Understanding, Trusting, and Applying Scientific Insights to Improve Your Health: A Latent Profile Analysis Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Scientific Knowledge
2.2.2. Trust in Science
2.2.3. Health Literacy
2.2.4. Conspiracy Ideation
2.2.5. Health-Promoting Lifestyle
2.2.6. COVID-19 Compliance
2.2.7. COVID-19 Vaccination Intention
2.2.8. Sociodemographic Data
2.2.9. Attention Checks
2.3. Procedure
2.4. Statistical Analyses
3. Results
3.1. Descriptive Statistics and Correlations
3.2. Identification of Profiles and Differences in Health-Related Outcomes
3.3. Predictors of Profile Membership
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Items Used to Measure Scientific Knowledge
- The center of the Earth is very hot.
- All radioactivity is manmade.
- It’s the father’s gene that decides whether the baby is a boy or a girl.
- Lasers work by focusing sound waves.
- Electrons are smaller than atoms.
- Antibiotics kill viruses as well as bacteria.
- The Sun goes around the Earth.
- All human-made chemicals can cause cancer.
- Astrology has some scientific truth.
- The oxygen we breathe comes from plants.
- Radioactive milk can be made safe by boiling it.
Appendix A.2. Correlations between Trust in Science, Scientific Knowledge, Health Literacy, and HPLP II Subscales
M (SD) | 1. | 2. | 3. | 4. | 5. | 6. | |
---|---|---|---|---|---|---|---|
1. Scientific knowledge | 0.55 (0.23) | - | |||||
2. Trust in science | 3.56 (0.73) | 0.25 *** | - | ||||
3. Health literacy | 3.14 (0.50) | 0.04 | 0.27 *** | - | |||
4. Nutrition | 2.17 (0.61) | 0.09 * | 0.18 *** | 0.18 *** | - | ||
5. Health responsibility | 2.16 (0.61) | −0.01 | 0.20 *** | 0.27 *** | 0.62 *** | - | |
6. Physical activity | 2.08 (0.76) | 0.06 | 0.11 ** | 0.14 *** | 0.62 *** | 0.57 *** | - |
7. Stress management | 2.44 (0.62) | 0.06 | 0.18 *** | 0.24 *** | 0.62 *** | 0.59 *** | 0.60 *** |
Appendix A.3. Pairwise Comparisons between Profiles: HPLP II Subscales
References
- WHO. The Top 10 Causes of Death. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 15 July 2022).
- Centers for Disease Control and Prevention. CDC National Health Report Highlights. 2012. Available online: https://www.cdc.gov/healthreport/publications/compendium.pdf (accessed on 15 July 2022).
- Berlin, J.A.; Colditz, G.A. A meta-analysis of physical activity in the prevention of coronary heart disease. Am. J. Epidemiol. 1990, 132, 612–628. [Google Scholar] [CrossRef] [PubMed]
- Sattelmair, J.; Pertman, J.; Ding, E.L.; Kohl, H.W.; Haskell, W.; Lee, I.M. Dose response between physical activity and risk of coro-nary heart disease: A meta-analysis. Circulation 2011, 124, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, R.E.; Janssen, I.; Bredin, S.S.D.; Warburton, D.E.R.; Bauman, A. Physical activity: Health impact, prevalence, correlates and interventions. Psychol. Health 2017, 32, 942–975. [Google Scholar] [CrossRef]
- Law, M.R.; Wald, N.J.; Thompson, S.G. By how much and how quickly does reduction in serum cholesterol concentration lower risk of ischaemic heart disease? Br. Med. J. 1994, 308, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Dauchet, L.; Amouyel, P.; Hercberg, S.; Dallongeville, J. Fruit and Vegetable Consumption and Risk of Coronary Heart Disease: A Meta-Analysis of Cohort Studies. J. Nutr. 2006, 136, 2588–2593. [Google Scholar] [CrossRef]
