Spatial Autocorrelation and Temporal Convergence of PM2.5 Concentrations in Chinese Cities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis Sample
2.2. Analysis Methods
2.2.1. Spatial Correlation Model
2.2.2. Temporal Convergence Model
3. Results
3.1. Spatial Correlation Analysis Results
3.2. Temporal Convergence Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ngo, N.S.; Zhong, N.; Bao, X. The effects of transboundary air pollution following major events in China on air quality in the US: Evidence from Chinese New Year and sandstorms. J. Environ. Manag. 2018, 212, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wu, J. Impact of mandatory targets on PM2.5 concentration control in Chinese cities. J. Clean. Prod. 2018, 197, 323–331. [Google Scholar] [CrossRef]
- Chan, C.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Fare, R.; Grosskopf, S.; Pasurka, C.A. Accounting for air pollution emissions in measures of state manufacturing productivity growth. J. Reg. Sci. 2001, 41, 381–409. [Google Scholar] [CrossRef]
- He, K.; Huo, H.; Zhang, Q. Urban air pollution in China: Current status, characteristics, and progress. Annu. Rev. Energy Environ. 2002, 27, 397–431. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Review of solutions to global warming, air pollution, and energy security. Energy Env. Sci 2009, 2, 148–173. [Google Scholar] [CrossRef]
- Schwartz, J. What are people dying of on high air-pollution days. Environ. Res. 1994, 64, 26–35. [Google Scholar] [CrossRef]
- Selden, T.; Song, D. Environmental-quality and development-Is there a Kuznets curve for air-pollution emissions. J. Environ. Econ. Manag. 1994, 27, 147–162. [Google Scholar] [CrossRef]
- Sun, Y.; Zhuang, G.; Tang, A.; Wang, Y.; An, Z. Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environ. Sci. Technol. 2006, 40, 3148–3155. [Google Scholar] [CrossRef]
- Bell, M.L.; Ebisu, K.; Peng, R.D.; Samet, J.M.; Dominici, F. Hospital admissions and chemical composition of fine particle air pollution. Am. J. Respir. Crit. Care Med. 2009, 179, 1115–1120. [Google Scholar] [CrossRef]
- Cheng, Y.; Zheng, G.; Wei, C.; Mu, Q.; Zheng, B.; Wang, Z.; Pöschl, U. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci. Adv. 2016, 2, e1601530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, R.J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, D.; Kaufman, Y.; Zibordi, G.; Chern, J.; Mao, J.; Li, C.; Holben, B.N. Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS). J. Geophys. Res. Atmos. 2003, 108, 4661. [Google Scholar] [CrossRef]
- van Donkelaar, A.; Martin, R.V.; Brauer, M.; Boys, B.L. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ. Health Perspect. 2015, 123, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Dong, F.; Zhang, S.; Long, R.; Zhang, X.; Sun, Z. Determinants of haze pollution: An analysis from the perspective of spatiotemporal heterogeneity. J. Clean. Prod. 2019, 222, 768–783. [Google Scholar] [CrossRef]
- Li, L.; Liu, X.; Ge, J.; Chu, X.; Wang, J. Regional differences in spatial spillover and hysteresis effects: A theoretical and empirical study of environmental regulations on haze pollution in China. J. Clean. Prod. 2019, 230, 1096–1110. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, L.; Wang, L.; Liu, Z.; Ji, D.; Tang, G.; Xin, J. Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Sci. China Earth Sci. 2014, 57, 14–25. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, P.; Yi, H.; Qin, Z. What causes haze pollution? An empirical study of PM2.5 concentrations in Chinese cities. Sustainability 2016, 8, 132. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, L.; Sun, R.; Gong, Z.; Bai, M.; Wei, G. Haze influencing factors: A data envelopment analysis approach. Int. J. Environ. Res. Public. Health 2019, 16, 914. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Zhang, X.; Shao, Q.; Wang, X. The non-linear effect of environmental regulation on haze pollution: Empirical evidence for 277 Chinese cities during 2002-2010. J. Environ. Manag. 2019, 248, 109274. [Google Scholar] [CrossRef]
