Heavy Metals in River Sediments: Contamination, Toxicity, and Source Identification—A Case Study from Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sediment Sampling and Chemical Analysis
2.3. Preliminary Data Analysis
2.4. Sediment Contamination and Potential Toxic Effect Assessment
2.5. Spatial Variations of HM Concentrations
2.6. Sediment Contamination and Potential Toxic Effect Assessment
3. Results
3.1. Characteristics of HM Concentrations in River Sediments
3.2. Sediment Contamination and Potential Toxic Effects of HMs
3.3. Spatial Variation of HMs Concentrations in River Sediments
3.4. Pollution Source Identification
4. Discussion
5. Conclusions
- -
- The pattern of HM concentrations in the sediments of 2/3rd of the rivers refers to the concentration pattern resulting from the geochemical background. The contamination of sediments of 1/3rd of the rivers shows a change in the natural pattern of HM concentrations and their higher values above the geochemical background values.
- -
- The values of geochemical indices EF, PLI and MPI indicate sediment pollution in 1/3rd of the analyzed rivers. The identified points with higher HM concentrations were dispersed over the whole area of Poland.
- -
- Only single rivers in Poland were detected where HMs may have toxic effects on aquatic biota.
- -
- Visualization of cluster analysis results on the background of Poland indicates a lack of non-point sources of pollution resulting, e.g., from areas of very intensive agriculture and industrial activity and low development of water and sewage systems.
- -
- Spatial autocorrelation analysis of HM concentrations in river sediments using the Moran I method indicates a random and dispersed pattern. This indicates the presence of local point sources of pollution that overlap with the delivery of HMs from natural sources.
- -
- Analysis using the Getis-Ord test indicated the presence of hotspots of Cd, Ni and Pb. These locations require a detailed source analysis first.
- -
- The PCA analysis identified two sources of HM delivery to the aquatic environment. The main pool of Cr, Cu, Ni, Pb and Zn reaches waters from point and surface sources, while Cd concentrations have dominant origins from natural and point sources.
- -
- The PMF analysis has quantitatively identified three sources of pollution. Among them, urban pollution is mainly responsible for Cu delivery, agricultural pollution for Zn delivery and industrial pollution for Ni and Cr delivery.
- -
- The analysis showed no relationship between catchment land-use patterns and HM contents in river sediments.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Summary of the Sampling Points and River Names
Sampling Point | River Name | Sampling Point | River Name |
1 | Barycz | 25 | Parsęta |
2 | Biała | 26 | Pasłęka |
3 | Brda | 27 | Pilica |
4 | Bystrzyca | 28 | Pisa |
5 | Bzura | 29 | Poprad |
6 | Drawa | 30 | Prosna |
7 | Drwęca | 31 | Raba |
8 | Ełk | 32 | Radomka |
9 | Gwda | 33 | Rega |
10 | Ina | 34 | Skawa |
11 | Jegrznia | 35 | Skrwa |
12 | Kamienna | 36 | Słupia |
13 | Krzna | 37 | Supraśl |
14 | Kwisa | 38 | Świder |
15 | Liwa | 39 | Wda |
16 | Łeba | 40 | Wełna |
17 | Łupawa | 41 | Widawa |
18 | Mała Panew | 42 | Wieprz |
19 | Myśla | 43 | Wieprza |
20 | Nida | 44 | Wierzyca |
21 | Nysa Kłodzka | 45 | Wisłok |
22 | Nysa Łużycka | 46 | Wisłoka |
23 | Obra | 47 | Wkra |
24 | Osa |
Appendix B. Catchment Characteristics
Sampling Point | Area [km2] | Perimeter [km] | Mean Elevation [m a.s.l] | Mean Slope [%] | Drainage Density [km/km2] | Artificial Surfaces (%) | Agricultural Areas (%) | Forest and Seminatural Areas (%) | Wetlands (%) | Water Bodies (%) |
1 | 5543.21 | 465.03 | 122.04 | 0.72 | 0.64 | 6.63 | 52.92 | 38.36 | 0.10 | 1.99 |
2 | 976.06 | 255.52 | 373.17 | 7.41 | 0.72 | 4.90 | 64.80 | 30.24 | 0.00 | 0.06 |
3 | 4656.88 | 661.32 | 130.67 | 1.43 | 0.35 | 4.06 | 43.31 | 49.56 | 0.17 | 2.89 |
4 | 1778.79 | 303.92 | 289.58 | 3.76 | 0.71 | 6.22 | 79.03 | 14.39 | 0.00 | 0.36 |
5 | 7718.63 | 593.22 | 126.12 | 0.73 | 0.49 | 9.06 | 71.27 | 19.18 | 0.11 | 0.37 |
6 | 3287.91 | 478.59 | 101.15 | 1.74 | 0.31 | 1.40 | 32.32 | 63.62 | 0.08 | 2.59 |
7 | 5694.52 | 712.11 | 119.85 | 1.70 | 0.39 | 6.29 | 55.43 | 32.15 | 0.72 | 5.40 |
8 | 1555.78 | 376.03 | 142.25 | 1.54 | 0.42 | 1.97 | 70.95 | 23.70 | 0.48 | 2.90 |
9 | 4958.89 | 579.38 | 133.55 | 1.22 | 0.36 | 3.31 | 44.58 | 49.45 | 0.18 | 2.49 |
10 | 2141.55 | 412.66 | 64.18 | 1.33 | 0.44 | 4.55 | 64.13 | 29.41 | 0.16 | 1.75 |
11 | 1061.66 | 293.02 | 141.45 | 1.04 | 0.48 | 4.62 | 31.62 | 45.79 | 8.98 | 8.99 |
12 | 2021.17 | 329.35 | 247.69 | 2.37 | 0.42 | 11.00 | 54.65 | 33.94 | 0.00 | 0.40 |
13 | 3281.87 | 630.77 | 153.24 | 0.40 | 0.55 | 3.82 | 71.64 | 24.04 | 0.12 | 0.39 |
14 | 1022.75 | 273.75 | 302.12 | 3.21 | 0.66 | 10.06 | 44.30 | 45.24 | 0.06 | 0.34 |
