Carbon Quantum Dots-Functionalized UiO-66-NH2 Enabling Efficient Infrared Light Conversion of 5-Hydroxymethylfurfuryl with Waste Ethanol into 5-Ethoxymethylfurfural
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals and Reagents
2.2. Materials Preparation
2.3. Characterizations
2.4. Catalytic Activity Evaluation
3. Results and Discussion
3.1. Materials Characterizations
3.2. Catalytic Performance of the Powder-Form Catalysts
3.3. Photo-to-Thermal Conversion and Catalytic Performance of the Immobilized Catalysts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Govind, K.S.; Kotni, R.; Shunmugavel, S.; Riisager, A.; Yang, S. Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–base bifunctional hybrid nanospheres. Energy Convers. Manag. 2014, 88, 1245–1251. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, K.; Luo, W.; Guan, H. Catalytic upgrading of carbohydrates into 5-ethoxymethylfurfural using SO3H functionalized hyper-cross-linked polymer based carbonaceous materials. Fuel 2018, 234, 664–673. [Google Scholar] [CrossRef]
- García-Sancho, C.; Fúnez-Núñez, I.; Moreno-Tost, R.; Santamaría-González, J.; Pérez-Inestrosa, E.; Fierro, J.; Maireles-Torres, P. Beneficial effects of calcium chloride on glucose dehydration to 5-hydroxymethylfurfural in the presence of alumina as catalyst. Appl. Catal. B Environ. 2017, 206, 617–625. [Google Scholar] [CrossRef]
- He, Y.; Zhang, L.; Liu, Y.; Yi, S.; Yu, H.; Zhu, Y.; Sun, R. Sulfated complex metal oxides solid acids with dual Brønsted-Lewis acidic property for production of 5-ethoxymethylfurfural from biomass-derived carbohydrates. Chem. Eng. J. 2022, 429, 132279. [Google Scholar] [CrossRef]
- Chen, B.; Yan, G.; Chen, G.; Feng, Y.; Zeng, X.; Sun, Y.; Tang, X.; Lei, T.; Lin, L. Recent progress in the development of advanced biofuel 5-ethoxymethylfurfural. BMC Energy 2020, 2, 1–13. [Google Scholar] [CrossRef]
- Ambat, I.; Srivastava, V.; Sillanpää, M. Recent advancement in biodiesel production methodologies using various feedstock: A review. Renew. Sustain. Energy Rev. 2018, 90, 356–369. [Google Scholar] [CrossRef]
- Karnjanakom, S.; Phanthong, P.; Bayu, A.; Maneechakr, P.; Samart, C.; Kongparakul, S.; Guan, G. Facile In Situ 5-EMF Synthesis and Extraction Processes from Catalytic Conversion of Sugar under Sustainable Long-Life Cycle. ACS Sustain. Chem. Eng. 2020, 8, 14867–14876. [Google Scholar] [CrossRef]
- Yang, F.; Tang, J.; Ou, R.; Guo, Z.; Gao, S.; Wang, Y.; Wang, X.; Chen, L.; Yuan, A. Fully catalytic upgrading synthesis of 5-Ethoxymethylfurfural from biomass derived 5-Hydroxymethylfurfural over recyclable layered-niobiummolybdate solid acid. Appl. Catal. B Environ. 2019, 256, 117786. [Google Scholar] [CrossRef]
- Wen, Y.; Yu, Z.; Li, K.; Guo, H.; Dai, Y.; Yan, L. Fabrication of biobased heterogeneous solid Brønsted acid catalysts and their ap-plication on the synthesis of liquid biofuel 5-ethoxymethylfurfural from fructose. Green Energy Environ. 2018, 3, 384–391. [Google Scholar] [CrossRef]
