High-Coverage Reconstruction of XCO2 Using Multisource Satellite Remote Sensing Data in Beijing–Tianjin–Hebei Region
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area and Data
2.1.1. Study Area
2.1.2. Data
- OCO-2 XCO2
- 2.
- VIIRS S-NPP
- 3.
- Natural carbon sink
- 4.
- Meteorological factors
- 5.
- Time series variables
2.2. Methodology
2.2.1. Methodological Process
2.2.2. Random Forest Model
- The model has few adjustment parameters and does not require too much time.
- The random selection of sample sets and split attributes can effectively reduce the overfitting of the model.
2.2.3. Data Resampling and Matching Method
2.2.4. Model Validation Method
3. Results
3.1. Descriptive Statistics
3.2. Model Accuracy
3.3. Seasonal Maps
3.4. Long-Term Pattern of XCO2 Concentration
3.5. Spatial Distribution of Monthly XCO2 Concentration
4. Discussion
5. Conclusions
- Aiming at the problems of the low spatial coverage and insufficient temporal resolution of the XCO2 concentration observation data obtained by the OCO-2 monitoring satellite, this study developed a high-coverage reconstruction model for XCO2 concentration by integrating multisource remote sensing data. Simultaneously, the accuracy of the model was evaluated. The direct fitting results are R2 = 0.96, RMSE = 1.09 ppm, and MAE = 0.56 ppm; the 10-CV results based on samples are R2 = 0.91, RMSE = 1.68 ppm, and MAE = 0.88 ppm; and the 10-CV results based on spatial location are R2 = 0.91, RMSE = 1.68 ppm, and MAE = 0.88 ppm. The developed model has the potential to play an important role in the monitoring of atmospheric CO2 concentration.
- Using the developed model, the high-coverage daily XCO2 concentration with a spatial resolution of 0.05° in the Beijing–Tianjin–Hebei region from 2015 to 2019 was outputted, and the monthly and seasonal means of XCO2 concentration were compared with those measured by the OCO-2 satellite. The study found that the XCO2 concentration has obvious fluctuation and rhythm. The XCO2 concentration is higher in spring and winter due to the decay of litter and human emissions. With the large amount of CO2 absorbed by green vegetation photosynthesis, the XCO2 concentration in summer is lower. In addition, in terms of the spatial XCO2 distribution concentration, some areas in Beijing, Tianjin, Tangshan, and Shijiazhuang are carbon source areas, and their monthly average XCO2 concentrations are significantly higher than those of the surrounding areas.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Zaehle, S. Global Carbon Budget 2020. Glob. Carbon Budg. 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Kappelle, M. WMO Statement on the State of the Global Climate in 2019; World Meteorological Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Pachauri, R.K.; Meyer, L.; Groups, I.T. IPCC, Climate Change 2014: Synthesis Report; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Dietz, S.; Bowen, A.; Dixon, C.; Gradwell, P. ‘Climate value at risk’ of global financial assets. Nat. Clim. Change 2016, 6, 676–679. [Google Scholar] [CrossRef]
- Gurney, K.R.; Law, R.M.; Denning, A.S.; Rayner, P.J.; Baker, D.; Bousquet, P.; Bruhwiler, L.; Chen, Y.H.; Ciais, P.; Fan, S.; et al. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 2002, 415, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Bie, N.; Lei, L.; Zeng, Z.; Cai, B.; Yang, S.; Yang, S.; He, Z.; He, Z.; Wu, C.; Nassar, R. Regional uncertainty of GOSAT XCO2 retrievals in China: Quantification and attribution. Atmos. Meas. Tech. 2018, 11, 1251–1272. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Enhancement of Local Air Pollution by Urban CO_2 Domes. Environ. Sci. Technol. 2010, 44, 2497–2502. [Google Scholar] [CrossRef]