15 | 969.03 | 248.36 | 71.16 | 1.54 | 0.35 | 1.92 | 79.38 | 17.48 | 0.33 | 0.90 |
16 | 1089.00 | 355.46 | 72.88 | 2.17 | 0.41 | 2.62 | 48.69 | 43.72 | 0.84 | 4.12 |
17 | 809.20 | 343.51 | 102.80 | 1.77 | 0.40 | 2.92 | 60.02 | 32.63 | 0.25 | 4.17 |
18 | 2113.23 | 298.41 | 234.22 | 0.76 | 0.53 | 6.77 | 38.75 | 53.29 | 0.05 | 1.14 |
19 | 1301.15 | 291.29 | 64.85 | 1.06 | 0.36 | 3.09 | 54.81 | 39.31 | 0.28 | 2.50 |
20 | 3844.27 | 434.80 | 261.00 | 1.95 | 0.41 | 11.02 | 57.21 | 31.11 | 0.11 | 0.55 |
21 | 4485.86 | 539.00 | 364.27 | 4.64 | 0.67 | 9.78 | 40.92 | 47.13 | 0.14 | 2.03 |
22 | 4082.06 | 582.50 | 222.56 | 4.03 | 0.38 | 6.84 | 40.93 | 51.49 | 0.11 | 0.62 |
23 | 2759.35 | 481.89 | 75.51 | 0.95 | 0.37 | 3.78 | 50.83 | 43.57 | 0.19 | 1.63 |
24 | 1601.68 | 333.41 | 94.31 | 1.72 | 0.37 | 3.81 | 65.53 | 26.63 | 0.88 | 3.15 |
25 | 3068.68 | 460.47 | 86.54 | 1.77 | 0.47 | 3.01 | 52.41 | 44.13 | 0.06 | 0.40 |
26 | 2316.67 | 526.86 | 100.36 | 1.94 | 0.59 | 2.88 | 55.95 | 39.07 | 0.29 | 1.81 |
27 | 9252.48 | 975.52 | 214.48 | 1.13 | 0.40 | 4.77 | 59.22 | 35.25 | 0.13 | 0.63 |
28 | 4513.67 | 565.83 | 133.01 | 1.23 | 0.37 | 2.34 | 44.31 | 43.70 | 1.14 | 8.51 |
29 | 2082.48 | 298.69 | 648.84 | 13.86 | 0.23 | 5.23 | 38.33 | 56.23 | 0.03 | 0.19 |
30 | 4914.76 | 622.88 | 152.21 | 0.80 | 0.42 | 5.23 | 76.33 | 18.21 | 0.07 | 0.15 |
31 | 1530.22 | 281.77 | 439.38 | 8.58 | 0.83 | 6.91 | 55.98 | 36.37 | 0.00 | 0.74 |
32 | 2107.93 | 319.40 | 178.50 | 0.95 | 0.48 | 12.46 | 58.14 | 28.70 | 0.06 | 0.64 |
33 | 2738.58 | 486.52 | 73.74 | 1.48 | 0.45 | 4.69 | 59.43 | 34.03 | 0.17 | 1.68 |
34 | 1175.67 | 219.93 | 506.47 | 9.37 | 0.84 | 6.95 | 42.53 | 48.81 | 0.00 | 1.72 |
35 | 1665.54 | 316.38 | 120.19 | 0.61 | 0.53 | 1.01 | 86.18 | 12.57 | 0.12 | 0.13 |
36 | 1597.50 | 404.38 | 114.26 | 2.32 | 0.42 | 4.79 | 45.43 | 48.30 | 0.02 | 1.46 |
37 | 1843.73 | 290.00 | 155.78 | 1.58 | 0.35 | 6.57 | 39.36 | 53.55 | 0.31 | 0.20 |
38 | 1157.86 | 248.07 | 151.48 | 0.80 | 0.53 | 8.25 | 64.41 | 27.08 | 0.05 | 0.21 |
39 | 2325.60 | 533.48 | 121.63 | 1.41 | 0.34 | 3.57 | 54.94 | 37.74 | 0.18 | 3.57 |
40 | 2620.52 | 439.74 | 97.65 | 0.78 | 0.45 | 3.56 | 72.06 | 22.49 | 0.12 | 1.77 |
41 | 1741.38 | 248.20 | 160.57 | 0.74 | 0.64 | 7.83 | 67.12 | 24.82 | 0.00 | 0.23 |
42 | 10,453.85 | 1030.29 | 199.31 | 1.52 | 0.39 | 6.74 | 68.95 | 23.12 | 0.21 | 0.98 |
43 | 1534.03 | 360.46 | 88.66 | 1.96 | 0.46 | 2.79 | 47.54 | 48.36 | 0.13 | 1.18 |
44 | 1606.87 | 347.06 | 125.91 | 1.94 | 0.41 | 5.09 | 66.77 | 25.74 | 0.15 | 2.25 |
45 | 3529.28 | 478.09 | 297.19 | 4.73 | 0.66 | 12.06 | 58.02 | 29.76 | 0.00 | 0.16 |
46 | 4099.78 | 572.82 | 334.06 | 5.29 | 0.65 | 6.19 | 54.93 | 38.54 | 0.01 | 0.33 |
47 | 5341.13 | 510.27 | 130.32 | 0.80 | 0.40 | 4.40 | 73.03 | 21.93 | 0.47 | 0.17 |
Appendix C. List of Geochemical Indices Used in This Study
Index | Formula | Classification | Source | |
Enrichment Factor | EF | EFi = (Ci/CFe)/(Bi/BFe) where: Ci—the concentration of HM in the sediments (mg·kg−1) CFe—the concentration of iron (Fe) Bi—the reference geochemical background value of each HM BFe—the reference geochemical background value of iron (Fe) | EF ≤ 1 no enrichment 1 < EF ≤ 3 minor enrichment 3 < EF ≤ 5 moderate enrichment 5 < EF ≤ 10 moderately severe enrichment 10 < EF ≤ 25 severe enrichment 25 < EF ≤ 50 very severe enrichment EF > 50 extremely severe enrichment | Ergin et al. (1991) [90] |
Pollution Load Index | PLI | PLI = (CFi1 × CFi2 × … × CFin)1/n where: n—the number of HMs CF—contamination factor defined for each studied HM | PLI < 1 no pollution PLI ≥ 1 pollution | Tommilson et al. (1980) [91] |
Metal Pollution Index | MPI | MPI = (Ci1× Ci2 × … × Cin)1/n where: Ci—the concentration of HM in the sediments (mg·kg−1) n—the number of considered HMs | MPI < 1 no pollution MPI ≥ 1 pollution | Usero et al. (1997) [92] |
Mean PEC quotient | Qm-PEC | Qm-PEC = ∑ni=1 (Ci/PECi) where: Ci—the concentration of HM in the sediments (mg·kg−1) PECi—the probable effect concentration of each HM | Qm-PEC < 0.5 not toxic Qm-PEC ≥ 0.5 toxic | MacDonald et al. (2000) [94] |
Toxic Risk Index | TRI | TRI = ∑ni=1TRIi = {[(Ci/TECi)2 + (Ci/PECi)2]/2}1/2 where: n—the number of HMs Ci—the concentration of HM in the sediments (mg·kg−1) TECi—the threshold effect concentration of each HM PECi—the probable effect concentration of each HM TRIi—the toxic risk index of each HM | TRI ≤ 5 no toxic risk 5 < TRI ≤ 10 low 10 < TRI ≤ 15 moderate 15 < TRI ≤ 20 considerable 20 < TRI very high | Zhang et al. (2016) [96] |
References
- Haghnazar, H.; Johannesson, K.H.; González-Pinzón, R.; Pourakbar, M.; Aghayani, E.; Rajabi, A.; Hashemi, A.A. Groundwater geochemistry, quality, and pollution of the largest lake basin in the Middle East: Comparison of PMF and PCA-MLR receptor models and application of the source-oriented HHRA approach. Chemosphere 2022, 288, 132489. [Google Scholar] [CrossRef]
