Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Framework
2.2. Calculation Method of ACEP
2.3. Agricultural Carbon Emission Measurement
2.4. Spatial Econometric Model
2.4.1. Basic Model
2.4.2. Spatial Autocorrelation Analysis
2.4.3. Spatial Regression Model
2.5. Variables Selection and Data Sources
2.5.1. Explained Variable and Core Explanatory Variable
2.5.2. Control Variables
2.5.3. Data Sources and Descriptive Statistics
3. Results and Discussion
3.1. Spatial-Temporal Changes in ACEP
3.2. Benchmark Regression Analysis
3.2.1. The Correlation between DIF and ACEP
3.2.2. Basic Regression Analysis
3.2.3. The Influences of Different Dimensions of DIF on ACEP
3.3. Spatial Regression Analysis
3.3.1. Spatial Autocorelation Analysis of ACEP
3.3.2. Selection of Spatial Model
3.3.3. Analysis of SDM Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, Y.; Li, Y.; Wu, M.; Li, Y. The decomposition of total-factor CO2 emission efficiency of 97 contracting countries in Paris Agreement. Energy Econ. 2019, 78, 365–378. [Google Scholar]
- Wu, H.; Sipiläinen, T.; He, Y.; Huang, H.; Luo, L.; Chen, W.; Meng, Y. Performance of cropland low-carbon use in China: Measurement, spatiotemporal characteristics, and driving factors. Sci. Total Environ. 2021, 800, 149552. [Google Scholar] [PubMed]
- Huang, X.; Xu, X.; Wang, Q.; Zhang, L.; Gao, X.; Chen, L. Assessment of agricultural carbon emissions and their spatiotemporal changes in China, 1997–2016. Int. J. Environ. Res. Publ. Health 2019, 16, 3105. [Google Scholar]
- Ang, B.W.; Su, B. Carbon emission intensity in electricity production: A global analysis. Energ. Policy 2016, 94, 56–63. [Google Scholar]
- Liu, M.; Yang, L. Spatial pattern of China’s agricultural carbon emission performance. Ecol. Indicat. 2021, 133, 108345. [Google Scholar]
- Allen, F.; Qian, J.; Qian, M. Law, finance, and economic growth in China. J. Financ. Econ. 2005, 77, 57–116. [Google Scholar]
- Fang, L.; Hu, R.; Mao, H.; Chen, S. How crop insurance influences agricultural green total factor productivity: Evidence from Chinese farmers. J. Clean. Prod. 2021, 321, 128977. [Google Scholar]
- Yin, Z.; Gong, X.; Guo, P.; Wu, T. What drives entrepreneurship in digital economy? Evidence from China. Econ. Model. 2019, 82, 66–73. [Google Scholar]
- Guo, H.; Gu, F.; Peng, Y.; Deng, X.; Guo, L. Does Digital Inclusive Finance Effectively Promote Agricultural Green Development?—A Case Study of China. Int. J. Environ. Res. Public Health 2022, 19, 6982. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, W.; Cai, W.; Liu, T. The impact of digital finance use on sustainable agricultural practices adoption among smallholder farmers: An evidence from rural China. Environ. Sci. Pollut. Res. 2022, 29, 39281–39294. [Google Scholar]
- Zhang, W.; Liu, X.; Wang, D.; Zhou, J. Digital economy and carbon emission performance: Evidence at China’s city level. Energy Policy 2022, 165, 112927. [Google Scholar]
- Benedetti, I.; Branca, G.; Zucaro, R. Evaluating input use efficiency in agriculture through a stochastic frontier production: An application on a case study in Apulia (Italy). J. Clean. Prod. 2019, 236, 117609. [Google Scholar]
- Liu, D.; Zhu, X.; Wang, Y. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar]
- Wang, Q.; Wang, H.; Chen, H. A study on agricultural green TFP in China: 1992–2010. Econ. Rev. 2012, 5, 24–33. [Google Scholar]
- Chen, S.; Gong, B. Response and adaptation of agriculture to climate change: Evidence from China. J. Dev. Econ. 2021, 148, 102557. [Google Scholar]
- Tian, Y.; Zhang, J.; He, Y. Research on spatial-temporal characteristics and driving factor of agricultural carbon emissions in China. J. Integr. Agr. 2014, 13, 1393–1403. [Google Scholar]