- O’Dell, C.W.; Connor, B.; Bösch, H.; O’Brien, D.; Frankenberg, C.; Castano, R.; Christi, M.; Eldering, D.; Fisher, B.; Gunson, M.; et al. The ACOS CO2 retrieval algorithm—Part 1: Description and validation against synthetic observations. Atmos. Meas. Tech. 2012, 5, 99–121. [Google Scholar] [CrossRef]
- Frankenberg, C.; O’Dell, C.; Berry, J.; Guanter, L.; Joiner, J.; Köhler, P.; Taylor, T.E. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. Remote Sens. Environ. 2014, 147, 1–12. [Google Scholar] [CrossRef]
- Yokota, T.; Tsay, S.C.; Yokota, T.; Oguma, H.; Morino, I.; Ahn, M.H.; Higurashi, A.; Aoki, T.; Inoue, G. Test measurements by a BBM of the nadir-looking SWIR FTS aboard GOSAT to monitor CO2 column density from space. In Passive Optical Remote Sensing of the Atmosphere and Clouds IV; SPIE: Bellingham, WA, USA, 2004; Volume 5652, p. 182. [Google Scholar]
- Crisp, D. Measuring atmospheric carbon dioxide from space with the Orbiting Carbon Observatory-2 (OCO-2). In Proceedings of the SPIE Optical Engineering + Applications, Singapore, 5–8 November 2018. [Google Scholar]
- Chen, W.; Zhang, Y.; Yin, Z.; Zheng, Y.; Yan, C.; Yang, Z.; Liu, Y. The TanSat mission: Global CO2 observation and monitoring. In Proceedings of the 63rd IAC (International Astronautical Congress), Naples, Italy, 1–5 October 2012. [Google Scholar]
- Hammerling, D.M.; Michalak, A.M.; Kawa, S.R. Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO-2. J. Geophys. Res. Atmos. 2012, 117, D06306. [Google Scholar] [CrossRef]
- Mao, J.; Kawa, S.R. Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight. Appl. Opt. 2004, 43, 914–927. [Google Scholar] [CrossRef]
- Liang, A.; Gong, W.; Han, G.; Xiang, C. Comparison of Satellite-Observed XCO2 from GOSAT, OCO-2, and Ground-Based TCCON. Remote Sens. 2017, 9, 1033. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhang, Y.; Zou, M.; Xu, Q.; Li, L.; Li, X.; Tao, J. Overview of atmospheric CO2 remote sensing from space. J. Remote Sens. 2015, 19, 1–11. [Google Scholar]
- Pei, Z.; Han, G.; Ma, X.; Shi, T.; Gong, W. A Method for Estimating the Background Column Concentration of CO2 Using the Lagrangian Approach. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, M.; Zhao, N.; Yue, T. Modeling the Spatial Distribution of XCO_2 with High Accuracy Based on OCO-2’s Observations. J. Geo-Inf. Sci. 2018, 20, 1316–1326. [Google Scholar]
- Bey, I.; Jacob, D.J.; Yantosca, R.M.; Logan, J.A.; Field, B.D.; Fiore, A.M.; Li, Q.; Liu, H.Y.; Mickley, L.J.; Schultz, M.G. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J. Geophys. Res. Atmos. 2001, 106, 23073–23095. [Google Scholar] [CrossRef]
- Baker, D.F.; Law, R.M.; Gurney, K.R.; Rayner, P.; Peylin, P.; Denning, A.S.; Bousquet, P.; Bruhwiler, L.; Chen, Y.; Ciais, P.; et al. TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003. Glob. Biogeochem. Cycles 2006, 20, GB1002. [Google Scholar] [CrossRef]
- Ahmadov, R.; Gerbig, C.; Kretschmer, R.; Rner, S.K.; Denbeck, C.R.; Bousquet, P.; Ramonet, M. Comparing high resolution WRF-VPRM simulations and two global CO2 transport models with coastal tower measurements of CO2. Biogeosciences 2009, 6, 807–817. [Google Scholar] [CrossRef]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016. [Google Scholar]