- Redwan, M.; Elhaddad, E. Assessment the Seasonal Variability and Enrichment of Toxic Trace Metals Pollution in Sediments of Damietta Branch, Nile River, Egypt. Water 2020, 12, 3359. [Google Scholar] [CrossRef]
- Ustaoğlu, F.; Taş, B.; Tepe, Y.; Topaldemir, H. Comprehensive assessment of water quality and associated health risk by using physicochemical quality indices and multivariate analysis in Terme River, Turkey. Environ. Sci. Pollut. Res. 2021, 28, 62736–62754. [Google Scholar] [CrossRef] [PubMed]
- Varol, M.; Ustaoğlu, F.; Tokatlı, C. Ecological risks and controlling factors of trace elements in sediments of dam lakes in the Black Sea Region (Turkey). Environ. Res. 2021, 205, 112478. [Google Scholar] [CrossRef] [PubMed]
- Vignati, D.A.; Berlinsky, N. Potential environmental risks from sediment-bound trace elements: The Ukrainian part of the Danube Delta. Terre Environ. 2009, 88, 167–173. [Google Scholar]
- Jiang, Y.; Gui, H.; Chen, C.; Wang, C.; Zhang, Y.; Huang, Y.; Yu, H.; Wang, M.; Fang, H.; Qiu, H. The Characteristics and Source Analysis of Heavy Metals in the Sediment of Water Area of Urban Scenic: A Case Study of the Delta Park in Suzhou City, Anhui Province, China. Pol. J. Environ. Stud. 2021, 30, 2127–2136. [Google Scholar] [CrossRef]
- Guan, Q.; Wang, F.; Xu, C.; Pan, N.; Lin, J.; Zhao, R.; Yang, Y.; Luo, H. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere 2018, 193, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Liber, Y.; Mourier, B.; Marchand, P.; Bichon, E.; Perrodin, Y.; Bedell, J.-P. Past and recent state of sediment contamination by persistent organic pollutants (POPs) in the Rhône River: Overview of ecotoxicological implications. Sci. Total Environ. 2019, 646, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.-J.; Sun, J.; Tang, C.-H.; Zhang, S.-H. Ecological risk assessment of heavy metals in sediment in the upper reach of the Yangtze River. Environ. Sci. Pollut. Res. 2016, 23, 11002–11013. [Google Scholar] [CrossRef]
- Yi, Y.; Yang, Z.; Zhang, S. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ. Pollut. 2011, 159, 2575–2585. [Google Scholar] [CrossRef]
- Emenike, P.C.; Tenebe, I.T.; Neris, J.B.; Omole, D.O.; Afolayan, O.; Okeke, C.U.; Emenike, I.K. An integrated assessment of land-use change impact, seasonal variation of pollution indices and human health risk of selected toxic elements in sediments of River Atuwara, Nigeria. Environ. Pollut. 2020, 265, 114795. [Google Scholar] [CrossRef] [PubMed]
- Haghnazar, H.; Pourakbar, M.; Mahdavianpour, M.; Aghayani, E. Spatial distribution and risk assessment of agricultural soil pollution by hazardous elements in a transboundary river basin. Environ. Monit. Assess. 2021, 193, 158. [Google Scholar] [CrossRef] [PubMed]
- Ustaoğlu, F. Ecotoxicological risk assessment and source identification of heavy metals in the surface sediments of Çömlekci stream, Giresun, Turkey. Environ. Forensics 2021, 22, 130–142. [Google Scholar] [CrossRef]
- Wu, H.; Xu, C.; Wang, J.; Xiang, Y.; Ren, M.; Qie, H.; Zhang, Y.; Yao, R.; Li, L.; Lin, A. Health risk assessment based on source identification of heavy metals: A case study of Beiyun River, China. Ecotoxicol. Environ. Saf. 2021, 213, 112046. [Google Scholar] [CrossRef] [PubMed]
- Borek, Ł.; Kowalik, T. Hydromorphological Inventory and Evaluation of the Upland Stream: Case Study of a Small Ungauged Catchment in Western Carpathians, Poland. Land 2022, 11, 141. [Google Scholar] [CrossRef]
- Bojakowska, I.; Lech, D.; Jaroszyńska, J. Heavy metals in sediments of the Służew Stream in Warsaw (Poland). Górnictwo I Geol. 2012, 7, 71–83. (In Polish) [Google Scholar]
- Zhang, G.; Bai, J.; Xiao, R.; Zhao, Q.; Jia, J.; Cui, B.; Liu, X. Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China. Chemosphere 2017, 184, 278–288. [Google Scholar] [CrossRef]
- Dąbrowska, J.; Dąbek, P.B.; Lejcuś, I. A GIS based approach for the mitigation of surface runoff to a shallow lowland reservoir. Ecohydrol. Hydrobiol. 2018, 18, 420–430. [Google Scholar] [CrossRef]
- Kuriata-Potasznik, A.; Szymczyk, S.; Skwierawski, A. Influence of Cascading River–Lake Systems on the Dynamics of Nutrient Circulation in Catchment Areas. Water 2020, 12, 1144. [Google Scholar] [CrossRef] [Green Version]
- Jaskuła, J.; Sojka, M. Assessing Spectral Indices for Detecting Vegetative Overgrowth of Reservoirs. Pol. J. Environ. Stud. 2019, 28, 4199–4211. [Google Scholar] [CrossRef]
- Dysarz, T.; Wicher-Dysarz, J.; Sojka, M.; Jaskuła, J. Analysis of extreme flow uncertainty impact on size of flood hazard zones for the Wronki gauge station in the Warta River. Acta Geophys. 2019, 67, 661–676. [Google Scholar] [CrossRef] [Green Version]
