Contribution of Fine Roots to Soil Organic Carbon Accumulation in Different Desert Communities in the Sangong River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fine Root Biomass, Production, and Turnover Rate
2.3. Measurement of Fine Root Decomposition
2.4. Soil Physical and Chemical Properties
2.5. Measurement of SOC and Fine Root Organic Carbon
2.6. Data and Statistical Analysis
3. Results
3.1. Fine Root Vertical Distribution and Seasonal Dynamics
3.2. Fine Root Biomass and Production
3.3. SOC Vertical Distribution and Seasonal Variations
3.4. Effects of Fine Roots on SOC Dynamics
3.5. Environmental Factors Affecting SOC Dynamics
4. Discussion
4.1. Relationship between the Vertical Distribution of and Seasonal Variations in SOC and Fine Root Biomass in Each Plant Community
4.2. Relationship between SOC and Ecological Factors
4.3. SOC of Decomposed Fine Roots
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doetterl, S.; Stevens, A.; Six, J.; Merckx, R.; van Oost, K.; Casanova Pinto, M.; Casanova-Katny, A.; Muñoz, C.; Boudin, M.; Zagal Venegas, E.; et al. Soil carbon storage controlled by interactions between geochemistry and climate. Nat. Geosci. 2015, 8, 780–783. [Google Scholar] [CrossRef]
- Carvalhais, N.; Forkel, M.; Khomik, M.; Bellarby, J.; Jung, M.; Migliavacca, M.; Mu, M.; Saatchi, S.; Santoro, M.; Thurner, M.; et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 2014, 514, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.K.; Chudasama, H. Pathways for climate change adaptations in arid and semi-arid regions. J. Clean. Prod. 2021, 284, 124744. [Google Scholar] [CrossRef]
- Gaur, M.K.; Squires, V.R. Climate Variability Impacts on Land Use and Livelihoods in Drylands; Springer: Berlin/Heidelberg, Germany, 2018; p. 348. [Google Scholar]
- White, D.A.; Welty-Bernard, A.; Rasmussen, C.; Schwartz, E. Vegetation controls on soil organic carbon dynamics in an arid, hyperthermic ecosystem. Geoderma 2009, 150, 214–223. [Google Scholar] [CrossRef]
- Ramarao, M.V.S.; Sanjay, J.; Krishnan, R.; Mujumdar, M.; Bazaz, A.; Revi, A. On observed aridity changes over the semiarid regions of India in a warming climate. Theor. Appl. Climatol. 2018, 136, 693–702. [Google Scholar] [CrossRef]
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth. Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, X.; Tao, N.; Ao, D.; Zeng, W.; Qian, Y.; Zeng, H. Effects of litter types, microsite and root diameters on litter decomposition in Pinus sylvestris plantations of northern China. Plant Soil 2013, 374, 677–688. [Google Scholar] [CrossRef]
- Xu, W.; Liu, J.; Liu, X.; Li, K.; Zhang, D.; Yan, J. Fine root production, turnover, and decomposition in a fast-growth Eucalyptus urophylla plantation in southern China. J. Soil Sediments 2013, 13, 1150–1160. [Google Scholar] [CrossRef]
- IPCC. The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK; New York, NY, USA, 2007; Volume 996, pp. 113–119. [Google Scholar]
- Allen-Diaz, B. Rangelands in a Changing Climate: Impacts, Adaptations, and Mitigation; Cambridge University Press: Cambridge, UK, 1996; pp. 131–158. [Google Scholar]
- Zomer, R.J.; Bossio, D.A.; Sommer, R.; Verchot, L.V. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Sci. Rep. 2017, 7, 15554. [Google Scholar] [CrossRef]
- Wang, W.; Chen, X.; Pu, Z. Remote sensing of CO2 absorption by saline-alkali soils: Potentials and constraints. J. Spectrosc. 2014, 2014, 425753. [Google Scholar] [CrossRef] [Green Version]
- Lai, Z.; Zhang, Y.; Liu, J.; Wu, B.; Qin, S.; Fa, K. Fine-root distribution, production, decomposition, and effect on soil organic carbon of three revegetation shrub species in northwest China. Forest Ecol. Manag. 2016, 359, 381–388. [Google Scholar] [CrossRef]
- Xie, J.; Li, Y.; Zhai, C.; Li, C.; Lan, Z.J. CO2 absorption by alkaline soils and its implication to the global carbon cycle. Environ. Geol. 2009, 56, 953–961. [Google Scholar] [CrossRef]
- Austin, A.T.; Vivanco, L. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 2006, 442, 555–558. [Google Scholar] [CrossRef]