- Luo, B.; Yang, J.; Song, S.; Shi, S.; Gong, W.; Wang, A.; Du, L. Target Classification of Similar Spatial Characteristics in Complex Urban Areas by Using Multispectral LiDAR. Remote Sens. 2022, 14, 238. [Google Scholar] [CrossRef]
- Zeng, J. Reconstructed surface ocean CO2 in 1990–2011 with link to a feed-forward neural network model in NetCDF format. PANGAEA 2014. [Google Scholar] [CrossRef]
- Siabi, Z.; Falahatkar, S.; Alavi, S.J. Spatial distribution of XCO2 using OCO-2 data in growing seasons. J. Environ. Manag. 2019, 244, 110–118. [Google Scholar] [CrossRef]
- Tarko, A.M.; Usatyuk, V.V. Simulation of the Global Biogeochemical Carbon Cycle with Account for Its Seasonal Dynamics and Analysis of Variations in Atmospheric CO_2 Concentrations. Dokl. Earth Sci. 2013, 448, 258–261. [Google Scholar] [CrossRef]
- Zhang, J. Multi-source remote sensing data fusion: Status and trends. Int. J. Image Data Fusion 2010, 1, 5–24. [Google Scholar] [CrossRef]
- Li, H.; Mu, H.; Zhang, M.; Nan, L. Analysis on influence factors of China’s CO2 emissions based on Path–STIRPAT model. Energy Policy 2011, 39, 6906–6911. [Google Scholar] [CrossRef]
- Xu, W.; Wang, W.; Wang, N.; Chen, B. A New Algorithm for Himawari-8 Aerosol Optical Depth Retrieval by Integrating Regional PM2.5 Concentrations. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Frankenberg, C.; Pollock, R.; Lee, R.A.M.; Rosenberg, R.; Blavier, J.F.; Crisp, D.; O’Dell, C.W.; Osterman, G.B.; Roehl, C.; Wennberg, P.O.; et al. The Orbiting Carbon Observatory (OCO-2): Spectrometer performance evaluation using pre-launch direct sun measurements. Atmos. Meas. Tech. 2015, 8, 301–313. [Google Scholar] [CrossRef]
- Liang, A.; Wei, G.; Ge, H. OCO-2 XCO2 validation using TCCON data. In Proceedings of the Geoscience & Remote Sensing Symposium, Beijing, China, 10–15 July 2016. [Google Scholar]
- Raupach, M.R.; Rayner, P.J.; Paget, M. Regional variations in spatial structure of nightlights, population density and fossil-fuel CO2 emissions. Energy Policy 2010, 38, 4756–4764. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Shan, Y. County-level CO2 emissions and sequestration in China during 1997–2017. Sci. Data 2020, 7, 1–12. [Google Scholar] [CrossRef]
- Meng, F.; Cao, C.; Shao, X. Spatio-temporal variability of Suomi-NPP VIIRS-derived aerosol optical thickness over China in 2013. Remote Sens. Environ. 2015, 163, 61–69. [Google Scholar] [CrossRef]
- Yan, Q.; Zhang, C.; Wang, D.; Tian, P.; Wu, Q. Comparison of atmospheric CO2observed by GOSAT and two ground stations in China. Int. J. Remote Sens. 2013, 34, 3938–3946. [Google Scholar]
- He, Z.; Zeng, Z.C.; Lei, L.; Bie, N.; Yang, S. A Data-Driven Assessment of Biosphere-Atmosphere Interaction Impact on Seasonal Cycle Patterns of XCO2 Using GOSAT and MODIS Observations. Remote Sens. 2017, 9, 251. [Google Scholar]
- Liu, B.; Ma, X.; Ma, Y.; Li, H.; Jin, S.; Fan, R.; Gong, W. The relationship between atmospheric boundary layer and temperature inversion layer and their aerosol capture capabilities. Atmos. Res. 2022, 271, 106121. [Google Scholar] [CrossRef]
- Keeling, C.D.; Bacastow, R.B.; Bainbridge, A.E.; Ekdahl, C.A., Jr.; Guenther, P.R.; Waterman, L.S.; Chin, J.F. Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus 1976, 28, 538–551. [Google Scholar]