- Kivimäki, M.; Virtanen, M.; Elovainio, M.; Kouvonen, A.; Väänänen, A.; Vahtera, J. Work stress in the etiology of coronary heart disease—a meta-analysis. Scand. J. Work. Environ. Health 2006, 32, 431–442. [Google Scholar] [CrossRef]
- Richardson, S.; Shaffer, J.A.; Falzon, L.; Krupka, D.; Davidson, K.W.; Edmondson, D. Meta-analysis of perceived stress and its asso-ciation with incident coronary heart disease. Am. J. Cardiol. 2012, 110, 1711–1716. [Google Scholar] [CrossRef]
- Bode, A.M.; Dong, Z. Cancer prevention research—Then and now. Nat. Cancer 2009, 9, 508–516. [Google Scholar] [CrossRef]
- Kim, J.H.; Marks, F.; Clemens, J.D. Looking beyond COVID-19 vaccine phase 3 trials. Nat. Med. 2021, 27, 205–211. [Google Scholar] [CrossRef]
- Lotfi, M.; Hamblin, M.R.; Rezaei, N. COVID-19: Transmission, prevention, and potential therapeutic opportunities. Clin. Chim. Acta 2020, 508, 254–266. [Google Scholar] [CrossRef]
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity and Severe Obesity Among Adults: United States, 2017–2018; NCHS Data Brief, no 360.; CDC National Center for Health Statistics: Hyattsville, MD, USA, 2020; pp. 1–8. [Google Scholar]
- Khubchandani, J.; Sharma, S.; Price, J.H.; Wiblishauser, M.J.; Sharma, M.; Webb, F.J. COVID-19 Vaccination Hesitancy in the United States: A Rapid National Assessment. J. Community Health 2021, 46, 270–277. [Google Scholar] [CrossRef]
- Statista. Share of Adults Who Are Fully Vaccinated against COVID-19 in the European Economic Area (EEA) as of 21 July 2022, by Country. 2022. Available online: https://www.statista.com/statistics/1218676/full-covid-19-vaccination-uptake-in-europe/ (accessed on 15 July 2022).
- MacDonald, N.E.; the SAGE Working Group on Vaccine Hesitancy. Vaccine hesitancy: Definition, scope and determinants. Vaccine 2015, 33, 4161–4164. [Google Scholar] [CrossRef]
- Rosenstock, I.M. Historical Origins of the Health Belief Model. Health Educ. Monogr. 1974, 2, 328–335. [Google Scholar] [CrossRef]
- Holbrook, J.; Rannikkmae, M. The meaning of scientific literacy. Int. J. Environ. Sci. Educ. 2009, 4, 257–288. [Google Scholar]
- Laugksch, R.C. Scientific literacy: A conceptual overview. Sci. Educ. 2000, 84, 71–94. [Google Scholar] [CrossRef]
- Allum, N.; Sibley, E.; Sturgis, P.; Stoneman, P. Religious beliefs, knowledge about science and attitudes towards medical genetics. Public Underst. Sci. 2014, 23, 833–849. [Google Scholar] [CrossRef]
- Hornsey, M.J.; Edwards, M.; Lobera, J.; Díaz-catalán, C.; Barlow, F. Resolving the small pockets problem clarifies the role of edu-cation and political ideology in shaping our understanding of vaccine skepticism. Br. J. Psychol. 2021, 112, 992–1011. [Google Scholar] [CrossRef]
- Yacoubian, H.A. Scientific literacy for democratic decision-making. Int. J. Sci. Educ. 2018, 40, 308–327. [Google Scholar] [CrossRef]
- Committee on Science, Engineering, and Public Policy. On Being a Scientist; National Academy Press: Washington, DC, USA, 2009. [Google Scholar]
- Plohl, N.; Musil, B. Modeling compliance with COVID-19 prevention guidelines: The critical role of trust in science. Psychol. Health Med. 2021, 26, 1–12. [Google Scholar] [CrossRef]