- Jaskuła, J.; Sojka, M. Assessment of spatial distribution of sediment contamination with heavy metals in the two biggest rivers in Poland. Catena 2022, 211, 105959. [Google Scholar] [CrossRef]
- Haghnazar, H.; Hudson-Edwards, K.A.; Kumar, V.; Pourakbar, M.; Mahdavianpour, M.; Aghayani, E. Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River, Iran: Appraisal of phytoremediation capability. Chemosphere 2021, 285, 131446. [Google Scholar] [CrossRef]
- Nawrot, N.; Wojciechowska, E.; Mohsin, M.; Kuittinen, S.; Pappinen, A.; Rezania, S. Trace Metal Contamination of Bottom Sediments: A Review of Assessment Measures and Geochemical Background Determination Methods. Minerals 2021, 11, 872. [Google Scholar] [CrossRef]
- Tang, W.; Ao, L.; Zhang, H.; Shan, B. Accumulation and risk of heavy metals in relation to agricultural intensification in the river sediments of agricultural regions. Environ. Earth Sci. 2014, 71, 3945–3951. [Google Scholar] [CrossRef]
- Arfaeinia, H.; Dobaradaran, S.; Moradi, M.; Pasalari, H.; Mehrizi, E.A.; Taghizadeh, F.; Esmaili, A.; Ansarizadeh, M. The effect of land use configurations on concentration, spatial distribution, and ecological risk of heavy metals in coastal sediments of northern part along the Persian Gulf. Sci. Total Environ. 2019, 653, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.P.; Mohan, D.; Singh, V.K.; Malik, A. Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India. J. Hydrol. 2005, 312, 14–27. [Google Scholar] [CrossRef]
- Ciszewski, D.; Malik, I.; Wardas, M. Geomorphological influences on heavy metal migration in fluvial deposits: The Mała Panew River valley (southern Poland). Przegląd Geol. 2004, 52, 163–174. [Google Scholar]
- Ciszewski, D. Influence of river channel morphology on accumulation of heavy metals in bottom sediments. Przegląd Geol. 1998, 46, 264–270. (In Polish) [Google Scholar]
- Charkhabi, A.H.; Sakizadeh, M.; Bayat, R. Land use effects on heavy metal pollution of river sediments in Guilan, southwest of the Caspian sea. Casp. J. Environ. Sci. 2008, 6, 133–140. [Google Scholar]
- Sojka, M.; Choiński, A.; Ptak, M.; Siepak, M. Causes of variations of trace and rare earth elements concentration in lakes bottom sediments in the Bory Tucholskie National Park, Poland. Sci. Rep. 2021, 11, 244. [Google Scholar] [CrossRef] [PubMed]
- Sojka, M.; Siepak, M.; Gnojska, E. Assessment of heavy metal concentration in bottom sediments of Stare Miasto pre-dam reservoir on the Powa River. Annu. Set Environ. Prot. 2013, 15, 1916. [Google Scholar]
- Sojka, M.; Siepak, M.; Jaskuła, J.; Wicher-Dysarz, J. Heavy Metal Transport in a River-Reservoir System: A Case Study from Central Poland. Pol. J. Environ. Stud. 2018, 27, 1725–1734. [Google Scholar] [CrossRef]
- Tomczyk, P.; Gałka, B.; Wiatkowski, M.; Buta, B.; Gruss, Ł. Analysis of Spatial Distribution of Sediment Pollutants Accumulated in the Vicinity of a Small Hydropower Plant. Energies 2021, 14, 5935. [Google Scholar] [CrossRef]
- Tomczyk, P.; Gałka, B.; Wiatkowski, M.; Wdowczyk, A.; Gruss, Ł. Toxicity studies on sediments near hydropower plants on Sleza and Bystrzyca rivers, Poland, to establish a possible use for soil enrichment. Land Degrad. Dev. 2022, 33, 756–770. [Google Scholar] [CrossRef]
- Namngam, N.; Xue, W.; Liu, X.; Kootattep, T.; Shrestha, R.P.; Wattayakorn, G.; Tabucanon, A.S.; Yu, S. Sedimentary metals in developing tropical watersheds in relation to their urbanization intensities. J. Environ. Manag. 2021, 278, 111521. [Google Scholar] [CrossRef]
- Wu, B.; Wang, G.; Wu, J.; Fu, Q.; Liu, C. Sources of Heavy Metals in Surface Sediments and an Ecological Risk Assessment from Two Adjacent Plateau Reservoirs. PLoS ONE 2014, 9, e102101. [Google Scholar] [CrossRef] [Green Version]
- Maanan, M.; Ruiz-Fernández, A.C.; Maanan, M.; Fattal, P.; Zourarah, B.; Sahabi, M. A long-term record of land use change impacts on sediments in Oualidia lagoon, Morocco. Int. J. Sediment Res. 2014, 29, 1–10. [Google Scholar] [CrossRef]
- Tang, W.; Sun, L.; Shu, L.; Wang, C. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas. Front. Environ. Sci. Eng. 2020, 14, 104. [Google Scholar] [CrossRef]
- Sojka, M.; Jaskuła, J.; Siepak, M. Heavy Metals in Bottom Sediments of Reservoirs in the Lowland Area of Western Poland: Concentrations, Distribution, Sources and Ecological Risk. Water 2019, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, M.; Darvishan, A.K.; Bahramifar, N. Spatial distribution and source identification of heavy metals (As, Cr, Cu and Ni) at sub-watershed scale using geographically weighted regression. Int. Soil Water Conserv. Res. 2019, 7, 308–315. [Google Scholar] [CrossRef]
- Ustaoğlu, F.; Tepe, Y.; Aydin, H. Heavy metals in sediments of two nearby streams from Southeastern Black Sea coast: Contamination and ecological risk assessment. Environ. Forensics 2020, 21, 145–156. [Google Scholar] [CrossRef]