- Chen, T.; Peng, L.; Yu, X.; He, L. Magnetically recyclable cellulose-derived carbonaceous solid acid catalyzed the biofuel 5-ethoxymethylfurfural synthesis from renewable carbohydrates. Fuel 2018, 219, 344–352. [Google Scholar] [CrossRef]
- Bing, L.; Zhang, Z.; Deng, K. Efficient One-Pot Synthesis of 5-(Ethoxymethyl)furfural from Fructose Catalyzed by a Novel Solid Catalyst. Ind. Eng. Chem. Res. 2012, 51, 15331–15336. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Z.; Huang, K.; Fang, Z. Efficient conversion of carbohydrates into 5-ethoxymethylfurfural in ethanol catalyzed by AlCl3. Fuel 2013, 113, 625–631. [Google Scholar] [CrossRef]
- Wang, H.; Deng, T.; Wang, Y.; Qi, Y.; Hou, X.; Zhu, Y. Efficient catalytic system for the conversion of fructose into 5-ethoxymethylfurfural. Bioresour. Technol. 2013, 136, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, Z.; Liu, B.; Li, J. Silica coated magnetic Fe3O4 nanoparticles supported phosphotungstic acid: A novel environmentally friendly catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose. Catal. Sci. Technol. 2013, 3, 2104–2112. [Google Scholar] [CrossRef]
- Li, H.; Saravanamurugan, S.; Yang, S.; Riisager, A. Direct transformation of carbohydrates to the biofuel 5-ethoxymethylfurfural by solid acid catalysts. Green Chem. 2016, 18, 726–734. [Google Scholar] [CrossRef]
- Quereshi, S.; Ahmad, E.; Pant, K.K.K.; Dutta, S. Insights into Microwave-Assisted Synthesis of 5-Ethoxymethylfurfural and Ethyl Levulinate Using Tungsten Disulfide as a Catalyst. ACS Sustain. Chem. Eng. 2020, 8, 1721–1729. [Google Scholar] [CrossRef]
- Morales, G.; Paniagua, M.; Melero, J.A.; Iglesias, J. Efficient production of 5-ethoxymethylfurfural from fructose by sulfonic mesostructured silica using DMSO as co-solvent. Catal. Today 2017, 279, 305–316. [Google Scholar] [CrossRef]
- Rao, B.S.; Lakshmi, D.D.; Kumari, P.K.; Rajitha, P.; Lingaiah, N. Dehydrative etherification of carbohydrates to 5-ethoxymethylfurfural over SBA-15-supported Sn-modified heteropolysilicate catalysts. Sustain. Energy Fuels 2020, 4, 3428–3437. [Google Scholar] [CrossRef]
- Zhao, K.; Liu, S.; Li, K.; Hu, Z.; Yuan, Y.; Yan, L.; Guo, H.; Luo, X. Fabrication of −SO3H functionalized aromatic carbon microspheres directly from waste Camellia oleifera shells and their application on heterogeneous acid catalysis. Mol. Catal. 2017, 433, 193–201. [Google Scholar] [CrossRef]
- Bai, Y.; Wei, L.; Yang, M.; Chen, H.; Holdren, S.; Zhu, G.; Tran, D.T.; Yao, C.; Sun, R.; Pan, Y.; et al. Three-step cascade over a single catalyst: Synthesis of 5-(ethoxymethyl)furfural from glucose over a hierarchical lamellar multi-functional zeolite catalyst. J. Mater. Chem. A 2018, 6, 7693–7705. [Google Scholar] [CrossRef]
- Lew, C.M.; Rajabbeigi, N.; Tsapatsis, M. One-Pot Synthesis of 5-(Ethoxymethyl)furfural from Glucose Using Sn-BEA and Amberlyst Catalysts. Ind. Eng. Chem. Res. 2012, 51, 5364–5366. [Google Scholar] [CrossRef]
- Tu, X.; Ke, S.; Luo, S.; Zhou, R.; Zeng, Z.; Luo, S. Self-supporting rGO/BiOBr composite on loofah-sponge as a floating monolithic photocatalyst for efficient microcystis aeruginosa inactivation. Sep. Purif. Technol. 2021, 275, 119226. [Google Scholar] [CrossRef]
