Quantitative Analysis of Sulfur Dioxide Emissions in the Yangtze River Economic Belt from 1997 to 2017, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Global Spatial Autocorrelation
2.3. Environmental Kuznets Curve
2.4. Logarithmic Mean Divisia Index
3. Results
3.1. Spatiotemporal Characteristics of the SO2 Changes
3.2. Global Spatial Autocorrelation Analysis of SO2 Emissions
3.3. EKC Study of SO2 Emissions
3.4. Driving Factors of SO2 Emissions
4. Discussion
4.1. Spatiotemporal Variation of SO2 Emissions
4.2. Spatial Autocorrelation Analysis
4.3. Environmental Kuznets Curve
4.4. Influence of Driving Factors of SO2 Emissions
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, Y.A.; Shen, G.F.; Shen, H.Z.; Zhong, Q.R.; Xu, H.R.; Meng, W.J.; Zhang, W.X.; Yu, X.Y.; Yun, X.; Luo, Z.H.; et al. Contributions of biomass burning to global and regional SO2 emissions. Atmos. Res. 2021, 260, 105709. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, T.; Guo, Y.; Wang, J.; Wei, J.; Yu, Q. Recent advances in simultaneous removal of SO2 and NOx from exhaust gases: Removal process, mechanism and kinetics. Chem. Eng. J. 2021, 420, 127588. [Google Scholar] [CrossRef]
- Ahmad, M.; Zhao, Z.Y.; Irfan, M.; Mukeshimana, M.C.; Rehman, A.; Jabeen, G.; Li, H. Modeling heterogeneous dynamic interactions among energy investment, SO2 emissions and economic performance in regional China. Environ. Sci. Pollut. Res. 2020, 27, 2730–2744. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ding, H.; Wang, X. Acute effects of total suspended particles and sulfur dioxides on preterm delivery: A community-based cohort study. Arch. Environ. Health 1995, 50, 407–415. [Google Scholar] [CrossRef]
- Khaniabadi, Y.O.; Daryanoosh, S.M.; Hopke, P.K.; Ferrante, M.; Marco, A.D.; Sicard, P.; Conti, G.O.; Goudarzi, G.; Basiri, H.; Mohammadi, M.J.; et al. Acute myocardial infarction and COPD attributed to ambient SO2 in Iran. Environ. Res. 2017, 156, 683–687. [Google Scholar] [CrossRef]
- Ghozikali, M.G.; Mosaferi, M.; Safari, G.H.; Jaafari, J. Effect of exposure to O3, NO2, and SO2 on chronic obstructive pulmonary disease hospitalizations in Tabriz, Iran. Environ. Sci. Pollut. Res. 2015, 22, 2817–2823. [Google Scholar] [CrossRef]
- Nascimento, A.P.; Santos, J.M.; Mill, J.G.; Albuquerque, T.T.d.A.A.; Júnior, N.C.R.; Reisen, V.A.; Pagel, É.C. Association between the incidence of acute respiratory diseases in children and ambient concentrations of SO2, PM10 and chemical elements in fine particles. Environ. Res. 2020, 188, 109619. [Google Scholar] [CrossRef]
- Xie, H.M.; Shen, M.H.; Wei, C. Technical efficiency, shadow price and substitutability of Chinese industrial SO2 emissions: A parametric approach. J. Clean Prod. 2016, 112, 1386–1394. [Google Scholar] [CrossRef]
- Jiang, L.; He, S.; Cui, Y.; Zhou, H.; Kong, H. Effects of the socio-economic influencing factors on SO2 pollution in Chinese cities: A spatial econometric analysis based on satellite observed data. J. Environ. Manag. 2020, 268, 110667. [Google Scholar] [CrossRef]
- Hu, B.; Li, Z.T.; Zhang, L. Long-run dynamics of sulphur dioxide emissions, economic growth, and energy efficiency in China. J. Clean Prod. 2019, 227, 942–949. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, S.J.; Qiao, Z.X.; Wang, Y.H.; Ding, Y.Y.; Miao, C.H. Estimating the dynamic effects of socioeconomic development on industrial SO2 emissions in Chinese cities using a DPSIR causal framework. Resour. Conserv. Recycl. 2019, 150, 104450. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, S.S.; Yao, S.; Mkumbo, A.C. Does foreign direct investment affect SO2 emissions in the Yangtze River Delta? A spatial econometric analysis. Chin. Geogr. Sci. 2021, 31, 400–412. [Google Scholar] [CrossRef]
- Sinha, A.; Bhattacharya, J. Estimation of environmental Kuznets curve for SO2 emission: A case of Indian cities. Ecol. Indic. 2017, 72, 881–894. [Google Scholar] [CrossRef]
- Ma, B.R.; Tian, G.J.; Kong, L.Q. Spatial-temporal characteristics of China’s industrial wastewater discharge at different scales. Environ. Sci. Pollut. Res. 2020, 27, 8103–8118. [Google Scholar] [CrossRef]