- Dockery, D.W.; Pope, C.A.; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Speizer, F.E. An association between air-pollution and mortality in 6 united-states cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samet, J.M.; Dominici, F.; Curriero, F.C.; Coursac, I.; Zeger, S.L. Fine particulate air pollution and mortality in 20 US Cities, 1987–1994. N. Engl. J. Med. 2000, 343, 1742–1749. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., III; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Kaufman, J.D. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [Green Version]
- Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, J.E.; Tamura-Wicks, H.; Parks, R.M.; Burnett, R.T.; Pope, C.A., III; Bechle, M.J.; Marshall, J.D.; Danaei, G.; Ezzati, M. Particulate matter air pollution and national and county life expectancy loss in the USA: A spatiotemporal analysis. PLoS Med. 2019, 16, e1002856. [Google Scholar] [CrossRef] [Green Version]
- Apte, J.S.; Brauer, M.; Cohen, A.J.; Ezzati, M.; Pope, C.A. Ambient PM2.5 reduces global and regional life expectancy. Environ. Sci. Technol. Lett. 2018, 5, 546–551. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; He, J.; Lu, X.; She, J.; Guan, Z. Spatial and temporal variations of PM2.5 and its relation to meteorological factors in the urban area of Nanjing, China. Int. J. Environ. Res. Public. Health 2016, 13, 921. [Google Scholar] [CrossRef]
- Filonchyk, M.; Yan, H.; Yang, S.; Hurynovich, V. A study of PM2.5 and PM10 concentrations in the atmosphere of large cities in Gansu Province, China, in summer period. J. Earth Syst. Sci. 2016, 125, 1175–1187. [Google Scholar] [CrossRef] [Green Version]
- Jerrett, M.; Burnett, R.T.; Ma, R.J.; Pope, C.A.; Krewski, D.; Newbold, K.B.; Thun, M.J. Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology 2005, 16, 727–736. [Google Scholar] [CrossRef]
- Liu, X.G.; Li, J.; Qu, Y.; Han, T.; Hou, L.; Gu, J.; Hu, M. Formation and evolution mechanism of regional haze: A case study in the megacity Beijing, China. Atmos. Chem. Phys. 2013, 13, 4501–4514. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Jiang, L.; Yang, D.; Liu, Y. Quantifying the spatial heterogeneity influences of natural and socioeconomic factors and their interactions on air pollution using the geographical detector method: A case study of the Yangtze River Economic Belt, China. J. Clean. Prod. 2019, 232, 692–704. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, Q.; Wang, Z.; Fu, P.; Li, J.; Yang, T.; Yin, Y. Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. J. Geophys. Res. Atmos. 2014, 119, 4380–4398. [Google Scholar] [CrossRef]
- Ye, W.; Ma, Z.; Ha, X.; Yang, H.; Weng, Z. Spatiotemporal patterns and spatial clustering characteristics of air quality in China: A city level analysis. Ecol. Indic. 2018, 91, 523–530. [Google Scholar] [CrossRef]
- DeGaetano, A.T.; Doherty, O.M. Temporal, spatial and meteorological variations in hourly PM2.5 concentration extremes in New York City. Atmos. Environ. 2004, 38, 1547–1558. [Google Scholar] [CrossRef]