- Liu, A.; Duodu, G.; Goonetilleke, A.; Ayoko, G. Influence of land use configurations on river sediment pollution. Environ. Pollut. 2017, 229, 639–646. [Google Scholar] [CrossRef]
- Comero, S.; Vaccaro, S.; Locoro, G.; De Capitani, L.; Gawlik, B.M. Characterization of the Danube River sediments using the PMF multivariate approach. Chemosphere 2014, 95, 329–335. [Google Scholar] [CrossRef]
- Jaskuła, J.; Sojka, M.; Fiedler, M.; Wróżyński, R. Analysis of Spatial Variability of River Bottom Sediment Pollution with Heavy Metals and Assessment of Potential Ecological Hazard for the Warta River, Poland. Minerals 2021, 11, 327. [Google Scholar] [CrossRef]
- González-Macías, C.; Sánchez-Reyna, G.; Salazar-Coria, L.; Schifter, I. Application of the positive matrix factorization approach to identify heavy metal sources in sediments. A case study on the Mexican Pacific Coast. Environ. Monit. Assess. 2014, 186, 307–324. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Gao, Y.; Xu, J.; Yang, Y.; Zhang, Y. Contamination Features and Source Apportionment of Heavy Metals in the River Sediments around a Lead-Zinc Mine: A Case Study in Danzhai, Guizhou, China. J. Chem. 2021, 2021, 9946026. [Google Scholar] [CrossRef]
- Frankowski, M.; Sojka, M.; Zioła-Frankowska, A.; Siepak, M.; Murat-Błażejewska, S. Distribution of heavy metals in the Mała Wełna River system (western Poland). Oceanol. Hydrobiol. Stud. 2009, 38, 51–61. [Google Scholar] [CrossRef]
- Sojka, M.; Siepak, M.; Zioła, A.; Frankowski, M.; Murat-Błażejewska, S.; Siepak, J. Application of multivariate statistical techniques to evaluation of water quality in the Mała Wełna River (Western Poland). Environ. Monit. Assess. 2008, 147, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Ustaoğlu, F.; Islam, M.S. Potential toxic elements in sediment of some rivers at Giresun, Northeast Turkey: A preliminary assessment for ecotoxicological status and health risk. Ecol. Indic. 2020, 113, 106237. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Norris, G.; Duvall, R.; Brown, S.; Bai, S. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; EPA/600/R-14/108; U.S. Environmental Protection Agency Office of Research and Development: Washington, DC, USA, 2014; pp. 1–136. [Google Scholar]
- Li, Y.; Mei, L.; Zhou, S.; Jia, Z.; Wang, J.; Li, B.; Wang, C.; Wu, S. Analysis of Historical Sources of Heavy Metals in Lake Taihu Based on the Positive Matrix Factorization Model. Int. J. Environ. Res. Public Health 2018, 15, 1540. [Google Scholar] [CrossRef] [Green Version]
- Luo, P.; Xu, C.; Kang, S.; Huo, A.; Lyu, J.; Zhou, M.; Nover, D. Heavy metals in water and surface sediments of the Fenghe River Basin, China: Assessment and source analysis. Water Sci. Technol. 2021, 84, 3072–3090. [Google Scholar] [CrossRef]
- Cheng, W.; Lei, S.; Bian, Z.; Zhao, Y.; Li, Y.; Gan, Y. Geographic distribution of heavy metals and identification of their sources in soils near large, open-pit coal mines using positive matrix factorization. J. Hazard. Mater. 2020, 387, 121666. [Google Scholar] [CrossRef]
- Dash, S.; Borah, S.S.; Kalamdhad, A.S. Application of positive matrix factorization receptor model and elemental analysis for the assessment of sediment contamination and their source apportionment of Deepor Beel, Assam, India. Ecol. Indic. 2020, 114, 106291. [Google Scholar] [CrossRef]
- Pekey, H.; Doğan, G. Application of positive matrix factorisation for the source apportionment of heavy metals in sediments: A comparison with a previous factor analysis study. Microchem. J. 2013, 106, 233–237. [Google Scholar] [CrossRef]
- Vu, C.T.; Lin, C.; Shern, C.C.; Yeh, G.; van Le, G.; Tran, H.T. Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan. Ecol. Indic. 2017, 82, 32–42. [Google Scholar] [CrossRef]
- Xia, F.; Niu, X.; Qu, L.; Dahlgren, R.A.; Zhang, M. Integrated source-risk and uncertainty assessment for metals contamination in sediments of an urban river system in eastern China. Catena 2021, 203, 105277. [Google Scholar] [CrossRef]
- Liu, R.; Men, C.; Yu, W.; Xu, F.; Wang, Q.; Shen, Z. Uncertainty in positive matrix factorization solutions for PAHs in surface sediments of the Yangtze River Estuary in different seasons. Chemosphere 2018, 191, 922–936. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Liu, R.; Wang, J.; Xu, F.; Shen, Z. Source apportionment of PAHs in surface sediments using positive matrix factorization combined with GIS for the estuarine area of the Yangtze River, China. Chemosphere 2015, 134, 263–271. [Google Scholar] [CrossRef]
- Christensen, E.R.; Zhang, R.; Codling, G.; Giesy, J.P.; Li, A. Poly- and per-fluoroalkyl compounds in sediments of the Laurentian Great Lakes: Loadings, temporal trends, and sources determined by positive matrix factorization. Environ. Pollut. 2019, 255, 113166. [Google Scholar] [CrossRef] [PubMed]