- Zhao, X.; Burnett, J.W.; Fletcher, J.J. Spatial analysis of China province-level CO2 emission intensity. Renew. Sustain. Energy Rev. 2014, 33, 1–10. [Google Scholar] [CrossRef]
- Wu, Q.L.; Guo, R.X.; Luo, J.H.; Chen, C. Spatiotemporal evolution and the driving factors of PM2.5 in Chinese urban agglomerations between 2000 and 2017. Ecol. Indic. 2021, 125, 107491. [Google Scholar] [CrossRef]
- Jiang, Q.Q.; Khattak, S.I.; Rahman, Z.U. Measuring the simultaneous effects of electricity consumption and production on carbon dioxide emissions (CO2e) in China: New evidence from an EKC-based assessment. Energy 2021, 229, 120616. [Google Scholar] [CrossRef]
- Han, C.Y.; Gu, Z.L.; Yang, H.X. EKC Test of the relationship between nitrogen dioxide pollution and economic growth-A spatial econometric analysis based on Chinese City Data. Int. J. Environ. Res. Public Health 2021, 18, 9697. [Google Scholar] [CrossRef]
- Moutinho, V.; Varum, C.; Madaleno, M. How economic growth affects emissions? An investigation of the environmental Kuznets curve in Portuguese and Spanish economic activity sectors. Energy Policy 2017, 106, 326–344. [Google Scholar] [CrossRef]
- Hille, E.; Lambernd, B.; Tiwari, A.K. Any signs of green growth? A spatial panel analysis of regional air pollution in South Korea. Environ. Resour. Econ. 2021, 80, 719–760. [Google Scholar] [CrossRef]
- Wang, K.F.; Zhu, Y.L.; Zhang, J.P. Decoupling economic development from municipal solid waste generation in China’s cities: Assessment and prediction based on Tapio method and EKC models. Waste Manag. 2021, 133, 37–48. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, Y.W.; Yang, Z.A. Quantification of industrial wastewater discharge from the major cities in Sichuan province, China. Environ. Sci. Pollut. Res. 2022, 29, 51567–51577. [Google Scholar] [CrossRef]
- Zhao, D.T.; Chen, H.; Li, X.D.; Ma, X.T. Air pollution and its influential factors in China’s hot spots. J. Clean Prod. 2018, 185, 619–627. [Google Scholar] [CrossRef]
- Jiao, J.L.; Han, X.F.; Li, F.Y.; Bai, Y.; Yu, Y.D. Contribution of demand shifts to industrial SO2 emissions in a transition economy: Evidence from China. J. Clean Prod. 2017, 164, 1455–1466. [Google Scholar] [CrossRef]
- Xing, Z.C.; Wang, J.G.; Feng, K.S.; Hubacek, K. Decline of net SO2 emission intensity in China’s thermal power generation: Decomposition and attribution analysis. Sci. Total Environ. 2020, 719, 137367. [Google Scholar] [CrossRef]
- Yang, X.; Wang, S.J.; Zhang, W.Z.; Li, J.M.; Zou, Y.F. Impacts of energy consumption, energy structure, and treatment technology on SO2 emissions: A multi-scale LMDI decomposition analysis in China. Appl. Energy 2016, 184, 714–726. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, S.X.; Huang, J.B. Green research and development activities and SO2 intensity: An analysis for China. Environ. Sci. Pollut. Res. 2021, 28, 16165–16180. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Garbaccio, R.; Ho, M.S. China’s 11th Five-Year Plan and the environment: Reducing SO2 emissions. Rev. Environ. Econ. Policy 2009, 3, 231–250. [Google Scholar] [CrossRef]
- Chen, X.Q.; Liu, W.; Zhang, J.Q.; Li, Z.P. The change pattern and driving factors of embodied SO2 emissions in China’s inter-provincial trade. J. Clean Prod. 2020, 276, 123324. [Google Scholar] [CrossRef]
- Zhou, K.; Wu, J.X.; Liu, H.C. Spatiotemporal variations and determinants of water pollutant discharge in the Yangtze River Economic Belt, China: A spatial econometric analysis. Environ. Pollut. 2021, 271, 116320. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.L.; Xu, R.Y.; Zhang, F.Q.; Miao, Z.; Peng, G. Spatiotemporal heterogeneity and driving factors of PM2.5 reduction efficiency: An empirical analysis of three urban agglomerations in the Yangtze River Economic Belt, China. Ecol. Indic. 2021, 132, 108308. [Google Scholar] [CrossRef]
- Research Center for Yangtze River Delta and Yangtze River Economic Belt, 2020. Report on Social Development of the Yangtze River Economic Belt (2019–2020). Available online: https://cyrdebr.sass.org.cn/2020/1223/c5775a100922/page.htm (accessed on 20 August 2022).