- Yang, Y.; Christakos, G. Spatiotemporal characterization of ambient PM2.5 concentrations in Shandong province (China). Environ. Sci. Technol. 2015, 49, 13431–13438. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Zhang, L.; Huang, M.; Zhong, L.; Chen, D.; Wang, X. Trends of outdoor air pollution and the impact on premature mortality in the Pearl River Delta region of southern China during 2006-2015. Sci. Total Environ. 2019, 690, 248–260. [Google Scholar] [CrossRef]
- Monforte, P.; Ragusa, M.A. Temperature trend analysis and investigation on a case of variability climate. Mathematics 2022, 10, 2202. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, H.; Liang, D. Spatiotemporal variations and connections of single and multiple meteorological factors on PM2. 5 concentrations in Xi’an, China. Atmos. Environ. 2022, 275, 119015. [Google Scholar] [CrossRef]
- Brusca, S.; Famoso, F.; Lanzafame, R.; Garrano, A.M.C.; Monforte, P. Experimental analysis of a plume dispersion around obstacles. Energy Procedia 2015, 82, 695–701. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Niu, T.; Zhang, X.; Gong, S.; Zhang, Y.; Sun, J. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys. 2012, 12, 779–799. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Li, Y.; Chen, Y.; Li, L.; Huang, C. How does the urban form-PM2.5 concentration relationship change seasonally in Chinese cities? A comparative analysis between national and urban agglomeration scales. J. Clean. Prod. 2019, 239, 118088. [Google Scholar] [CrossRef]
- Guo, H.; Gu, X.; Ma, G.; Shi, S.; Wang, W.; Zuo, X.; Zhang, X. Spatial and temporal variations of air quality and six air pollutants in China during 2015-2017. Sci. Rep. 2019, 9, 15201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, I.; Kumar, R. Trends of particulate matter in four cities in India. Atmos. Environ. 2006, 40, 2552–2566. [Google Scholar] [CrossRef]
- Fang, C.; Wang, Z.; Xu, G. Spatial-temporal characteristics of PM2.5 in China: A city-level perspective analysis. J. Geogr. Sci. 2016, 26, 1519–1532. [Google Scholar] [CrossRef]
- Jin, J.; Du, Y.; Xu, L.; Chen, Z.; Chen, J.; Wu, Y.; Ou, C. Using Bayesian spatio-temporal model to determine the socio-economic and meteorological factors influencing ambient PM2.5 levels in 109 Chinese cities. Environ. Pollut. 2019, 254, 113023. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Fujita, E.M.; Lu, Z.Q.; Lawson, D.R.; Ashbaugh, L.L. Temporal and spatial variations of pm(2.5) and pm(10) aerosol in the southern california air-quality study. Atmos. Environ. 1994, 28, 2061–2080. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Y.; Ying, Q.; Zhang, H. Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China. Atmos. Environ. 2014, 95, 598–609. [Google Scholar] [CrossRef]
- Xu, W.; Sun, J.; Liu, Y.; Xiao, Y.; Tian, Y.; Zhao, B.; Zhang, X. Spatiotemporal variation and socioeconomic drivers of air pollution in China during 2005-2016. J. Environ. Manag. 2019, 245, 66–75. [Google Scholar] [CrossRef]
- Jin, Q.; Fang, X.; Wen, B.; Shan, A. Spatio-temporal variations of PM2.5 emission in China from 2005 to 2014. Chemosphere 2017, 183, 429–436. [Google Scholar] [CrossRef]
- Liu, Y.; Paciorek, C.J.; Koutrakis, P. Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information. Environ. Health Perspect. 2009, 117, 886–892. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Stuart, A.L.; Liu, Y.; Ivey, C.E.; Russell, A.G.; Kan, H.; Yu, H. On the accuracy and potential of Google Maps location history data to characterize individual mobility for air pollution health studies. Environ. Pollut. 2019, 252, 924–930. [Google Scholar] [CrossRef]