- Pagliaro, S.; Sacchi, S.; Pacilli, M.G.; Brambilla, M.; Lionetti, F.; Bettache, K.; Bianchi, M.; Biella, M.; Bonnot, V.; Boza, M.; et al. Trust predicts COVID-19 prescribed and discre-tionary behavioral intentions in 23 countries. PLoS ONE 2021, 16, e0248334. [Google Scholar]
- Ploomipuu, I.; Holbrook, J.; Rannikmäe, M. Modelling health literacy on conceptualizations of scientific literacy. Health Promot. Int. 2019, 35, 1210–1219. [Google Scholar] [CrossRef] [PubMed]
- Nutbeam, D. Health literacy as a public health goal: A challenge for contemporary health education and communication strategies into the 21st century. Health Promot. Int. 2000, 15, 259–267. [Google Scholar] [CrossRef]
- Berkman, N.D.; Sheridan, S.L.; Donahue, K.E.; Halpern, D.J.; Crotty, K. Low health literacy and health outcomes: An updated sys-tematic review. Ann. Intern. Med. 2011, 155, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Von Wagner, C.; Knight, K.; Steptoe, A.; Wardle, J. Functional health literacy and health-promoting behaviour in a national sample of British adults. J. Epidemiol. Community Health 2007, 61, 1086–1090. [Google Scholar] [CrossRef]
- Rutjens, B.T.; Sutton, R.M.; van der Lee, R. Not all skepticism is equal: Exploring the ideological antecedents of science ac-ceptance and rejection. Pers. Soc. Psychol. Bull. 2018, 44, 384–405. [Google Scholar] [CrossRef]
- Rutjens, B.T.; van der Lee, R. Spiritual skepticism? Heterogeneous science skepticism in the Netherlands. Public Underst. Sci. 2020, 9, 335–352. [Google Scholar] [CrossRef]
- Anderson, K.M.; Stockman, J.K. Staying Home, Distancing, and Face Masks: COVID-19 Prevention among U.S. Women in The COPE Study. Int. J. Environ. Res. Public Health 2020, 18, 180. [Google Scholar] [CrossRef]
- Jones, D.R.; McDermott, M.L. Partisanship and the Politics of COVID Vaccine Hesitancy. Polity 2022, 54, 408–434. [Google Scholar] [CrossRef]
- Impey, C.; Buxner, S.; Antonellis, J.; Johnson, E.; King, C. A twenty-year survey of science literacy among college undergraduates. J. Coll. Sci. Teach. 2011, 40, 31–37. [Google Scholar]
- Johnson, D.R.; Scheitle, C.P.; Ecklund, E.H. Individual Religiosity and Orientation towards Science: Reformulating Relationships. Sociol. Sci. 2015, 2, 106–124. [Google Scholar] [CrossRef]
- McPhetres, J.; Zuckerman, M. Religiosity predicts negative attitudes towards science and lower levels of science literacy. PLoS ONE 2018, 13, e0207125. [Google Scholar] [CrossRef] [PubMed]
- Nadelson, L.; Jorcyk, C.; Yang, D.; Jarratt Smith, M.; Matson, S.; Cornell, K.; Husting, V. I just don’t trust them: The development and val-idation of an assessment instrument to measure trust in science and scientists. Sch. Sci. Math. 2014, 114, 76–86. [Google Scholar] [CrossRef]
- Pelikan, J.M.; Ganahl, K.; Broucke, S.V.D.; Sørensen, K. Measuring health literacy in Europe: Introducing the European Health Literacy Survey Questionnaire (HLS-EU-Q). In International Handbook of Health Literacy; Policy Press: Bristol, UK, 2019; pp. 115–138. [Google Scholar] [CrossRef]