- Tu, B. Advantages and Disadvantages of Using Artificial Neural Networks Versus Logistic Regression for Predicting. J. Clin. Epidemiol. 1996, 49, 1225–1231. [Google Scholar] [CrossRef]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Random Forests. Mach. Learn. 2004, 45, 157–176. [Google Scholar]
- Ichii, K.; Kawabata, A.; Yamaguchi, Y. Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982–1990. Int. J. Remote Sens. 2002, 23, 3873–3878. [Google Scholar] [CrossRef]
- Jing, Y.; Shi, J.; Wang, T.; Sussmann, R. Mapping Global Atmospheric CO2 Concentration at High Spatiotemporal Resolution. Atmosphere 2014, 5, 870–888. [Google Scholar]
- Lei, L.P.; Guan, X.H.; Zeng, Z.C.; Zhang, B.; Ru, F.; Bu, R. A comparison of atmospheric CO2 concentration GOSAT-based observations and model simulations. Sci. China Earth Sci. 2014, 57, 1393–1402. [Google Scholar] [CrossRef]
- Xu, Q. Estimation of ecosystem productivity and analysis of spatial-temporal pattern in Beijing Tianjin Hebei region. Geogr. Geogr. Inf. Sci. 2019, 35, 10. [Google Scholar]
- Guo, M.; Wang, X.; Li, J.; Yi, K.; Zhong, G.; Tani, H. Assessment of Global Carbon Dioxide Concentration Using MODIS and GOSAT Data. Sensors 2012, 12, 16368–16389. [Google Scholar] [CrossRef] [Green Version]
Data | Variable | Unit | Time Resolution | Spatial Resolution | Source |
---|---|---|---|---|---|
XCO2 | XCO2 | ppm | 1 day | 2.25 km × 1.29 km | OCO-2 |
Lighting data | DN | Unitless | 1 day | 500 m | S-NPP |
Carbon sink | NDVI | Unitless | 16 days | 500 m | MODIS |
RELH | % | 1 h | 0.25° | ||
Meteorological data | TEMP | K | 1 h | 0.25° | ERA5 |
WS | m/s | 1 h | 0.25° | ||
PRES | Kpa | 1 h | 0.25° | ||
BLH | km | 1 h | 0.25° |
Time | XCO2 | TEMP | RELH | PRES | uwind | vwind | BLH | NDVI | DN | |
---|---|---|---|---|---|---|---|---|---|---|
Time | 1.00 | 0.62 | 0.07 | −0.10 | −0.02 | 0.03 | 0.01 | 0.07 | 0.07 | 0.00 |
XCO2 | 1.00 | −0.21 | −0.30 | 0.16 | 0.10 | 0.03 | −0.01 | −0.26 | 0.08 | |
TEMP | 1.00 | 0.05 | 0.22 | −0.39 | 0.29 | 0.42 | 0.65 | 0.08 | ||
RELH | 1.00 | 0.04 | −0.24 | 0.18 | −0.49 | 0.13 | 0.00 | |||
PRES | 1.00 | −0.33 | 0.08 | −0.10 | 0.11 | 0.37 | ||||
uwind | 1.00 | −0.17 | 0.19 | −0.30 | −0.11 | |||||
vwind | 1.00 | −0.26 | 0.16 | 0.01 | ||||||
BLH | 1.00 | 0.24 | −0.01 | |||||||
NDVI | 1.00 | 0.05 | ||||||||
DN | 1.00 |
Season | Direct Fitting Results | 10-CV Results Based on Samples | Number | ||||
---|---|---|---|---|---|---|---|
R2 | MAE (ppm) | RMSE (ppm) | R2 | MAE (ppm) | RMSE (ppm) | ||
2014 Winter | 0.89 | 0.43 | 0.87 | 0.77 | 0.65 | 1.25 | 2078 |
2015 Spring | 0.91 | 0.49 | 0.91 | 0.79 | 0.73 | 1.35 | 3603 |
2015 Summer | 0.89 | 0.83 | 1.43 | 0.73 | 1.27 | 2.14 | 2913 |
2015 Autumn | 0.88 | 0.61 | 1.25 | 0.70 | 0.94 | 1.93 | 3342 |
2015 Winter | 0.92 | 0.53 | 1.09 | 0.81 | 0.82 | 1.66 | 6015 |
2016 Spring | 0.81 | 0.53 | 0.94 | 0.57 | 0.81 | 1.37 | 2586 |
2016 Summer | 0.87 | 0.87 | 1.61 | 0.71 | 1.30 | 2.37 | 2318 |
2016 Autumn | 0.93 | 0.57 | 1.17 | 0.82 | 0.87 | 1.76 | 3200 |
2016 Winter | 0.93 | 0.50 | 1.00 | 0.82 | 0.78 | 1.57 | 3703 |
2017 Spring | 0.82 | 0.55 | 1.04 | 0.59 | 0.83 | 1.51 | 3158 |
2017 Summer | 0.91 | 0.72 | 1.22 | 0.79 | 1.11 | 1.82 | 1700 |
2017 Autumn | 0.89 | 0.61 | 1.23 | 0.72 | 0.93 | 1.85 | 1702 |
2017 Winter | 0.86 | 0.47 | 1.07 | 0.68 | 0.70 | 1.56 | 4971 |
2018 Spring | 0.85 | 0.45 | 0.82 | 0.65 | 0.68 | 1.22 | 2789 |
2018 Summer | 0.85 | 0.98 | 1.64 | 0.66 | 1.48 | 2.43 | 2509 |
2018 Autumn | 0.90 | 0.51 | 0.99 | 0.78 | 0.76 | 1.44 | 3894 |
2018 Winter | 0.90 | 0.44 | 0.84 | 0.74 | 0.66 | 1.30 | 2899 |