- van Donkelaar, A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C.; Winker, D.M. Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors. Environ. Sci. Technol. 2016, 50, 3762–3772. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Z. PM2.5 concentrations and subjective well-being: Longitudinal evidence from aggregated panel data from Chinese provinces. Int. J. Environ. Res. Public. Health 2019, 16, 1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q. Advanced Econometrics and Stata Application, 2nd ed.; Higher Education Press: Beijing, China, 2014. [Google Scholar]
- Zhang, P.; Hao, Y. Rethinking China’s environmental target responsibility system: Province-level convergence analysis of pollutant emission intensities in China. J. Clean. Prod. 2020, 242, 118472. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, X.; Zhang, N.; Wang, Y. China’s energy intensity target allocation needs improvement! Lessons from the convergence analysis of energy intensity across Chinese Provinces. J. Clean. Prod. 2019, 223, 610–619. [Google Scholar] [CrossRef]
- He, C.; Pan, F.; Chen, T. Research progress of industrial geography in China. J. Geogr. Sci. 2016, 26, 1057–1066. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, Y.; Du, K. The impact of industrial agglomeration on industrial pollutant emission: Evidence from China under New Normal. Clean Technol. Environ. Policy 2017, 19, 2327–2334. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, C.; Yang, F.; Che, L.; Wang, B.; Sun, D. Spatio-temporal evolution and the influencing factors of PM2.5 in China between 2000 and 2015. J. Geogr. Sci. 2019, 29, 253–270. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Wan, Q.; Liu, H.; Liu, H.; Kapsar, K.; Peng, J. How does urbanization influence PM2.5 concentrations? Perspective of spillover effect of multi-dimensional urbanization impact. J. Clean. Prod. 2019, 220, 974–983. [Google Scholar] [CrossRef]
- Xu, M.; Wu, J. Can Chinese-style environmental collaboration improve the air quality? A quasi-natural experimental study across Chinese cities. Environ. Impact Assess. Rev. 2020, 85, 106466. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, M.; Xing, J.; Wu, Y.; Zhou, Y.; Lei, Y.; Hao, J. Quantifying the air pollutants emission reduction during the 2008 Olympic Games in Beijing. Environ. Sci. Technol. 2010, 44, 2490–2496. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, R.; Liu, Y.; Bi, J. Effects of air pollution control policies on PM2.5 pollution improvement in China from 2005 to 2017: A satellite-based perspective. Atmos. Chem. Phys. 2019, 19, 6861–6877. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P. Target interactions and target aspiration level adaptation: How do government leaders tackle the “environment-economy” nexus? Public Adm. Rev. 2021, 81, 220–230. [Google Scholar] [CrossRef]
- Fan, X.; Xu, Y. Convergence on the haze pollution: City-level evidence from China. Atmos. Pollut. Res. 2020, 11, 141–152. [Google Scholar] [CrossRef]
- Ma, Y.; Ji, Q.; Fan, Y. Spatial linkage analysis of the impact of regional economic activities on PM2.5 pollution in China. J. Clean. Prod. 2016, 139, 1157–1167. [Google Scholar] [CrossRef]
Year | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
Moran’s I | 0.208 *** | 0.207 *** | 0.232 *** | 0.245 *** | 0.248 *** | 0.264 *** |
Year | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
Moran’s I | 0.242 *** | 0.245 *** | 0.241 *** | 0.266 *** | 0.255 *** | 0.251 *** |
Year | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
Moran’s I | 0.251 *** | 0.254 *** | 0.246 *** | 0.252 *** | 0.250 *** | 0.279 *** |
Year | 2016 | |||||
Moran’s I | 0.267 *** |
OLS Model | Year | 1999 | 2000 | 2001 |
ln(PM2.5) | 0.0102 (0.0148) | −0.0885 *** (0.0217) | −0.1192 *** (0.0198) | |
R2 | 0.0008 | 0.0489 | 0.1858 | |
SAR Model | Year | 1999 | 2000 | 2001 |