- Emrouznejad, A.; Yang, G. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Soc. Econ. Plann. Sci. 2018, 61, 4–8. [Google Scholar]
- Tone, K.A. Slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Liang, J.; Long, S. China’s agricultural green total factor productivity growth and its affecting factors. J. South China Agric. Univ. 2015, 14, 1–12. [Google Scholar]
- Zhou, C.; Shi, C.; Wang, S.; Zhang, G. Estimation of eco-efficiency and its influencing factors in Guangdong province based on Super-SBM and panel regression models. Ecol. Indicat. 2018, 86, 67–80. [Google Scholar]
- Adetutu, M.O.; Ajayi, V. The impact of domestic and foreign R&D on agricultural productivity in sub-Saharan Africa. World Dev. 2020, 125, 104690. [Google Scholar]
- Yang, H.; Wang, X.; Bin, P. Agriculture carbon-emission reduction and changing factors behind agricultural eco-efficiency growth in China. J. Clean. Prod. 2022, 334, 130193. [Google Scholar]
- Liu, Z. Analysis on the dynamic and influencing factors of agricultural total factor productivity in China. Chin. J. Agr. Resour. Reg. Plan 2018, 39, 104–111. [Google Scholar]
- Chen, L.; Zhang, J.; Ke, H. Different spatial impacts of agricultural industrial agglomerations on carbon efficiency: Mechanism, spatial effects and groups differences. J. Chin. Agricult. Univ. 2018, 23, 224–236. (In Chinese) [Google Scholar]
- Umar, M.; Ji, X.; Kirikkaleli, D.; Xu, Q. COP21 Roadmap: Do innovation, financial development, and transportation infrastructure matter for environmental sustainability in China? J. Environ. Manag. 2020, 271, 111026. [Google Scholar]
- Liu, J.; Yu, Q.; Chen, Y.; Liu, J. The impact of digital technology development on carbon emissions: A spatial effect analysis for China. Resour. Conserv. Recycl. 2022, 185, 106445. [Google Scholar]
- Jalil, A.; Feridun, M. The impact of growth, energy and financial development on the environment in China: A cointegration analysis. Energy Econ. 2011, 33, 284–291. [Google Scholar]
- Zhang, Y. The impact of financial development on carbon emissions: An empirical analysis in China. Energy Pol. 2011, 39, 2197–2203. [Google Scholar]
- Fang, Z.; Gao, X.; Sun, C. Do financial development, urbanization and trade affect environmental quality? Evidence from China. J. Clean. Prod. 2020, 259, 120892. [Google Scholar]
- Martinsson, G. Equity fnancing and innovation: Is Europe different from the United States? J. Bank. Financ. 2020, 34, 1215–1224. [Google Scholar]
- Cao, S.; Nie, L.; Sun, H.; Sun, W.; Taghizadeh-Hesary, F. Digital finance, green technological innovation and energy-environmental performance: Evidence from China’s regional economies. J. Clean. Prod. 2021, 327, 129458. [Google Scholar] [CrossRef]
- Ouyang, Y.; Li, P. On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach. Energy Econ. 2018, 71, 238–252. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, W.; Shen, J.; Mo, Z.; Peng, Y. Smart city with Chinese characteristics against the background of big data: Idea, action and risk. J. Clean. Prod. 2018, 173, 60–66. [Google Scholar] [CrossRef]
- Zhong, R.; He, Q.; Qi, Y. Digital economy, agricultural technological progress, and agricultural carbon intensity: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 6488. [Google Scholar] [CrossRef]
- Zhu, C.; Dong, B.; Li, S.; Lin, Y.; Shahtahmassebi, A.; You, S.; Zhang, J.; Gan, M.; Yang, L.; Wang, K. Identifying the trade-offs and synergies among land use functions and their influencing factors from a geospatial perspective: A case study in Hangzhou, China. J. Clean. Prod. 2021, 314, 128026. [Google Scholar] [CrossRef]
