Study Group. Increased visceral fat accumulation modifies the effect of insulin resistance on arterial stiffness and hypertension risk. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Adeva-Andany, M.M.; Funcasta-Calderón, R.; Fernández-Fernández, C.; Ameneiros-Rodríguez, E.; Domínguez-Montero, A. Subclinical vascular disease in patients with diabetes is associated with insulin resistance. Diabetes Metab Syndr. 2019, 13, 2198–2206. [Google Scholar] [CrossRef] [PubMed]
- Gast, K.B.; Tjeerdema, N.; Stijnen, T.; Smit, J.W.; Dekkers, O.M. Insulin resistance and risk of incident cardiovascular events in adults without diabetes: Meta-analysis. PLoS ONE 2012, 7, e52036. [Google Scholar] [CrossRef] [Green Version]
- Bello-Chavolla, O.Y.; Almeda-Valdes, P.; Gomez-Velasco, D.; Viveros-Ruiz, T.; Cruz-Bautista, I.; Romo-Romo, A.; Sánchez-Lázaro, D.; Meza-Oviedo, D.; Vargas-Vázquez, A.; Campos, O.A.; et al. METS-IR, a novel score to evaluate insulin sensitivity, is predictive of visceral adiposity and incident type 2 diabetes. Eur. J. Endocrinol. 2018, 178, 533–544. [Google Scholar] [CrossRef] [Green Version]
- Bello-Chavolla, O.Y.; Antonio-Villa, N.E.; Vargas-Vázquez, A.; Martagón, A.J.; Mehta, R.; Arellano-Campos, O.; Gómez-Velasco, D.V.; Almeda-Valdés, P.; Cruz-Bautista, I.; Melgarejo-Hernandez, M.A.; et al. Prediction of incident hypertension and arterial stiffness using the non–insulin-based metabolic score for insulin resistance (METS-IR) index. J. Clin. Hypertens. 2019, 21, 1063–1070. [Google Scholar] [CrossRef] [Green Version]
- Sequi-Dominguez, I.; Cavero-Redondo, I.; Alvarez-Bueno, C.; Saz-Lara, A.; Mesas, A.E.; Martinez-Vizcaino, V. Association between arterial stiffness and the clustering of metabolic syndrome risk factors: A systematic review and meta-analysis. Hypertension 2021, 39, 1051–1059. [Google Scholar] [CrossRef]
- Kangas, P.; Tikkakoski, A.; Kettunen, J.; Eräranta, A.; Huhtala, H.; Kähönen, M.; Sipilä, K.; Mustonen, J.; Pörsti, I. Changes in hemodynamics associated with metabolic syndrome are more pronounced in women than in men. Sci. Rep. 2019, 9, 18377. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Jackson, G.; Jones, T.H.; Matsumoto, A.M.; Nehra, A.; Perelman, M.A.; Swerdloff, R.S.; Traish, A.; Zitzmann, M.; Cunningham, G. Low testosterone associated with obesity and the metabolic syndrome contributes to sexual dysfunction and cardiovascular disease risk in men with type 2 diabetes. Diabetes Care 2011, 34, 1669–1675. [Google Scholar] [CrossRef] [Green Version]
- Topouchian, J.; Labat, C.; Gautier, S.; Bäck, M.; Achimastos, A.; Blacher, J.; Cwynar, M.; de la Sierra, A.; Pall, D.; Fantin, F.; et al. Effects of metabolic syndrome on arterial function in different age groups: The Advanced Approach to Arterial Stiffness study. J. Hypertens. 2018, 36, 824–833. [Google Scholar] [CrossRef] [Green Version]
- Limpijankit, T.; Vathesatogkit, P.; Matchariyakul, D.; Yingchoncharoen, T.; Siriyotha, S.; Thakkinstian, A.; Sritara, P. Cardio-ankle vascular index as a predictor of major adverse cardiovascular events in metabolic syndrome patients. Clin. Cardiol. 2021, 44, 1628–1635. [Google Scholar] [CrossRef]
- Sato, Y.; Nagayama, D.; Saiki, A.; Watanabe, R.; Watanabe, Y.; Imamura, H.; Yamaguchi, T.; Ban, N.; Kawana, H.; Nagumo, A.; et al. Cardio-ankle vascular index is independently associated with future cardiovascular events in outpatients with metabolic disorders. J. Atheroscler. Thromb. 