- Yang, Z.; Zhang, X.L.; Lei, J.; Duan, Z.L.; Li, J.G. Spatio-temporal pattern characteristics of relationship between urbanization and economic development at county level in China. Chin. Geogr. Sci. 2019, 29, 553–567. [Google Scholar] [CrossRef]
- The Central People’s Government of the People’s Republic of China. The Eleventh Five-Year Plan of National Environmental Protection. Available online: http://www.gov.cn/zwgk/2007-11/26/content_815498.htm (accessed on 24 May 2022).
- The Central People’s Government of the People’s Republic of China. Action Plan of Air Pollution Prevention and Control. Available online: http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm (accessed on 24 May 2022).
- The Central People’s Government of the People’s Republic of China. The Twelfth Five-Year Plan for Energy Saving and Emission Reduction. Available online: http://www.gov.cn/zwgk/2012-08/21/content_2207867.htm (accessed on 24 May 2022).
- Jiangsu Provincial Department of Ecology and Environment. Environmental Status Bulletin of Jiangsu Province in 2008. Available online: http://sthjt.jiangsu.gov.cn/art/2009/6/5/art_8385510135263.html (accessed on 12 March 2022).
- Sichuan Provincial Department of Ecology and Environment. Environmental Status Bulletin of Sichuan Province in 2013. Available online: http://sthjt.sc.gov.cn/sthjt/c104157/hjglnew.shtml (accessed on 12 March 2022).
- National Bureau of Statistics of China (2003–2004) China Statistical Yearbook. Available online: http://www.stats.gov.cn/tjsj/ndsj/ (accessed on 30 January 2022).
- Standing Committee of the National People’s Congress. Air Pollution Prevention and Control Law of the People’s Republic of China. Available online: http://www.gov.cn/zhengce/2015-08/30/content_2922326.htm (accessed on 27 May 2022).
- Yunnan Provincial Department of Ecology and Environment. Environmental Status Bulletin of Yunnan Province in 2005. Available online: http://sthjt.yn.gov.cn/hjzl/hjzkgb/200605/t20060530_11002.html (accessed on 12 March 2022).
- Anhui Provincial Department of Ecology and Environment. Environmental Status Bulletin of Anhui Province in 2010. Available online: https://sthjt.ah.gov.cn/public/21691/112837691.html (accessed on 24 May 2022).
- Lu, C.X.; Venevsky, S.; Shi, X.L.; Wang, L.Y.; Wright, J.S.; Wu, C. Econometrics of the environmental Kuznets curve: Testing advancement to carbon intensity-oriented sustainability for eight economic zones in China. J. Clean Prod. 2021, 283, 124561. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Hao, J.F.; Song, J. The CO2 emission efficiency, reduction potential and spatial clustering in China’s industry: Evidence from the regional level. Appl. Energy 2016, 174, 213–223. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment, PRC, 2020. The Yangtze River Delta Regional Pollution Prevention and Control Cooperative Mechanism Meeting Was Held. Available online: https://www.mee.gov.cn/ywdt/hjywnews/202006/t20200607_783124.shtml (accessed on 20 August 2022).