- Zhao, P.; Zheng, L.; Lu, H.; Zhou, Y.; Hu, H.; Wei, X. Green economic efficiency and its influencing factors in China from 2008 to 2017: Based on the super-SBM model with undesirable outputs and spatial Dubin model. Sci. Total Environ. 2020, 741, 140026. [Google Scholar] [CrossRef]
- Gomber, P.; Koch, J.A.; Siering, M. Digital Finance and Fin Tech: Current research and future research directions. J. Bus. Econ. 2017, 87, 537–580. [Google Scholar]
- Dendramis, Y.; Tzavalis, E.; Adraktas, G. Credit risk modelling under recessionary and financially distressed conditions. J. Bank. Financ. 2018, 91, 160–175. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Ren, X.; Wen, F. Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach. Energy Econ. 2022, 109, 105966. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y. Influence of digital finance and green technology innovation on China’s carbon emission efficiency: Empirical analysis based on spatial metrology. Sci. Total Environ. 2022, 838, 156463. [Google Scholar] [CrossRef]
- Chen, Y.; Miao, J.; Zhu, Z. Measuring green total factor productivity of China’s agricultural sector: A three-stage SBM-DEA model with non-point source pollution and CO2 emissions. J. Clean. Prod. 2021, 318, 128543. [Google Scholar] [CrossRef]
- Tone, K.A. Slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Mitigation: Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: Summary for Policymakers and Technical Summary; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Jiang, T.; Huang, S.; Yang, J. Structural carbon emissions from industry and energy systems in China: An input-output analysis. J. Clean. Prod. 2019, 240, 118116. [Google Scholar] [CrossRef]
- Dubey, A.; Lal, R. Carbon footprint and sustainability of agricultural production systems in Punjab, India, and Ohio, USA. J. Crop. Improv. 2009, 23, 332–350. [Google Scholar] [CrossRef]
- Rashid Khan, H.U.; Nassani, A.A.; Aldakhil, A.M.; Qazi Abro, M.M.; Islam, T.; Zaman, K. Pro-poor growth and sustainable development framework: Evidence from two step GMM estimator. J. Clean. Prod. 2019, 206, 767–784. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Y.; Han, Y.; Ke, T.; Liu, Y. Identifying the influencing factors controlling the spatial variation of heavy metals in suburban soil using spatial regression models. Sci. Total Environ. 2020, 71, 137212. [Google Scholar] [CrossRef]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; Chapman and Hall/CRC: Boca Raton, FL, USA, 2009. [Google Scholar]
- Guo, F.; Wang, J.; Wang, F.; Cheng, Z.; Kong, T.; Zhang, X. Measuring China’s digital financial inclusion; index compilation and spatial characteristics. China Econ. Quart. 2020, 9, 1401–1418. (In Chinese) [Google Scholar]
- Wu, H.; Hao, Y.; Ren, S. How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China. Energy Econ. 2020, 91, 104880. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, M.; Zheng, J. Accounting and determinants analysis of China’s provincial total factor productivity considering carbon emissions. China Econ. Rev. 2021, 65, 101576. [Google Scholar] [CrossRef]
- Liao, Y.; Wei, Y. Rural social justice construction since the 18th National Congress of the Communist Party of China. J. Agro-For. Econ. Manag. 2019, 18, 702–708. [Google Scholar]
- Chang, R.; Yao, Y.; Cao, W.; Wang, J.; Wang, X.; Chen, Q. Effects of composting and carbon-based materials on carbon and nitrogen loss in the arable land utilization of cow manure and corn stalks. J. Environ. Manag. 2019, 233, 283–290. [Google Scholar] [CrossRef]
- Lee, C.; Lee, C. How does green finance affect green total factor productivity? Evidence from China. Energy Econ. 2022, 107, 105863. [Google Scholar] [CrossRef]