2016, 23, 596–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badhwar, S.; Chandran, D.S.; Jaryal, A.K.; Narang, R.; Deepak, K.K. Regional arterial stiffness in central and peripheral arteries is differentially related to endothelial dysfunction assessed by brachial flow-mediated dilation in metabolic syndrome. Diab. Vasc. Dis. Res. 2018, 15, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, T.; Dohi, Y.; Takagi, Y.; Yokochi, T.; Yoshikane, N.; Suzuki, K.; Tomiishi, T.; Nagami, T.; Iwase, M.; Takase, H.; et al. A body shape index could serve to identify individuals with metabolic syndrome and increased arterial stiffness in the middle-aged population. Clin. Nutr. ESPEN 2021, 46, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Nedogoda, S.V.; Salasyuk, A.S.; Barykina, I.N.; Lutova, V.O.; Popova, E.A. Identifying early vascular ageing in patients with metabolic syndrome: Unresolved issues and a proposed novel VAmets score. Heart Lung Circ. 2021, 30, 1752–1761. [Google Scholar] [CrossRef] [PubMed]
- Catharina, A.S.; Modolo, R.; Ritter, A.M.V.; Sabbatini, A.R.; Lopes, H.F.; Moreno Junior, H.; Faria, A.P. Metabolic syndrome-related features in controlled and resistant hypertensive subjects. Arq. Bras. Cardiol. 2018, 110, 514–521. [Google Scholar] [CrossRef]
- Maloberti, A.; Bombelli, M.; Vallerio, P.; Milani, M.; Cartella, I.; Tavecchia, G.; Tognola, C.; Grasso, E.; Sun, J.; De Chiara, B.; et al. Metabolic syndrome is related to vascular structural alterations but not to functional ones both in hypertensives and healthy subjects. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1044–1052. [Google Scholar] [CrossRef]
- Ryliškytė, L.; Navickas, R.; Šerpytis, P.; Puronaitė, R.; Zupkauskienė, J.; Jucevičienė, A.; Badarienė, J.; Rimkienė, M.A.; Ryliškienė, K.; Skiauterytė, E.; et al. Association of aortic stiffness, carotid intima-media thickness and endothelial function with cardiovascular events in metabolic syndrome subjects. Blood Press. 2019, 28, 131–138. [Google Scholar] [CrossRef]
- Chen, Y.C.; Hsu, B.G.; Wang, J.H.; Lee, C.J.; Tsai, J.P. Metabolic syndrome with aortic arterial stiffness and first hospitalization or mortality in coronary artery disease patients. Diabetes Metab. Syndr. Obes. 2019, 12, 2065–2073. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Kim, H.L.; Chung, J.; Lim, W.H.; Seo, J.B.; Kim, S.H.; Zo, J.H.; Kim, M.A. Interaction of metabolic health and obesity on subclinical target organ damage. Metab. Syndr. Relat. Disord. 2018, 16, 46–53. [Google Scholar] [CrossRef]
- Paapstel, K.; Kals, J. Metabolomics of arterial stiffness. Metabolites 2022, 12, 370. [Google Scholar] [CrossRef]
- Gong, J.; Xie, Q.; Han, Y.; Chen, B.; Li, L.; Zhou, G.; Wang, T.; Xie, L. Relationship between components of metabolic syndrome and arterial stiffness in Chinese hypertensives. Clin. Exp. Hypertens. 2020, 42, 146–152. [Google Scholar] [CrossRef]
- Gagliardino, J.J.; Salazar, M.R.; Espeche, W.G.; Tolosa Chapasian, P.E.; Gomez Garizoain, D.; Olano, R.D.; Stavile, R.N.; Balbín, E.; Martinez, C.; Leiva Sisnieguez, B.C.; et al. Arterial stiffness: Its relation with prediabetes and metabolic syndrome and possible pathogenesis. J. Clin. Med. 2021, 10, 3251. [Google Scholar] [CrossRef] [PubMed]
- Markus, M.R.P.; Rospleszcz, S.; Ittermann, T.; Baumeister, S.E.; Schipf, S.; Siewert-Markus, U.; Lorbeer, R.; Storz, C.; Ptushkina, V.; Peters, A. Glucose and insulin levels are associated with arterial stiffness and concentric remodeling of the heart. Cardiovasc. Diabetol. 2019, 18, 145. [Google Scholar] [CrossRef]
- Li, G.; Yao, T.; Wu, X.W.; Cao, Z.; Tu, Y.C.; Ma, Y.; Li, B.N.; Peng, Q.Y.; Wu, B.; Hou, J. Novel and traditional anthropometric indices for identifying arterial stiffness in overweight and obese adults. Clin. Nutr. 2020, 39, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Nagayama, D.; Watanabe, Y.; Yamaguchi, T.; Maruyama, M.; Saiki, A.; Shirai, K.; Tatsuno, I. New index of abdominal obesity, a body shape index, is BMI-independently associated with systemic arterial stiffness in real-world Japanese population. Int. J. Clin. Pharmacol. Ther. 2020, 58, 709–717. [Google Scholar] [CrossRef]