- Lanzafame, P.; Temi, D.; Perathoner, S.; Centi, G.; Macario, A.; Aloise, A.; Giordano, G. Etherification of 5-hydroxymethyl-2-furfural (HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts. Catal. Today 2011, 175, 435–441. [Google Scholar] [CrossRef]
- Hu, L.; Zhao, G.; Hao, W.; Tang, X.; Sun, Y.; Lin, L.; Liu, S. Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes. RSC Adv. 2012, 2, 11184–11206. [Google Scholar] [CrossRef]
- Yan, Y.; Guo, H.; Li, K.; Yan, L. Fabrication of supported acid catalytic composite fibers by a simple and low-cost method and their application on the synthesis of liquid biofuel 5-ethoxymethylfurfural. Green Energy Environ. 2022, 7, 165–171. [Google Scholar] [CrossRef]
- Zheng, X.T.; Ananthanarayanan, A.; Luo, K.Q.; Chen, P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 2015, 11, 1620–1636. [Google Scholar]
- He, Z.; Huang, H.; Jiang, R.; Mao, L.; Liu, M.; Chen, J.; Deng, F.; Zhou, N.; Zhang, X.; Wei, Y. Click multiwalled carbon nanotubes: A novel method for preparation of carboxyl groups functionalized carbon quantum dots. Mater. Sci. Eng. C 2020, 108, 110376. [Google Scholar] [CrossRef]
- Wang, B.; Ding, Y.; Deng, Z.; Li, Z. Rational design of ternary NiS/CQDs/ZnIn2S4 nanocomposites as efficient noble-metal-free photocatalyst for hydrogen evolution under visible light. Chin. J. Catal. 2019, 40, 335–342. [Google Scholar] [CrossRef]
- Jin, C.; Su, K.; Tan, L.; Liu, X.; Cui, Z.; Yang, X.; Li, Z.; Liang, Y.; Zhu, S.; Yeung, K.W.K.; et al. Near-infrared light photocatalysis and photothermy of carbon quantum dots and au nanoparticles loaded titania nanotube array. Mater. Des. 2019, 177, 107845. [Google Scholar] [CrossRef]
- Choi, K.M.; Na, K.; Somorjai, G.A.; Yaghi, O.M. Chemical Environment Control and Enhanced Catalytic Performance of Platinum Nanoparticles Embedded in Nanocrystalline Metal–Organic Frameworks. J. Am. Chem. Soc. 2015, 137, 7810–7816. [Google Scholar] [CrossRef]
- Jrad, A.; Hmadeh, M.; Abu Tarboush, B.J.; Awada, G.; Ahmad, M. Structural engineering of Zr-based metal-organic framework catalysts for optimized biofuel additives production. Chem. Eng. J. 2020, 382, 122793. [Google Scholar] [CrossRef]
- Li, K.; Zhao, D.; Li, Y.; Luo, S.; Zhou, Z. The synergistic photocatalytic effects of surface-modified g-C3N4 in simple and complex pollution systems based on a macro-thermodynamic model. Environ. Sci. Nano 2021, 8, 217–232. [Google Scholar] [CrossRef]
- Wu, L.; Liu, C.; Hu, Y.; Tan, B.; He, Y.; Li, N. Dephosphorization using ceramsites modified by coprecipitation with FeSo4 and KMnO4 and high-temperature combustion. J. Water Process Eng. 2020, 34, 101162. [Google Scholar] [CrossRef]
- Zeng, Z.; Ye, F.; Deng, S.; Fang, D.; Wang, X.; Bai, Y.; Xiao, H. Accelerated organic pollutants mineralization in interlayer confined single Pt atom photocatalyst for hydrogen recovery. Chem. Eng. J. 2022, 444, 136561. [Google Scholar] [CrossRef]