- Wu, Q.L.; Gu, S.T. Discerning drivers and future reduction paths of energy-related CO2 emissions in China: Combining EKC with three-layer LMDI. Environ. Sci. Pollut. Res. 2021, 28, 36611–36625. [Google Scholar] [CrossRef]
- Pérez-Suárez, R.; López-Menéndez, A.J. Growing green? Forecasting CO2 emissions with Environmental Kuznets Curves and Logistic Growth Models. Environ. Sci. Policy 2015, 54, 428–437. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, Y.; Yang, F.; Shi, Q.F. Spatial-temporal heterogeneity of green innovation in China. J. Clean Prod. 2021, 282, 124464. [Google Scholar] [CrossRef]
- Balado-Naves, R.; Baños-Pino, J.F.; Mayor, M. Do countries influence neighbouring pollution? A spatial analysis of the EKC for CO2 emissions. Energy Policy 2018, 123, 266–279. [Google Scholar] [CrossRef]
- Liu, Q.L.; Wang, Q. How China achieved its 11th Five-Year Plan emissions reduction target: A structural decomposition analysis of industrial SO2 and chemical oxygen demand. Sci. Total Environ. 2017, 574, 1104–1116. [Google Scholar] [CrossRef]
- Chong, C.H.; Tan, W.X.; Ting, Z.J.; Liu, P.; Ma, L.W.; Li, Z.; Ni, W.D. The driving factors of energy-related CO2 emission growth in Malaysia: The LMDI decomposition method based on energy allocation analysis. Renew. Sustain. Energy Rev. 2019, 115, 109356. [Google Scholar] [CrossRef]
- Wang, L.K.; Wang, Y.; He, H.; Lu, Y.L.; Zhou, Z.H. Driving force analysis of the nitrogen oxides intensity related to electricity sector in China based on the LMDI method. J. Clean Prod. 2020, 242, 118364. [Google Scholar] [CrossRef]
- Zhang, Y.; Shuai, C.Y.; Bian, J.; Chen, X.; Wu, Y.; Shen, L.Y. Socioeconomic factors of PM2.5 concentrations in 152 Chinese cities: Decomposition analysis using LMDI. J. Clean Prod. 2019, 218, 96–107. [Google Scholar] [CrossRef]
- Zhou, Z.M.; Ye, X.Y.; Ge, X.Y. The impacts of technical progress on sulfur dioxide Kuznets Curve in China: A spatial panel data approach. Sustainability 2017, 9, 674. [Google Scholar] [CrossRef]
- Makgato, S.S.; Chirwa, E.M.N. The desulphurization potential of waterberg steam coal using bacteria isolated from coal: The SO2 emissions control technique. J. Clean Prod. 2020, 263, 121051. [Google Scholar] [CrossRef]
- Liu, Q.L.; Long, Y.; Wang, C.R.; Wang, Z.; Wang, Q.; Guan, D.B. Drivers of provincial SO2 emissions in China-Based on multi-regional input-output analysis. J. Clean Prod. 2019, 238, 117893. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, L.; Chen, D.; Tan, X. Spatial-temporal analysis and driving factors decomposition of (de)coupling condition of SO2 emissions in China. Int. J. Environ. Res. Public Health 2020, 17, 18. [Google Scholar] [CrossRef]
Authors | Research Areas | Study Time Ranges (Year) | Methods | Driving Factors |
---|---|---|---|---|
[3] | China | 2001–2007 | The STIRPAT model | Energy investment and economic performance |
[10] | China’s 29 provinces | 2002–2015 | MRIO-SDA approach | Economic growth and energy efficiency |
[12] | 26 cities of Yangtze River Delta | 2005–2018 | Moran’s Index, spatial econometrics model | Foreign direct investment, industrial structure, research and development investment, population size, energy intensity |
[13] | 139 Indian cities | 2001–2013 | Environmental Kuznets Curve | Economic growth |
[23] | China’s 30 provinces | 2004–2014 | Panel data model, coefficient of divergence, STIRPAT model | Economic scale, technological progress, total population |
[24] | China | 1997–2012 | Structural decomposition analysis | China’s demand structure |