- Brotherton, R.; French, C.C.; Pickering, A.D. Measuring belief in conspiracy theories: The generic conspiracist beliefs scale. Front. Psychol. 2013, 4, 279. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.N.; Hill-Polerecky, D.M. Psychometric Evaluation of the Health-Promoting Lifestyle Profile II; University of Nebraska Medical Center: Omaha, NE, USA, 1996. [Google Scholar]
- Talhelm, T.; Haidt, J.; Oishi, S.; Zhang, X.; Miao, F.F.; Chen, S. Liberals think more analytically (more “WEIRD”) than conservatives. Pers. Soc. Psychol. Bull. 2015, 41, 250–267. [Google Scholar] [CrossRef] [PubMed]
- Maniaci, M.R.; Rogge, R.D. Caring about carelessness: Participant inattention and its effects on research. J. Res. Pers. 2014, 48, 61–83. [Google Scholar] [CrossRef]
- Chandler, J.; Rosenzweig, C.; Moss, A.; Robinson, J.; Litman, L. Online panels in social science research: Expanding sampling methods beyond Mechanical Turk. Behav. Res. Methods 2019, 51, 2022–2038. [Google Scholar] [CrossRef]
- Spurk, D.; Hirschi, A.; Wang, M.; Valero, D.; Kauffeld, S. Latent profile analysis: A review and “how to” guide of its application within vocational behavior research. J. Vocat. Behav. 2020, 120, 103445. [Google Scholar] [CrossRef]
- Nylund, K.L.; Asparouhov, T.; Muthen, B.O. Deciding on the number of classes in latent class analysis and growth mixture de-ciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Struct. Equ. Modeling A Multidiscip. J. 2007, 14, 535–569. [Google Scholar] [CrossRef]
- Clark, S.; Muthén, B.O. Relating latent class analysis results to variables not included in the analysis. 2009, pp. 1–55. Available online: https://www.statmodel.com/download/relatinglca.pdf (accessed on 15 July 2022).
- Lubke, G.; Neale, M.C. Distinguishing between latent classes and continuous factors: Resolution by maximum likelihood? Multivar. Behav. Res. 2006, 41, 499–532. [Google Scholar] [CrossRef]
- Ram, N.; Grimm, K.J. Methods and Measures: Growth mixture modeling: A method for identifying differences in longitudinal change among unobserved groups. Int. J. Behav. Dev. 2009, 33, 565–576. [Google Scholar] [CrossRef]
- Roos, J.M. Measuring science or religion? A measurement analysis of the National Science Foundation sponsored science literacy scale 2006–2010. Public Underst. Sci. 2014, 23, 797–813. [Google Scholar] [CrossRef]
- Sørensen, K.; van den Broucke, S.; Pelikan, J.M.; Fullam, J.; Doyle, G.; Slonska, Z.; Kondilis, B.; Stoffels, V.; Osborne, R.H.; Brand, H. Measuring health literacy in populations: Illuminating the design and development process of the European Health Literacy Survey Questionnaire (HLS-EU-Q). BMC Public Health 2013, 13, 948. [Google Scholar] [CrossRef] [PubMed]
- Sentell, T.; Vamos, S.; Okan, O. Interdisciplinary Perspectives on Health Literacy Research Around the World: More Important Than Ever in a Time of COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 3010. [Google Scholar] [CrossRef] [PubMed]
- Central Intelligence Agency. North America—United States. 2021. Available online: https://www.cia.gov/the-world-factbook/countries/united-states/ (accessed on 15 July 2022).
- American National Election Studies. American National Election Study: 2016 Pilot Study (ICPSR 36390). 2016. Available online: https://www.icpsr.umich.edu/web/ICPSR/studies/36390/versions/V1 (accessed on 15 July 2022).