- Efe, F.K.; Tek, M. Increased ambulatory arterial stiffness index and blood pressure load in normotensive obese patients. Afr. Health Sci. 2021, 21, 1185–1190. [Google Scholar] [CrossRef]
- Chau, K.; Girerd, N.; Bozec, E.; Ferreira, J.P.; Duarte, K.; Nazare, J.A.; Laville, M.; Benetos, A.; Zannad, F.; Boivin, J.M. Association between abdominal adiposity and 20-year subsequent aortic stiffness in an initially healthy population-based cohort. J. Hypertens. 2018, 36, 2077–2084. [Google Scholar] [CrossRef]
- Antonini-Canterin, F.; Di Nora, C.; Poli, S.; Sparacino, L.; Cosei, I.; Ravasel, A.; Popescu, A.C.; Popescu, B.A. Obesity, cardiac remodeling, and metabolic profile: Validation of a new simple index beyond body mass index. J. Cardiovasc. Echogr. 2018, 28, 18–25. [Google Scholar] [CrossRef]
- Fang, H.; Liu, C.; Cavdar, O. The relation between submaximal aerobic exercise improving vascular elasticity through loss of visceral fat and antihypertensive. Clin. Exp. Hypertens. 2021, 43, 203–210. [Google Scholar] [CrossRef]
- Sung, K.D.; Pekas, E.J.; Scott, S.D.; Son, W.M.; Park, S.Y. The effects of a 12-week jump rope exercise program on abdominal adiposity, vasoactive substances, inflammation, and vascular function in adolescent girls with prehypertension. Eur. J. Appl. Physiol. 2019, 119, 577–585. [Google Scholar] [CrossRef]
- Sanchez, R.A.; Christen, A.I. Arterial mechanics and dynamics in hypertension. Curr. Hypertens. Rev. 2018, 14, 74–75. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Shin, J.H.; Park, J.B.; Choi, D.J.; Youn, H.J.; Park, C.G.; Kwan, J.; Ahn, Y.; Kim, D.W.; Rim, S.J.; et al. Relationship between arterial stiffness and variability of home blood pressure monitoring. Medicine 2020, 99, e21227. [Google Scholar] [CrossRef] [PubMed]
- Wexler, Y.; Avivi, I.; Barak Lanciano, S.; Haber Kaptsenel, E.; Bishara, H.; Palacci, H.; Chaiat, C.; Nussinovitch, U. Familial tendency for hypertension is associated with increased vascular stiffness. J. Hypertens. 2021, 39, 627–632. [Google Scholar] [CrossRef]
- Wilson, J.; Webb, A.J.S. Systolic blood pressure and longitudinal progression of arterial stiffness: A quantitative meta-analysis. J. Am. Heart Assoc. 2020, 9, e017804. [Google Scholar] [CrossRef]
- Raff, U.; Walker, S.; Ott, C.; Schneider, M.P.; Schmieder, R.E. Olmesartan improves pulse wave velocity and lowers central systolic blood pressure and ambulatory blood pressure in patients with metabolic syndrome. J. Clin. Hypertens. 2015, 17, 98–104. [Google Scholar] [CrossRef]
- Laurent, S.; Chatellier, G.; Azizi, M.; Calvet, D.; Choukroun, G.; Danchin, N.; Delsart, P.; Girerd, X.; Gosse, P.; Khettab, H.; et al. SPARTE study: Normalization of arterial stiffness and cardiovascular events in patients with hypertension at medium to very high risk. Hypertension 2021, 78, 983–995. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Y.; Wu, W.; Chen, Z.; Cai, Z.; Chen, Z.; Yan, X.; Wu, S. Prolonged hyperlipidemia exposure increases the risk of arterial stiffness in young adults: A cross-sectional study in a cohort of Chinese. BMC Public Health 2020, 20, 1091. [Google Scholar] [CrossRef]
- Reiner, Ž. Hypertriglyceridaemia and risk of coronary artery disease. Nat. Rev. Cardiol. 2017, 14, 401–411. [Google Scholar] [CrossRef]
- Puato, M.; Zambon, A.; Nardin, C.; Faggin, E.; Pesavento, R.; Spinazzè, A.; Pauletto, P.; Rattazzi, M. Lipid profile and vascular remodelling in young dyslipidemic subjects treated with nutraceuticals derived from red yeast rice. Cardiovasc. Ther. 2021, 2021, 5546800. [Google Scholar] [CrossRef]
- Le Master, E.; Levitan, I. Endothelial stiffening in dyslipidemia. Aging 2019, 11, 299–300. [Google Scholar] [CrossRef]