ln(PM2.5) | 0.0059 (0.0125) | −0.0527 *** (0.0179) | −0.2869 *** (0.0698) | |
Lambda | 2.803 *** (0.7285) | 3.9296 *** (0.826) | −13.307 *** (4.985) | |
OLS Model | Year | 2002 | 2003 | 2004 |
ln(PM2.5) | −0.0211 ** (0.0101) | 0.0217 (0.0142) | −0.0513 *** (0.0117) | |
R2 | 0.009 | 0.0098 | 0.0262 | |
SAR Model | Year | 2002 | 2003 | 2004 |
ln(PM2.5) | −0.0263 *** (0.0076) | −0.0033 (0.0159) | −0.0012 (0.0105) | |
lambda | 5.4189 ** (2.148) | 2.175 *** (0.6496) | 2.398 *** (0.217) | |
OLS Model | Year | 2005 | 2006 | 2007 |
ln(PM2.5) | 0.0099 (0.0079) | 0.0069 (0.0094) | 0.0396 *** (0.0098) | |
R2 | 0.0035 | 0.0016 | 0.0516 | |
SAR Model | Year | 2005 | 2006 | 2007 |
ln(PM2.5) | −0.004 (0.0105) | −0.014 (0.0125) | −0.0214 ** (0.0097) | |
lambda | 5.8786 ** (2.4818) | 8.618 *** (3.044) | 3.068 *** (0.2558) | |
OLS Model | Year | 2008 | 2009 | 2010 |
ln(PM2.5) | −0.0997 *** (0.007) | 0.0203 ** (0.0098) | −0.0065 (0.0094) | |
R2 | 0.3227 | 0.0229 | 0.002 | |
SAR Model | Year | 2008 | 2009 | 2010 |
ln(PM2.5) | −0.084 *** (0.014) | 0.04 (0.0313) | 0.0064 (0.008) | |
lambda | 0.6769 (0.4959) | −10.57 (15.84) | 3.514 *** (0.6928) | |
OLS Model | Year | 2011 | 2012 | 2013 |
ln(PM2.5) | −0.0217 *** (0.0081) | −0.0144 (0.0098) | −0.0266 *** (0.0099) | |
R2 | 0.0236 | 0.0105 | 0.0219 | |
SAR Model | Year | 2011 | 2012 | 2013 |
ln(PM2.5) | −0.0256 ** (0.0109) | −0.0104 (0.0107) | −0.0066 (0.0104) | |
lambda | 12.744 *** (4.593) | 1.257 (1.065) | 2.62 *** (0.5838) | |
OLS Model | Year | 2014 | 2015 | 2016 |
ln(PM2.5) | −0.0041 (0.0088) | −0.0136 (0.0158) | −0.1174 *** (0.0126) | |
R2 | 0.0007 | 0.0024 | 0.3226 | |
SAR Model | Year | 2014 | 2015 | 2016 |
ln(PM2.5) | −0.0062 (0.0072) | −0.0408 *** (0.0112) | −0.0898 *** (0.0183) | |
lambda | 1.378 (0.909) | 2.667 *** (0.153) | 0.9019 ** (0.413) |
Model 1 | Model 2 | Model 3 | Model 4 | |
ln(PM2.5) | −0.426 *** (0.0124) | −0.691 *** (0.0198) | −0.426 *** (0.0127) | −0.6913 *** (0.0204) |
λ | / | / | / | / |
Year fixed effects | / | Y | / | Y |
City fixed effects | / | / | Y | Y |
Hausman test | 1496.93 *** | 2070.43 *** | 0 | 0 |
Model | fe | fe | re | re |
R2 | 0.2669 | 0.4972 | 0.2731 | 0.5014 |
Model 5 | Model 6 | Model 7 | Model 8 | |
ln(PM2.5) | −0.2236 *** (0.012) | −0.5679 *** (0.017) | −0.2236 *** (0.012) | −0.5679 *** (0.017) |
λ | 0.959 *** (0.0059) | 0.9817 *** (0.001) | 0.9592 *** (0.0059) | 0.9817 *** (0.001) |
Year fixed effects | / | Y | / | Y |
City fixed effects | / | / | Y | Y |
Hausman test | 806.96 *** | 3124.21 *** | 0 | −0.01 |
Model | fe | fe | re | re |
R2 | 0.0675 | 0.0460 | 0.0677 | 0.0474 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Chen, Z.; Zhang, P. Spatial Autocorrelation and Temporal Convergence of PM2.5 Concentrations in Chinese Cities. Int. J. Environ. Res. Public Health 2022, 19, 13942. https://doi.org/10.3390/ijerph192113942
Wang H, Chen Z, Zhang P. Spatial Autocorrelation and Temporal Convergence of PM2.5 Concentrations in Chinese Cities. International Journal of Environmental Research and Public Health. 2022; 19(21):13942. https://doi.org/10.3390/ijerph192113942
Chicago/Turabian StyleWang, Huan, Zhenyu Chen, and Pan Zhang. 2022. "Spatial Autocorrelation and Temporal Convergence of PM2.5 Concentrations in Chinese Cities" International Journal of Environmental Research and Public Health 19, no. 21: 13942. https://doi.org/10.3390/ijerph192113942
APA StyleWang, H., Chen, Z., & Zhang, P. (2022). Spatial Autocorrelation and Temporal Convergence of PM2.5 Concentrations in Chinese Cities. International Journal of Environmental Research and Public Health, 19(21), 13942. https://doi.org/10.3390/ijerph192113942