- Sundqvist, K.; Tysklind, M.; Geladi, P.; Hopke, P.; Wiberg, K. PCDD/F Source Apportionment in the Baltic Sea Using Positive Matrix Factorization. Environ. Sci. Technol. 2010, 44, 1690–1697. [Google Scholar] [CrossRef] [PubMed]
- Takeda, S.; Hosono, S.; Masunaga, S. Source apportionment of dioxin pollution in river sediment using Positive Matrix Factorization. J. Environ. Chem. 2011, 21, 1–11. [Google Scholar] [CrossRef]
- Rodenburg, L.A.; Meng, Q.; Yee, D.; Greenfield, B.K. Evidence for photochemical and microbial debromination of polybrominated diphenyl ether flame retardants in San Francisco Bay sediment. Chemosphere 2014, 106, 36–43. [Google Scholar] [CrossRef]
- Dong, J.; Quan, Q.; Zhao, D.; Li, C.; Zhang, C.; Chen, H.; Fang, J.; Wang, L.; Liu, J. A combined method for the source apportionment of sediment organic carbon in rivers. Sci. Total Environ. 2021, 752, 141840. [Google Scholar] [CrossRef]
- Arruti, A.; Fernández-Olmo, I.; Irabien, A. Impact of the global economic crisis on metal levels in particulate matter (PM) at an urban area in the Cantabria Region (Northern Spain). Environ. Pollut. 2011, 159, 1129–1135. [Google Scholar] [CrossRef]
- Garas, S.K.; Triantafyllou, A.G.; Tolis, E.I.; Diamantopoulos, C.N.; Bartzis, J.G. Positive matrix factorization on elemental concentrations of PM10 samples collected in areas within, proximal and far from mining and power station operations in Greece. Glob. NEST J. 2020, 22, 132–142. [Google Scholar] [CrossRef]
- Hristova, E.; Veleva, B.; Georgieva, E.; Branzov, H. Application of Positive Matrix Factorization Receptor Model for Source Identification of PM10 in the City of Sofia, Bulgaria. Atmosphere 2020, 11, 890. [Google Scholar] [CrossRef]
- Manousakas, M.; Papaefthymiou, H.; Diapouli, E.; Migliori, A.; Karydas, A.; Bogdanovic-Radovic, I.; Eleftheriadis, K. Assessment of PM2.5 sources and their corresponding level of uncertainty in a coastal urban area using EPA PMF 5.0 enhanced diagnostics. Sci. Total Environ. 2017, 574, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.Y.; Zhou, X.H.; Zhang, J.Z.; Xiao, Y.; Wang, Z.; Zhou, Y.; Wang, W.X. PM2.5 pollution in a petrochemical industry city of northern China: Seasonal variation and source apportionment. Atmos. Res. 2018, 212, 285–295. [Google Scholar] [CrossRef]
- Wang, X.; Zong, Z.; Tian, C.; Chen, Y.; Luo, C.; Li, J.; Zhang, G.; Luo, Y. Combining positive matrix factorization and radiocarbon measurements for source apportionment of PM 2.5 from a national background site in North China. Sci. Rep. 2017, 7, 10648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fei, X.; Lou, Z.; Xiao, R.; Ren, Z.; Lv, X. Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and GeogDetector models. Sci. Total Environ. 2020, 747, 141293. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.-H.; Cai, L.-M.; Wen, H.-H.; Luo, J. Characterizing pollution and source identification of heavy metals in soils using geochemical baseline and PMF approach. Sci. Rep. 2020, 10, 6460. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wei, S.; Sun, Q.; Wadood, S.A.; Guo, B. Source identification and spatial distribution of arsenic and heavy metals in agricultural soil around Hunan industrial estate by positive matrix factorization model, principle components analysis and geo statistical analysis. Ecotoxicol. Environ. Saf. 2018, 159, 354–362. [Google Scholar] [CrossRef]
- Comero, S.; Capitani, L.; Gawlik, B.M. Positive Matrix Factorisation (PMF)—An Introduction to the Chemometric Evaluation of Environmental Monitoring Data Using PMF; Office for Official Publications of the European Communities: Luxembourg, 2009; p. 59. [Google Scholar]
- Jaeckels, J.M.; Bae, M.-S.; Schauer, J.J. Positive Matrix Factorization (PMF) Analysis of Molecular Marker Measurements to Quantify the Sources of Organic Aerosols. Environ. Sci. Technol. 2007, 41, 5763–5769. [Google Scholar] [CrossRef]
- Xia, F.; Zhang, C.; Qu, L.; Song, Q.; Ji, X.; Mei, K.; Dahlgren, R.; Zhang, M. A comprehensive analysis and source apportionment of metals in riverine sediments of a rural-urban watershed. J. Hazard. Mater. 2020, 381, 121230. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, T.; Zhang, Y.; Hou, Y.; Chang, Q. Health risk assessment of heavy metals in agricultural soils and identification of main influencing factors in a typical industrial park in northwest China. Chemosphere 2020, 252, 126591. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, A.; Abdu, A. Application of principal component analysis & multiple regression models in surface water quality assessment. Environ. Earth Sci. 2012, 2, 16–23. [Google Scholar]