- Yoo, T.K.; Park, S.H.; Park, S.J.; Lee, J.Y. Impact of sex on the association between flexibility and arterial stiffness in older adults. Medicina 2022, 58, 789. [Google Scholar] [CrossRef] [PubMed]
- Sciacqua, A.; Ventura, E.; Tripepi, G.; Cassano, V.; D’Arrigo, G.; Roumeliotis, S.; Maio, R.; Miceli, S.; Perticone, M.; Andreozzi, F.; et al. Ferritin modifies the relationship between inflammation and arterial stiffness in hypertensive patients with different glucose tolerance. Cardiovasc. Diabetol. 2020, 19, 123. [Google Scholar] [CrossRef] [PubMed]
- Cassano, V.; Crescibene, D.; Hribal, M.L.; Pelaia, C.; Armentaro, G.; Magurno, M.; Toscani, A.; Miceli, S.; Andreozzi, F.; Maio, R.; et al. Uric acid and vascular damage in essential hypertension: Role of insulin resistance. Nutrients 2020, 12, 2509. [Google Scholar] [CrossRef]
- Vallée, A.; Cinaud, A.; Protogerou, A.; Zhang, Y.; Topouchian, J.; Safar, M.E.; Blacher, J. Arterial stiffness and coronary ischemia: New aspects and paradigms. Curr. Hypertens. Rep. 2020, 22, 5. [Google Scholar] [CrossRef] [PubMed]
- Khoshdel, A.R.; Eshtiaghi, R. Assessment of arterial stiffness in metabolic syndrome related to insulin resistance in apparently healthy men. Metab. Syndr. Relat. Disord. 2019, 17, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Cwynar, M.; Gąsowski, J.; Gryglewska, B.; Głuszewska, A.; Kwater, A.; Królczyk, J.; Fołta, M.; Bartoń, H.; Grodzicki, T. Insulin resistance and renal sodium handling influence arterial stiffness in hypertensive patients with prevailing sodium intake. Am. J. Hypertens. 2019, 32, 848–857. [Google Scholar] [CrossRef] [PubMed]
Central obesity | increased waist circumference (cut-off values for male and female gender differ between populations and countries) |
Impaired carbohydrate metabolism | fasting venous blood glucose concentration ≥ 100 mg/dL or pharmacological treatment of diagnosed carbohydrate metabolism disorders |
Impaired lipid metabolism | triglycerides blood level ≥ 150 mg/dL (1.7 mmol/L) or pharmacological treatment of this lipid disorder |
high-density lipoprotein cholesterol blood level < 40 mg/dL in men or < 50 mg/dL in women, or pharmacotherapy for this lipid disorder | |
Arterial hypertension | systolic blood pressure ≥ 130 mmHg or diastolic blood pressure ≥ 85 mmHg, or taking of antihypertensive drugs by a patient with diagnosed arterial hypertension |
Results | |
---|---|
Elevated blood pressure | |
Chen et al. (2021) [39] | Estimated pulse wave velocity (ePWV) was positively correlated with systolic blood pressure (SBP) and diastolic blood pressure (DBP). For every 1 cm/s increase in PWV, SBP, as well as DBP, increased by 5.60 and 2.12 mmHg, respectively. |
Abdominal obesity | |
Kim et al. (2021) [49] | PWV was shown to be significantly associated with a higher waist-to-hip ratio (WHR) [for >0.90 in men and >0.85 in women: odds ratio (OR) 1.23; 95% confidence interval (CI) 1.06–1.42; p = 0.005; for the highest tertile compared to the lowest tertile: OR 1.38; 95% CI 1.15–1.66; p < 0.001], and with higher visceral fat area (VFA) (for ≥100 cm2: OR 1.39; 95% CI 1.20–1.60; p < 0.001; for the highest tertile compared to the lowest tertile: OR 1.77; 95% CI 1.48–2.12; p < 0.001). |
Stanek et al. (2021) [50] | Physical activity has a beneficial effect on perivascular adipose tissue (PVAT) function among obese patients by reducing oxidative stress and inflammatory state. |
Vianna et al. (2019) [51] | In linear regression analysis, the highest regression coefficients with PWV were observed for body mass index (BMI) (r = 0.30; 95% CI 0.25–0.35), visceral fat thickness (r = 0.30; 95% CI 0.24–0.35), and fat mass (r = 0.30; 95% CI 0.24–0.35), even after controlling for potential confounders (sex, race, birth weight, family income, family education, and maternal smoking during pregnancy). |