- Harman, H.H. Modern Factor Analysis; University of Chicago Press: Chicago, IL, USA, 1960. [Google Scholar]
- Spring, H. Health literacy and COVID-19. Health Info. Libr. J. 2020, 37, 171–172. [Google Scholar] [CrossRef] [PubMed]
- Bromme, R.; Mede, N.G.; Thomm, E.; Kremer, B.; Ziegler, R. An anchor in troubled times: Trust in science before and within the COVID-19 pandemic. PLoS ONE 2022, 17, e0262823. [Google Scholar] [CrossRef] [PubMed]
M (SD) | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | |
---|---|---|---|---|---|---|---|---|---|---|
1. Scientific knowledge | 0.55 (0.23) | - | ||||||||
2. Trust in science | 3.56 (0.73) | 0.25 *** | - | |||||||
3. Health literacy | 3.14 (0.50) | 0.04 | 0.27 *** | - | ||||||
4. Education | 3.26 (1.02) | 0.22 *** | 0.12 ** | 0.07 | - | |||||
5. Religiosity | 3.91 (2.18) | −0.10 * | −0.21 *** | 0.00 | 0.06 | - | ||||
6. Political conservatism | 3.97 (1.76) | −0.05 | −0.36 *** | −0.08 * | −0.02 | 0.35 *** | - | |||
7. Conspiracy ideation | 2.86 (0.96) | −0.20 *** | −0.43 *** | −0.11 ** | −0.10 ** | 0.08 * | 0.16 *** | - | ||
8. Health prom. lifestyle | 2.21 (0.55) | 0.06 | 0.20 *** | 0.25 *** | 0.27 *** | 0.17 *** | −0.05 | −0.02 | - | |
9. COVID-19 compliance | 3.43 (0.59) | 0.01 | 0.28 *** | 0.25 *** | 0.01 | −0.06 | −0.22 *** | −0.17 *** | 0.21 *** | - |
10. COVID-19 vac. intention a | 3.35 (1.60) | 0.20 *** | 0.41 *** | 0.11 ** | 0.21 *** | −0.08 | −0.32 *** | −0.36 *** | 0.12 ** | 0.37 *** |
Number of Profiles | LL | FP | AIC | BIC | SABIC | Entropy | BLRT (p) | Smallest Profile Size |
---|---|---|---|---|---|---|---|---|
2 | −1210.31 | 10 | 2440.62 | 2486.21 | 2454.45 | 0.447 | <0.001 *** | 42.4% |
3 | −1181.76 | 14 | 2391.51 | 2455.33 | 2410.87 | 0.713 | <0.001 *** | 1.1% |
4 | −1151.75 | 18 | 2347.50 | 2429.55 | 2372.40 | 0.825 | <0.001 *** | 2.6% |
5 | −1137.26 | 22 | 2318.51 | 2418.79 | 2348.94 | 0.856 | <0.001 *** | 1.1% |
6 | −1134.23 | 26 | 2320.46 | 2438.97 | 2356.42 | 0.870 | 1.000 | 0.1% |
Profile 1 (n = 251) | Profile 2 (n = 18) | Profile 3 (n = 328) | Profile 4 (n = 108) | |||
---|---|---|---|---|---|---|
M (SD) | M (SD) | M (SD) | M (SD) | F | η2 | |
Scientific knowledge a | 0.46 (0.23) | 0.60 (0.20) | 0.57 (0.20) | 0.67 (0.23) | 27.91 *** | 0.107 |
Trust in science b | 2.92 (0.27) | 1.60 (0.38) | 3.80 (0.26) | 4.68 (0.23) | 1571.40 *** | 0.873 |
Health literacy c | 3.00 (0.48) | 2.92 (0.88) | 3.15 (0.45) | 3.48 (0.47) | 26.64 *** | 0.104 |
Profile 1 (n = 251) | Profile 2 (n = 18) | Profile 3 (n = 328) | Profile 4 (n = 108) | |||
---|---|---|---|---|---|---|
M (SD) | M (SD) | M (SD) | M (SD) | F | η2 | |
Health-promoting lifestyle a | 2.10 (0.53) | 2.06 (0.58) | 2.23 (0.50) | 2.44 (0.63) | 9.06 *** | 0.046 |
Nutrition b | 2.05 (0.60) | 2.01 (0.73) | 2.20 (0.57) | 2.39 (0.68) | 7.57 *** | 0.036 |