- Tao, Y.; Yao, S.; Xue, B.; Deng, J.; Wang, X.; Feng, M.; Hu, W. Polycyclic aromatic hydrocarbons in surface sediments from drinking water sources of Taihu Lake, China: Sources, partitioning and toxicological risk. J. Environ. Monit. 2010, 12, 2282–2289. [Google Scholar] [CrossRef]
- Çamdevýren, H.; Demýr, N.; Kanik, A.; Keskýn, S. Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs. Ecol. Model. 2005, 181, 581–589. [Google Scholar] [CrossRef]
- Liping, W.; BingHui, Z. Prediction of chlorophyll-a in the Daning River of Three Gorges Reservoir by principal component scores in multiple linear regression models. Water Sci. Technol. 2013, 67, 1150–1158. [Google Scholar] [CrossRef]
- Wuttichaikitcharoen, P.; Babel, M.S. Principal component and multiple regression analyses for the estimation of suspended sediment yield in ungauged basins of northern Thailand. Water 2014, 6, 2412–2435. [Google Scholar] [CrossRef] [Green Version]
- Hurley, R.R.; Rothwell, J.J.; Woodward, J.C. Metal contamination of bed sediments in the Irwell and Upper Mersey catchments, northwest England: Exploring the legacy of industry and urban growth. J. Soils Sediments 2017, 17, 2648–2665. [Google Scholar] [CrossRef]
- Xia, F.; Qu, L.; Wang, T.; Luo, L.; Chen, H.; Dahlgren, R.A.; Zhang, M.; Mei, K.; Huang, H. Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system. Chemosphere 2018, 207, 218–228. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zou, Y.; Yu, L.; Lv, Y. Potential source contributions and risk assessment of PAHs in sediments from the tail-reaches of the Yellow River Estuary, China: PCA model, PMF model, and mean ERM quotient analysis. Environ. Sci. Pollut. Res. 2020, 27, 9780–9789. [Google Scholar] [CrossRef]
- Salim, I.; Sajjad, R.U.; Paule-Mercado, M.C.; Memon, S.A.; Lee, B.-Y.; Sukhbaatar, C.; Lee, C.-H. Comparison of two receptor models PCA-MLR and PMF for source identification and apportionment of pollution carried by runoff from catchment and sub-watershed areas with mixed land cover in South Korea. Sci. Total Environ. 2019, 663, 764–775. [Google Scholar] [CrossRef]
- Włodarczyk, E.; Stefaniak, M.; Kręciała, M.; Sierant-Leśnik, M.; Stanek, K.; Radosz, Ł. Monitoring of River and Lake Bottom Sediments in 2020–2021; GIOS: Katowice, Poland, 2021; p. 162. (In Polish) [Google Scholar]
- Ergin, M.; Saydam, C.; Baştürk, Ö.; Erdem, E.; Yörük, R. Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and İzmit Bay) of the northeastern Sea of Marmara. Chem. Geol. 1991, 91, 269–285. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Usero, J.; Gonzalez-Regalado, E.; Gracia, I. Trace metals in the bivalve molluscs Ruditapes decussatus and Ruditapes philippinarum from the Atlantic Coast of Southern Spain. Environ. Int. 1997, 23, 291–298. [Google Scholar] [CrossRef]
- Bojakowska, I.; Sokołowska, G. Geochemical purity classes of water sediments. Przegląd Geol. 1998, 46, 49–54. (In Polish) [Google Scholar]
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Long, E.R.; Ingersoll, C.G.; MacDonald, D.D. Calculation and Uses of Mean Sediment Quality Guideline Quotients: A Critical Review. Environ. Sci. Technol. 2006, 40, 1726–1736. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Bai, J.; Zhao, Q.; Lu, Q.; Jia, J.; Wen, X. Heavy metals in wetland soils along a wetland-forming chronosequence in the Yellow River Delta of China: Levels, sources and toxic risks. Ecol. Indic. 2016, 69, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Griffith, D.A. Spatial Autocorrelation: A Primer. Resource Publications in Geography; The Association of American Geographers: Washington, DC, USA, 1987. [Google Scholar]
- Kelejian, H.H.; Prucha, I.R. On the asymptotic distribution of the Moran I test statistic with applications. J. Econ. 2001, 104, 219–257. [Google Scholar] [CrossRef] [Green Version]
- Lepš, J.; Šmilauer, P. Multivariate Analysis of Ecological Data Using CANOCO; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Jiang, J.; Khan, A.U.; Shi, B.; Tang, S.; Khan, J. Application of positive matrix factorization to identify potential sources of water quality deterioration of Huaihe River, China. Appl. Water Sci. 2019, 9, 63. [Google Scholar] [CrossRef] [Green Version]
- Bzdusek, P.A.; Christensen, E.R.; Lee, C.M.; Pakdeesusuk, U.; Freedman, D.L. PCB Congeners and Dechlorination in Sediments of Lake Hartwell, South Carolina, Determined from Cores Collected in 1987 and 1998. Environ. Sci. Technol. 2006, 40, 109–119. [Google Scholar] [CrossRef]
- Ellison, S.L.; Williams, A. Quantifying Uncertainty in Analytical Measurement; Eurachem/CITAC: Teddington, UK, 2012. [Google Scholar]
- Polissar, A.V.; Hopke, P.K.; Paatero, P.; Malm, W.C.; Sisler, J.F. Atmospheric aerosol over Alaska: 2. Elemental composition and sources. J. Geophys. Res. Atmos. 1998, 103, 19045–19057. [Google Scholar] [CrossRef]