Liang et al. (2018) [56] | Brachial-ankle PWV (baPWV) decreased insignificantly after weight loss (p = 0.240), while weight regaining significantly increased baPWV [from 3rd month (1358 ± 168 cm/s) to the 60th month (1539 ± 264 cm/s), p < 0.001]. |
Lipid disorders | |
Zhao et al. (2019) [67] | Increased triglyceride glucose index (TyG) was associated with a higher incidence of carotid-femoral PWV (cfPWV) > 10 m/s, baPWV > 1800 cm/s, ankle–brachial index (ABI) < 0.9, microalbuminuria, and chronic kidney disease. |
Pavlovska et al. (2020) [70] | High trigliceryde (TG) levels were associated with a high cardio–ankle vascular index (CAVI), even after adjustment for other cardio-metabolic components, age, gender, smoking status, low-density lipoprotein cholesterol (LDL-C), and statin treatment (OR 1.607, 95% CI 1.063–2.429, p = 0.024). |
Sang et al. (2021) [71] | The mean baPWV values increased from 1349 cm/s to 1410 cm/s and individuals increased/persisted with high baPWV (outcome 1). Among the subjects who had normal baseline baPWV, in 100 subjects elevated baPWV occurred after 4.1 years of follow-up (outcome 2). logTG (OR 1.64 [95% CI 1.14–2.37] for outcome 1; 1.89 [1.14–3.17] for outcome 2) and logTG/HDL-C (1.54 [1.15–2.10] for outcome 1; 1.60 [1.05–2.45] for outcome 2) were significantly associated with progression of AS after adjusting for confounders. |
Insulin-resistance state | |
Hill et al. (2021) [78] | Endothelial serum and glucocorticoid kinase 1 (SGK-1) may represent a point of convergence for insulin and aldosterone signaling in AS associated with obesity and metabolic syndrome. |
Antonio-Villa et al. (2020) [81] | 57% (ΔE→MY 95% CI: 31.7–100.0) of the effect of insulin resistance (IR) on altered PWV analysis was mediated by visceral adipose tissue (VAT). Moreover, VAT acts as a mediator of the effect of IR on increased mean arterial pressure (ΔE→MY 35.7%, 95% CI 23.8–59) and increased hypertension risk (ΔE→MY 69.1%, 95% CI 46.1–78.8). The obtained results showed that visceral adiposity is a modifier of the effect of IR on altered vascular hemodynamics, increased blood pressure levels, and hypertension risk. |
Adeva-Andany et al. (2019) [82] | Cross-sectional and prospective studies confirm that IR is associated with a subclinical vascular injury in patients with diabetes, independently of standard cardiovascular risk factors. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Starzak, M.; Stanek, A.; Jakubiak, G.K.; Cholewka, A.; Cieślar, G. Arterial Stiffness Assessment by Pulse Wave Velocity in Patients with Metabolic Syndrome and Its Components: Is It a Useful Tool in Clinical Practice? Int. J. Environ. Res. Public Health 2022, 19, 10368. https://doi.org/10.3390/ijerph191610368
Starzak M, Stanek A, Jakubiak GK, Cholewka A, Cieślar G. Arterial Stiffness Assessment by Pulse Wave Velocity in Patients with Metabolic Syndrome and Its Components: Is It a Useful Tool in Clinical Practice? International Journal of Environmental Research and Public Health. 2022; 19(16):10368. https://doi.org/10.3390/ijerph191610368
Chicago/Turabian StyleStarzak, Monika, Agata Stanek, Grzegorz K. Jakubiak, Armand Cholewka, and Grzegorz Cieślar. 2022. "Arterial Stiffness Assessment by Pulse Wave Velocity in Patients with Metabolic Syndrome and Its Components: Is It a Useful Tool in Clinical Practice?" International Journal of Environmental Research and Public Health 19, no. 16: 10368. https://doi.org/10.3390/ijerph191610368
APA StyleStarzak, M., Stanek, A., Jakubiak, G. K., Cholewka, A., & Cieślar, G. (2022). Arterial Stiffness Assessment by Pulse Wave Velocity in Patients with Metabolic Syndrome and Its Components: Is It a Useful Tool in Clinical Practice? International Journal of Environmental Research and Public Health, 19(16), 10368. https://doi.org/10.3390/ijerph191610368