[26] | China | 1995–2014 | Logarithmic mean Divisia index | Technological progress, energy structure, energy consumption |
Year | Moran’s I | z-Value | E(I) | SD | P | Mean |
---|---|---|---|---|---|---|
1997 | 0.308 | 4.530 | −0.100 | 0.089 | 0.001 | −0.096 |
1998 | 0.426 | 4.553 | −0.100 | 0.116 | 0.001 | −0.102 |
1999 | 0.720 | 4.510 | −0.100 | 0.182 | 0.001 | −0.102 |
2000 | 0.946 | 4.170 | −0.100 | 0.251 | 0.001 | −0.099 |
2001 | 0.940 | 4.437 | −0.100 | 0.233 | 0.001 | −0.095 |
2002 | 0.938 | 4.402 | −0.100 | 0.235 | 0.001 | −0.095 |
2003 | 0.966 | 4.115 | −0.100 | 0.260 | 0.001 | −0.103 |
2004 | 0.979 | 4.100 | −0.100 | 0.262 | 0.001 | −0.097 |
2005 | 0.987 | 4.159 | −0.100 | 0.262 | 0.001 | −0.104 |
2006 | 0.921 | 3.988 | −0.100 | 0.254 | 0.001 | −0.093 |
2007 | 0.905 | 4.046 | −0.100 | 0.248 | 0.001 | −0.096 |
2008 | 0.942 | 3.353 | −0.100 | 0.311 | 0.001 | −0.101 |
2009 | 0.914 | 4.050 | −0.100 | 0.251 | 0.001 | −0.102 |
2010 | 0.886 | 4.254 | −0.100 | 0.232 | 0.001 | −0.102 |
2011 | 0.597 | 4.317 | −0.100 | 0.161 | 0.002 | −0.097 |
2012 | 0.584 | 4.255 | −0.100 | 0.160 | 0.002 | −0.096 |
2013 | 0.484 | 4.160 | −0.100 | 0.140 | 0.002 | −0.098 |
2014 | 0.339 | 3.673 | −0.100 | 0.119 | 0.001 | −0.097 |
2015 | 0.233 | 3.188 | −0.100 | 0.103 | 0.004 | −0.095 |
2016 | 0.669 | 4.361 | −0.100 | 0.175 | 0.001 | −0.096 |
2017 | 0.265 | 3.887 | −0.100 | 0.092 | 0.001 | −0.094 |
∆Wtec | ∆Wstr | ∆Weco | ∆Wpop | |
---|---|---|---|---|
1998 | 130.24 | −56.45 | 27.81 | 4.25 |
1999 | 32.21 | −31.22 | 58.51 | 7.91 |
2000 | 24.06 | −21.11 | 118.47 | 8.21 |
2001 | −90.12 | 1.51 | 158.71 | 16.59 |
2002 | −182.43 | 32.09 | 215.00 | 19.39 |
2003 | −142.97 | 101.07 | 352.69 | 28.35 |
2004 | −296.23 | 170.99 | 474.67 | 32.93 |
2005 | −415.76 | 230.13 | 618.25 | 12.64 |
2006 | −572.17 | 285.48 | 731.74 | 15.81 |
2007 | −767.79 | 307.41 | 851.70 | 18.53 |
2008 | −946.23 | 342.93 | 931.76 | 21.71 |
2009 | −1011.43 | 325.81 | 974.45 | 24.73 |
2010 | −1154.11 | 343.90 | 1078.82 | 29.24 |
2011 | −1274.68 | 340.41 | 1160.52 | 31.11 |
2012 | −1323.21 | 317.42 | 1193.84 | 33.13 |
2013 | −1366.91 | 294.51 | 1229.86 | 35.68 |
2014 | −1387.97 | 260.35 | 1255.59 | 37.63 |
2015 | −1386.69 | 214.06 | 1254.68 | 39.70 |
2016 | −1343.98 | 160.07 | 1041.50 | 34.62 |
2017 | −1330.47 | 129.03 | 976.72 | 33.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Zhou, F.; Zhang, Y.; Yang, Z. Quantitative Analysis of Sulfur Dioxide Emissions in the Yangtze River Economic Belt from 1997 to 2017, China. Int. J. Environ. Res. Public Health 2022, 19, 10770. https://doi.org/10.3390/ijerph191710770
Guo H, Zhou F, Zhang Y, Yang Z. Quantitative Analysis of Sulfur Dioxide Emissions in the Yangtze River Economic Belt from 1997 to 2017, China. International Journal of Environmental Research and Public Health. 2022; 19(17):10770. https://doi.org/10.3390/ijerph191710770
Chicago/Turabian StyleGuo, Hui, Feng Zhou, Yawen Zhang, and Zhen’an Yang. 2022. "Quantitative Analysis of Sulfur Dioxide Emissions in the Yangtze River Economic Belt from 1997 to 2017, China" International Journal of Environmental Research and Public Health 19, no. 17: 10770. https://doi.org/10.3390/ijerph191710770
APA StyleGuo, H., Zhou, F., Zhang, Y., & Yang, Z. (2022). Quantitative Analysis of Sulfur Dioxide Emissions in the Yangtze River Economic Belt from 1997 to 2017, China. International Journal of Environmental Research and Public Health, 19(17), 10770. https://doi.org/10.3390/ijerph191710770