- Pandolfi, M.; Viana, M.; Minguillón, M.; Querol, X.; Alastuey, A.; Amato, F.; Celades, I.; Escrig, A.; Monfort, E. Receptor models application to multi-year ambient PM10 measurements in an industrialized ceramic area: Comparison of source apportionment results. Atmos. Environ. 2008, 42, 9007–9017. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, R.; Li, T.; Zhang, F.; Russell, J.; Guan, M.; Han, Q.; Zhou, Y.; Xiao, X.; Wang, X. Spatial distributions and sources of heavy metals in sediments of the Changjiang Estuary and its adjacent coastal areas based on mercury, lead and strontium isotopic compositions. Catena 2019, 174, 154–163. [Google Scholar] [CrossRef]
- Setia, R.; Dhaliwal, S.S.; Kumar, V.; Singh, R.; Kukal, S.S.; Pateriya, B. Impact assessment of metal contamination in surface water of Sutlej River (India) on human health risks. Environ. Pollut. 2020, 265, 114907. [Google Scholar] [CrossRef]
- Haghnazar, H.; Sangsefidi, Y.; Mehraein, M.; Tavakol-Davani, H. Evaluation of infilling and replenishment of river sand mining pits. Environ. Earth Sci. 2020, 79, 362. [Google Scholar] [CrossRef]
- El-Alfy, M.A.; El-Amier, Y.A.; El-Eraky, T.E. Land use/cover and eco-toxicity indices for identifying metal contamination in sediments of drains, Manzala Lake, Egypt. Heliyon 2020, 6, e03177. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, H.; Song, L.; Wu, J.; Sun, W.; Teng, Y. Effects on microbiomes and resistomes and the source-specific ecological risks of heavy metals in the sediments of an urban river. J. Hazard. Mater. 2021, 409, 124472. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.; Naz, A.; Maiti, S.K. Health risk assessment of ‘tiger prawn seed’ collectors exposed to heavy metal pollution in the conserved mangrove forest of Indian Sundarbans: A socio-environmental perspective. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 203–224. [Google Scholar] [CrossRef]
- Magni, L.F.; Castro, L.N.; Rendina, A.E. Evaluation of heavy metal contamination levels in river sediments and their risk to human health in urban areas: A case study in the Matanza-Riachuelo Basin, Argentina. Environ. Res. 2021, 197, 110979. [Google Scholar] [CrossRef]
- Hoang, H.-G.; Chiang, C.-F.; Lin, C.; Wu, C.-Y.; Lee, C.-W.; Cheruiyot, N.K.; Tran, H.-T.; Bui, X.-T. Human health risk simulation and assessment of heavy metal contamination in a river affected by industrial activities. Environ. Pollut. 2021, 285, 117414. [Google Scholar] [CrossRef]
Element | Analysis Technique | Detection Limit (mg·kg−1) | Uncertainty of Analysis (%) |
---|---|---|---|
Cd | ICP-OES | 0.05 | 15 |
Cr | ICP-OES | 0.30 | 20 |
Cu | ICP-OES | 0.40 | 20 |
Ni | ICP-OES | 0.40 | 15 |
Pb | ICP-OES | 1.00 | 15 |
Zn | ICP-OES | 0.50 | 20 |
Statistics | Cr | Ni | Cu | Zn | Cd | Pb |
---|---|---|---|---|---|---|
Minimum | 0.854 | 0.791 | 0.200 | 4.41 | 0.025 | 0.50 |
Mean | 16.1 | 8.21 | 10.92 | 57.9 | 0.168 | 18.0 |
Median | 5.88 | 3.58 | 5.56 | 26.0 | 0.025 | 7.59 |
Maximum | 113 | 50.8 | 84.30 | 414 | 1.670 | 255 |
Standard deviation | 22.1 | 11.0 | 14.96 | 86.9 | 0.321 | 37.4 |
Coefficient of variation | 1.38 | 1.34 | 1.37 | 1.50 | 1.90 | 2.07 |
Skewness | 2.61 | 2.69 | 3.03 | 2.97 | 3.19 | 5.62 |
Kurtosis | 7.68 | 7.34 | 11.6 | 8.8 | 10.8 | 35.0 |
Number of values below DL | 0 | 0 | 7 | 0 | 25 | 1 |
Number of outlier values | 3 | 3 | 1 | 2 | 3 | 2 |
GBV | 5.0 | 5.0 | 6.0 | 48.0 | 0.50 | 10.0 |
Parameters | Moran I | ||
---|---|---|---|
p-Value | Z-Score | Pattern | |
Cd | 0.741 | 0.33 | random |
Cr | 0.147 | −1.45 | random |
Cu | 0.007 | −2.70 | dispersed |
Ni | 0.045 | −2.00 | dispersed |
Pb | 0.073 | −1.79 | random |
Zn | 0.020 | −2.32 | dispersed |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sojka, M.; Jaskuła, J. Heavy Metals in River Sediments: Contamination, Toxicity, and Source Identification—A Case Study from Poland. Int. J. Environ. Res. Public Health 2022, 19, 10502. https://doi.org/10.3390/ijerph191710502
Sojka M, Jaskuła J. Heavy Metals in River Sediments: Contamination, Toxicity, and Source Identification—A Case Study from Poland. International Journal of Environmental Research and Public Health. 2022; 19(17):10502. https://doi.org/10.3390/ijerph191710502
Chicago/Turabian StyleSojka, Mariusz, and Joanna Jaskuła. 2022. "Heavy Metals in River Sediments: Contamination, Toxicity, and Source Identification—A Case Study from Poland" International Journal of Environmental Research and Public Health 19, no. 17: 10502. https://doi.org/10.3390/ijerph191710502
APA StyleSojka, M., & Jaskuła, J. (2022). Heavy Metals in River Sediments: Contamination, Toxicity, and Source Identification—A Case Study from Poland. International Journal of Environmental Research and Public Health, 19(17), 10502. https://doi.org/10.3390/ijerph191710502