2019 Spring | 0.81 | 0.51 | 1.06 | 0.60 | 0.75 | 1.46 | 3147 |
2019 Summer | 0.90 | 0.86 | 1.51 | 0.76 | 1.29 | 2.20 | 2020 |
2019 Autumn | 0.92 | 0.43 | 0.78 | 0.83 | 0.64 | 1.15 | 3493 |
2019 Winter | 0.92 | 0.51 | 0.94 | 0.82 | 0.76 | 1.38 | 924 |
Season | Monitored by Satellite | Estimated by Model | Bias | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Median | Standard Deviation | Mean | Median | Standard Deviation | Mean | Median | Standard Deviation | |
201501 | 402.59 | 402.77 | 2.85 | 402.40 | 402.66 | 0.75 | 0.18 | 0.11 | 2.10 |
201502 | 395.50 | 395.55 | 4.10 | 395.39 | 395.61 | 0.83 | 0.11 | −0.06 | 3.27 |
201503 | 398.74 | 398.73 | 3.30 | 398.59 | 399.00 | 1.67 | 0.15 | −0.27 | 1.63 |
201504 | 404.13 | 404.19 | 3.10 | 403.77 | 404.01 | 1.86 | 0.36 | 0.18 | 1.24 |
201601 | 406.02 | 406.13 | 2.00 | 405.42 | 405.55 | 0.54 | 0.60 | 0.58 | 1.47 |
201602 | 398.50 | 398.41 | 4.44 | 399.19 | 399.29 | 0.92 | −0.69 | −0.88 | 3.52 |
201603 | 403.15 | 403.49 | 3.85 | 403.18 | 402.92 | 1.36 | −0.03 | 0.57 | 2.49 |
201604 | 407.43 | 407.52 | 3.77 | 407.66 | 407.80 | 1.91 | −0.23 | −0.28 | 1.86 |
201701 | 408.68 | 408.58 | 2.25 | 408.24 | 408.55 | 0.86 | 0.44 | 0.03 | 1.39 |
201702 | 404.18 | 404.47 | 3.84 | 404.33 | 404.43 | 0.94 | −0.15 | 0.04 | 2.91 |
201703 | 406.24 | 406.68 | 3.05 | 406.70 | 407.17 | 1.17 | −0.46 | −0.49 | 1.89 |
201704 | 408.77 | 408.84 | 2.71 | 408.75 | 409.23 | 1.52 | 0.02 | −0.39 | 1.19 |
201801 | 411.09 | 410.99 | 2.01 | 409.67 | 409.76 | 0.85 | 1.42 | 1.23 | 1.16 |
201802 | 404.09 | 404.06 | 4.18 | 403.71 | 403.69 | 0.46 | 0.39 | 0.37 | 3.72 |
201803 | 407.22 | 407.35 | 3.00 | 407.53 | 407.86 | 1.13 | −0.31 | −0.51 | 1.87 |
201804 | 411.05 | 411.08 | 2.59 | 411.35 | 411.91 | 1.29 | −0.30 | −0.83 | 1.30 |
201901 | 412.96 | 412.86 | 2.10 | 411.94 | 411.94 | 0.54 | 1.02 | 0.92 | 1.56 |
201902 | 406.09 | 406.26 | 4.43 | 406.33 | 406.46 | 0.86 | −0.24 | −0.20 | 3.57 |
201903 | 409.63 | 409.72 | 2.73 | 409.35 | 409.89 | 1.16 | 0.27 | −0.17 | 1.58 |
Observed by the OCO-2 satellite | Minimum | 393.73 | 201508 |
Maximum | 413.46 | 201904 | |
Bias | 19.73 | ||
Estimated by the random forest model | Minimum | 394.10 | 201508 |
Maximum | 413.00 | 201903 | |
Bias | 18.94 | ||
Bias | Minimum | 0.00 | 201610 |
Maximum | 1.67 | 201511 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; He, J.; Feng, H.; Jin, Z. High-Coverage Reconstruction of XCO2 Using Multisource Satellite Remote Sensing Data in Beijing–Tianjin–Hebei Region. Int. J. Environ. Res. Public Health 2022, 19, 10853. https://doi.org/10.3390/ijerph191710853
Wang W, He J, Feng H, Jin Z. High-Coverage Reconstruction of XCO2 Using Multisource Satellite Remote Sensing Data in Beijing–Tianjin–Hebei Region. International Journal of Environmental Research and Public Health. 2022; 19(17):10853. https://doi.org/10.3390/ijerph191710853
Chicago/Turabian StyleWang, Wei, Junchen He, Huihui Feng, and Zhili Jin. 2022. "High-Coverage Reconstruction of XCO2 Using Multisource Satellite Remote Sensing Data in Beijing–Tianjin–Hebei Region" International Journal of Environmental Research and Public Health 19, no. 17: 10853. https://doi.org/10.3390/ijerph191710853
APA StyleWang, W., He, J., Feng, H., & Jin, Z. (2022). High-Coverage Reconstruction of XCO2 Using Multisource Satellite Remote Sensing Data in Beijing–Tianjin–Hebei Region. International Journal of Environmental Research and Public Health, 19(17), 10853. https://doi.org/10.3390/ijerph191710853