Health responsibility c | 2.04 (0.61) | 1.93 (0.64) | 2.18 (0.56) | 2.41 (0.69) | 8.67 *** | 0.043 |
Physical activity d | 1.98 (0.72) | 1.94 (0.85) | 2.10 (0.73) | 2.26 (0.90) | 3.10 * | 0.015 |
Stress management e | 2.32 (0.62) | 2.38 (0.59) | 2.43 (0.57) | 2.72 (0.71) | 8.44 *** | 0.044 |
COVID-19 compliance f | 3.32 (0.64) | 2.73 (1.01) | 3.48 (0.52) | 3.66 (0.43) | 14.48 *** | 0.075 |
COVID-19 vaccination intention g | 2.73 (1.52) | 1.13 (0.52) | 3.65 (1.46) | 4.22 (1.43) | 104.42 *** | 0.164 |
Profile 1 (n = 251) | Profile 2 (n = 18) | Profile 3 (n = 328) | Profile 4 (n = 108) | |||
---|---|---|---|---|---|---|
M (SD) | M (SD) | M (SD) | M (SD) | F | η2 | |
Education level a | 3.07 (0.98) | 3.50 (0.79) | 3.30 (1.08) | 3.56 (0.89) | 7.97 *** | 0.028 |
Religiosity b | 4.30 (2.11) | 4.39 (2.77) | 3.91 (2.10) | 2.95 (2.18) | 9.78 *** | 0.042 |
Political conservatism c | 4.50 (1.63) | 4.89 (1.96) | 3.89 (1.65) | 2.86 (1.80) | 23.44 *** | 0.100 |
Conspiracy ideation d | 3.18 (0.71) | 3.80 (0.75) | 2.80 (0.93) | 2.12 (1.07) | 40.06 *** | 0.158 |
B | SE B | Wald | |
---|---|---|---|
Profile 1 | |||
Education | −0.47 ** | 0.14 | 11.58 |
Religiosity | 0.18 ** | 0.07 | 7.71 |
Political conservatism | 0.49 *** | 0.09 | 31.99 |
Conspiracy ideation | 1.18 *** | 0.15 | 62.54 |
Profile 2 | |||
Education | −0.11 | 0.26 | 0.17 |
Religiosity | 0.16 | 0.13 | 1.50 |
Political conservatism | 0.61 *** | 0.16 | 14.69 |
Conspiracy ideation | 2.21 *** | 0.37 | 36.04 |
Profile 3 | |||
Education | −0.24 | 0.13 | 3.64 |
Religiosity | 0.13 * | 0.06 | 4.48 |
Political conservatism | 0.30 *** | 0.08 | 14.40 |
Conspiracy ideation | 0.69 *** | 0.13 | 28.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plohl, N.; Musil, B. Understanding, Trusting, and Applying Scientific Insights to Improve Your Health: A Latent Profile Analysis Approach. Int. J. Environ. Res. Public Health 2022, 19, 9967. https://doi.org/10.3390/ijerph19169967
Plohl N, Musil B. Understanding, Trusting, and Applying Scientific Insights to Improve Your Health: A Latent Profile Analysis Approach. International Journal of Environmental Research and Public Health. 2022; 19(16):9967. https://doi.org/10.3390/ijerph19169967
Chicago/Turabian StylePlohl, Nejc, and Bojan Musil. 2022. "Understanding, Trusting, and Applying Scientific Insights to Improve Your Health: A Latent Profile Analysis Approach" International Journal of Environmental Research and Public Health 19, no. 16: 9967. https://doi.org/10.3390/ijerph19169967
APA StylePlohl, N., & Musil, B. (2022). Understanding, Trusting, and Applying Scientific Insights to Improve Your Health: A Latent Profile Analysis Approach. International Journal of Environmental Research and Public Health, 19(16), 9967. https://doi.org/10.3390/ijerph19169967