- Yang, J.; He, X.; Dai, J.; Tian, R.; Yuan, D. Photo-assisted enhancement performance for rapid detoxification of chemical warfare agent simulants over versatile ZnIn2S4/UiO-66-NH2 nanocomposite catalysts. J. Hazard. Mater. 2021, 417, 126056. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Liu, S.; Wang, W.; Shi, S.; Zeng, Z.; Chen, C. Enhanced singlet oxygen generation in PCN-224-Zn without the need of electron-hole separation for efficient photocatalytic water disinfection. Appl. Surface Sci. 2022, 575, 151769. [Google Scholar] [CrossRef]
- Hou, Q.; Zhen, M.; Liu, L.; Chen, Y.; Huang, F.; Zhang, S.; Li, W.; Ju, M. Tin phosphate as a heterogeneous catalyst for efficient dehydration of glucose into 5-hydroxymethylfurfural in ionic liquid. Appl. Catal. B Environ. 2018, 224, 183–193. [Google Scholar] [CrossRef]
- Tauster, S.J.; Fung, S.C.; Baker, R.T.K.; Horsley, J.A. Strong Interactions in Supported-Metal Catalysts. Science 1981, 211, 1121–1125. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; Huang, C.; Wang, X. Post-annealing reinforced hollow carbon nitride nanospheres for hydrogen photosynthesis. Nanoscale 2015, 7, 465–470. [Google Scholar] [CrossRef]
- Tuttle, R.; Folkman, S.; Rubin, H.; Finker, R.; Reynolds, M. Copper metal-organic framework surface catalysis: Catalyst poisoning, IR spectroscopic, and kinetic evidence addressing the nature and number of the catalytically active sites En route to improved ap-plications. ACS Appl. Mater. Interfaces 2020, 12, 39043–39055. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, H.; Zhang, Y.; Gong, J.; Li, K.; Chen, X.; Fang, D.; Lv, G.; Wu, G.; Deng, S.; Zeng, Z. Carbon Quantum Dots-Functionalized UiO-66-NH2 Enabling Efficient Infrared Light Conversion of 5-Hydroxymethylfurfuryl with Waste Ethanol into 5-Ethoxymethylfurfural. Int. J. Environ. Res. Public Health 2022, 19, 10437. https://doi.org/10.3390/ijerph191610437
Xiao H, Zhang Y, Gong J, Li K, Chen X, Fang D, Lv G, Wu G, Deng S, Zeng Z. Carbon Quantum Dots-Functionalized UiO-66-NH2 Enabling Efficient Infrared Light Conversion of 5-Hydroxymethylfurfuryl with Waste Ethanol into 5-Ethoxymethylfurfural. International Journal of Environmental Research and Public Health. 2022; 19(16):10437. https://doi.org/10.3390/ijerph191610437
Chicago/Turabian StyleXiao, Hong, Yunting Zhang, Junran Gong, Kexin Li, Xing Chen, Dexin Fang, Guochun Lv, Ganxue Wu, Shihuai Deng, and Zhenxing Zeng. 2022. "Carbon Quantum Dots-Functionalized UiO-66-NH2 Enabling Efficient Infrared Light Conversion of 5-Hydroxymethylfurfuryl with Waste Ethanol into 5-Ethoxymethylfurfural" International Journal of Environmental Research and Public Health 19, no. 16: 10437. https://doi.org/10.3390/ijerph191610437
APA StyleXiao, H., Zhang, Y., Gong, J., Li, K., Chen, X., Fang, D., Lv, G., Wu, G., Deng, S., & Zeng, Z. (2022). Carbon Quantum Dots-Functionalized UiO-66-NH2 Enabling Efficient Infrared Light Conversion of 5-Hydroxymethylfurfuryl with Waste Ethanol into 5-Ethoxymethylfurfural. International Journal of Environmental Research and Public Health, 19(16), 10437. https://doi.org/10.3390/ijerph191610437