- He, L.; Zhang, L.; Zhong, Z.; Wang, D.; Wang, F. Green credit, renewable energy investment and green economy development: Empirical analysis based on 150 listed companies of China. J. Clean. Prod. 2019, 208, 363–372. [Google Scholar] [CrossRef]
- Li, F.; Yang, P.; Zhang, K.; Yin, Y.; Zhang, Y.; Yin, C. The influence of smartphone use on conservation agricultural practice: Evidence from the extension of rice-green manure rotation system in China. Sci. Total Environ. 2022, 813, 152555. [Google Scholar] [CrossRef]
- Acheampong, A.O. Modelling for insight: Does financial development improve environmental quality. Energy Econ. 2019, 83, 156–179. [Google Scholar] [CrossRef]
- Li, J.; Khan, A.; Sufyan Ali, M.; Luo, J. Does farmers’ agricultural investment is impacted by green finance policies and financial constraint? From the perspective of farmers’ heterogeneity in Northwest China. Environ. Sci. Pollut. Res. 2022, 22, 11356–11365. [Google Scholar] [CrossRef]
First Level Index | Second Level Index | Variable Description |
---|---|---|
Input variables | Land area | The planting area of crops (1000 hectares) |
Labor force | The number of employees on the farm (10,000 people) | |
Agricultural machinery power | Total power of agricultural machinery (10,000 kilowatts) | |
Chemical fertilizer | Total fertilizers consumption (10,000 tons) | |
Pesticide | Pesticides usage (10,000 tons) | |
Agricultural film | Agricultural film consumption (ton) | |
Irrigation | Amount of water used for Irrigation (108 m3) | |
Output indicators | The total output value of the farm | Constant price in 2011 (1 × 108 yuan) |
Unexpected output | Agricultural carbon emissions | Measurement based on agricultural input and output elements (1 × 103 ton) |
Carbon Source | Selected Metrics | Carbon Emission Coefficients | Sources |
---|---|---|---|
Chemical fertilizer | Total fertilizers consumption (10,000 tons) | 0.8965 kg kg−1 | Oak Ridge National Laboratory, ORNL |
Pesticides | The amount of pesticide used (10,000 tons) | 4.9341 kg kg−1 | Oak Ridge National Laboratory, ORNL |
Agricultural film | The amount of agricultural plastic film (ton) | 5.18 kg kg−1 | Institute of Resources, Ecosystem, and Environment of Agriculture, IREEA |
Agricultural machinery | The amount of agricultural diesel used (10,000 tons) | 0.5927 kg kg−1 | IPCC (2007) |
Agricultural ploughing | The total planting area of crops (1000 hectares) | 312.6 kg km−2 | Wu et al. (2007) [5] |
Agricultural irrigation | Effective irrigation area (hectares) | 20.476 kg/hm−2 | Dubey and Lal (2009) [45] |
Pigs | The number of pigs at end of the year | 34.0910 kg/ (each year) | IPCC (2007) |
Cattle | The number of cattle at end of the year | 415.91 kg/ (each year) | IPCC (2007) |
Sheep | The number of sheep at end of the year | 35.1819 kg/ (each year) | IPCC (2007) |
Variable | Name | Abbreviation | Obs. | Mean | Max | Min | C. V. |
---|---|---|---|---|---|---|---|
Explained variable | Agricultural carbon emission performance | ACEP | 372 | 0.45 | 1.14 | 0.15 | 0.47 |
Core explaining variables | DIF index | DIFI | 372 | 185.61 | 431.93 | 6.22 | 0.60 |
Coverage breadth | CB | 372 | 168.53 | 397.00 | 1.46 | 0.65 | |
Depth of use | DU | 372 | 182.55 | 488.68 | 2.76 | 0.60 | |
Digitalization degree | DD | 372 | 248.32 | 462.23 | 3.58 | 0.57 | |
Control variables | Value of GDP per capita | PGDP | 372 | 51,586.28 | 164,889.00 | 10,309.00 | 0.53 |
Urbanization rate of the resident population | URP | 372 | 0.57 | 0.89 | 0.23 | 0.24 | |
Ratio of the secondary industry to GDP | RSI | 372 | 0.44 | 0.59 | 0.16 | 0.20 | |
Proportion of foreign trade volume of agricultural Products in total agricultural output value | PFA | 372 | 0.36 | 0.53 | 0.01 | 0.31 | |
Proportion of crop disaster areas in crop sown area | PDC | 372 | 0.14 | 0.48 | 0.02 | 0.35 | |
Per capita disposable income of rural households | PIR | 372 | 11,394.52 | 34,911.30 | 2980.10 | 0.50 |
Variables | (1) OLS_Model | (2) POOL_Model | (3) FE_Model | (4) RE_Model |
---|---|---|---|---|
DIFI | 0.587 *** (6.298) | 0.587 *** (3.512) | 0.207 ** (−1.778) | 0.340 ** (2.299) |
PGDP | −0.004 (−0.029) | −0.004 (−0.017) | 0.176 (1.050) | −0.037 (−0.237) |
URP | −0.300 *** (−2.812) | −0.300 *** (−2.706) | 0.027 (−0.293) | −0.074 (−0.855) |
RSI | 0.036 (0.674) | 0.036 (0.490) | −0.064 (−0.634) | 0.040 (0.520) |
PFA | 0.271 ** (7.878) | 0.271 ** (4.887) | 0.019 (0.113) | 0.098 (1.103) |
PDC | −0.190 ** (−4.683) | −0.190 * (−2.354) | −0.384 ** (−2.968) | −0.321 ** (−3.317) |
PIR | 0.066 (0.387) | 0.066 (0.197) | 0.621 ** (3.097) | 0.336 ** (1.363) |
R2 | 0.434 | 0.434 | 0.667 | 0.356 |
R2 (adj) | 0.423 | 0.477 | 0.547 | 0.514 |
Obs | 372 | 372 | 372 | 372 |
F statistics | 52.565 *** | 37.25 *** | 23.926 *** | 165.299 *** |
Variables | FE_Model Results | ||
---|---|---|---|
CB | 0.459 *** | ||
DU | 0.240 ** | ||
DD | 0.03 | ||
PGDP | 0.015 | −0.050 | −0.073 |
URP | −0.135 * | 0.001 | 0.022 |
RSI | 0.068 | 0.020 | −0.001 |
PFA | 0.145 * | 0.030 | −0.021 |
PDC | −0.316 ** | −0.336 ** | −0.334 ** |
PIR | 0.195 | 0.448 * | 0.697 ** |
R2 | 0.397 | 0.285 | 0.197 |
R2 (adj) | 0.523 | 0.518 | 0.521 |
Obs | 372 | 372 | 372 |
F statistics | χ2(7) = 244.427 *** | χ2(7) = 131.237 *** | χ2(7) = 114.260 *** |
Year | Moran’s I Index | p-Value |
---|---|---|
2009 | 0.1835 | 0.021 |
2010 | 0.1716 | 0.025 |
2011 | 0.1647 | 0.035 |
2012 | 0.1945 | 0.038 |
2013 | 0.1694 | 0.040 |
2014 | 0.1580 | 0.045 |
2015 | 0.1548 | 0.043 |
2016 | 0.1331 | 0.043 |
2017 | 0.1249 | 0.051 |
2018 | 0.1252 | 0.039 |
2019 | 0.1187 | 0.045 |
Test | Value | Test | Value |
---|---|---|---|
LM-LAG | 254.6732 *** | Wald-SAR | 63.2178 *** |
Robust LM-LAG | 14.3760 *** | Wald-SEM | 52.5764 *** |
LM-ERR | 169.5426 *** | LR-SAR | 60.8957 *** |
Robust LM-ERR | 8.5624 *** | LR-SEM | 55.3210 *** |
Hausman | 6.8932 ** |
Variables | SDM | Variables | SDM |
---|---|---|---|
DIFI | 0.198 *** | W*DIFI | 0.107 *** |
PGDP | 0.143 | W*PGDP | 0.186 |
URP | 0.036 | W*URP | 0.091 |
RSI | −0.124 | W*RSI | −0.057 ** |
PFA | −0.008 | W*PFA | 0.012 |
PDC | −0.298 *** | W*PDC | −0.122 *** |
PIR | 0.564 *** | W*PIR | 0.284 *** |
ρ | 0.289 *** | Log−likelihood | 864.682 |
Variables | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|
DIFI | 0.437 *** | 0.136 ** | 0.573 *** |
PGDP | 0.214 * | 0.045 | 0.259 |
URP | 0.143 | 0.015 | 0.158 |
RSI | −0.218 | 0.167 * | −0.051 |
PFA | −0.106 | 0.112 | 0.006 |
PDC | −0.231 *** | −0.182 ** | −0.413 *** |
PIR | 0.329 *** | 0.267 *** | 0.596 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Zhu, C.; Yuan, S.; Yang, L.; He, S.; Li, W. Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China. Int. J. Environ. Res. Public Health 2022, 19, 10922. https://doi.org/10.3390/ijerph191710922
Sun L, Zhu C, Yuan S, Yang L, He S, Li W. Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China. International Journal of Environmental Research and Public Health. 2022; 19(17):10922. https://doi.org/10.3390/ijerph191710922
Chicago/Turabian StyleSun, Le, Congmou Zhu, Shaofeng Yuan, Lixia Yang, Shan He, and Wuyan Li. 2022. "Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China" International Journal of Environmental Research and Public Health 19, no. 17: 10922. https://doi.org/10.3390/ijerph191710922
APA StyleSun, L., Zhu, C., Yuan, S., Yang, L., He, S., & Li, W. (2022). Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China. International Journal of Environmental Research and Public Health, 19(17), 10922. https://doi.org/10.3390/ijerph191710922