- McCormack, M.L.; Dickie, I.A.; Eissenstat, D.M.; Fahey, T.J.; Fernandez, C.W.; Guo, D.; Helmisaari, H.S.; Hobbie, E.A.; Iversen, C.M.; Jackson, R.B.; et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytol. 2015, 207, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.B.; Mooney, H.A.; Schulze, E.D. A global budget for fine root biomass, surface area, and nutrient contents. Proc. Natl. Acad. Sci. USA 1997, 94, 7362–7366. [Google Scholar] [CrossRef]
- Hu, Y.L.; Zeng, D.-H.; Ma, X.-Q.; Chang, S.X. Root rather than leaf litter input drives soil carbon sequestration after afforestation on a marginal cropland. Forest Ecol. Manag. 2016, 362, 38–45. [Google Scholar] [CrossRef]
- Jackson, R.B.; Lajtha, K.; Crow, S.E.; Hugelius, G.; Kramer, M.G.; Pineiro, G. The ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 419–445. [Google Scholar] [CrossRef]
- Hicks Pries, C.E.; Bird, J.A.; Castanha, C.; Hatton, P.J.; Torn, M.S. Long term decomposition: The influence of litter type and soil horizon on retention of plant carbon and nitrogen in soils. Biogeochemistry 2017, 134, 5–16. [Google Scholar] [CrossRef]
- Gill, R.A.; Jackson, R.B. Global patterns of root turnover for terrestrial ecosystems. New Phytol. 2000, 147, 13–31. [Google Scholar] [CrossRef]
- Huang, J.; Liu, W.; Yang, S.; Yang, L.; Peng, Z.; Deng, M.; Xu, S.; Zhang, B.; Ahirwal, J.; Liu, L. Plant carbon inputs through shoot, root, and mycorrhizal pathways affect soil organic carbon turnover differently. Soil. Biol. Biochem. 2021, 160, 108322. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, L.; Guan, D.; Chen, Y.; Motelica-Heino, M.; Peng, Y.; Lee, S.Y. The role of mangrove fine root production and decomposition on soil organic carbon component ratios. Ecol. Indic. 2021, 125, 107525. [Google Scholar] [CrossRef]
- Liu, Y.; Li, P.; Xiao, L.; Yu, K.; Wang, W. High Heterogeneity of Root Carbon Allocation Affects Root Turnover Rate and Production of Bothriochloa ischaemum Under Drought Stress. J. Plant Growth Regul. 2021, 40, 226–239. [Google Scholar] [CrossRef]
- Sun, T.; Hobbie, S.E.; Berg, B.; Zhang, H.G.; Wang, Q.K.; Wang, Z.W.; Hattenschwiler, S. Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proc. Natl. Acad. Sci. USA 2018, 115, 10392–10397. [Google Scholar] [CrossRef] [PubMed]
- Gang, H.; Xue-yong, Z.; Yu-qiang, L.; Jian-yuan, C. Restoration of shrub communities elevates organic carbon in arid soils of northwestern China. Soil. Biol. Biochem. 2012, 47, 123–132. [Google Scholar] [CrossRef]
- Zhou, Y.; Boutton, T.W.; Wu, X.B.; Wright, C.L.; Dion, A.L. Rooting strategies in a subtropical savanna: A landscape-scale three-dimensional assessment. Oecologia 2018, 186, 1127–1135. [Google Scholar] [CrossRef]
- Pang, Y.; Tian, J.; Yang, H.; Zhang, K.; Wang, D. Responses of Fine Roots at Different Soil Depths to Different Thinning Intensities in a Secondary Forest in the Qinling Mountains, China. Biology 2022, 11, 351. [Google Scholar] [CrossRef]
- Walter, A.; Schurr, U. Dynamics of leaf and root growth: Endogenous control versus environmental impact. Ann. Bot. 2005, 95, 891–900. [Google Scholar] [CrossRef]
- Zhao, X.C.; Liu, X.; Tian, S.H.; Yang, Q.; Zheng, Y.R. Transformation from natural to wheat ecosystems enhances fine roots production and soil organic carbon input in an arid region. Arid Land Res. Manag. 2019, 33, 449–467. [Google Scholar] [CrossRef]
- Ohashi, M.; Nakano, A.; Hirano, Y.; Noguchi, K.; Ikeno, H.; Fukae, R.; Yamase, K.; Makita, N.; Finer, L. Applicability of the net sheet method for estimating fine root production in forest ecosystems. Trees 2016, 30, 571–578. [Google Scholar] [CrossRef]
- Zhou, Y.; Pei, Z.; Su, J.; Zhang, J.; Zheng, Y.; Ni, J.; Xiao, C.; Wang, R. Comparing soil organic carbon dynamics in perennial grasses and shrubs in a saline-alkaline arid Region, northwestern China. PLoS ONE 2012, 7, e42927. [Google Scholar]
- Majdi, H.; Pregitzer, K.; Morén, A.; Nylund, J.E.; Ågren, G. Measuring fine root turnover in forest ecosystems. Plant Soil 2005, 276, 1–8. [Google Scholar] [CrossRef]
- Fahey, T.J.; Yavitt, J.B.; Greg, J. Precipitation and throughfall chemistry in Pinus contorta ssp. latifolia ecosystems, southeastern Wyoming. Can. J. Forest Res. 1988, 18, 337–345. [Google Scholar] [CrossRef]
- Olson, J.S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 1963, 44, 322–331. [Google Scholar] [CrossRef]
- Shaw, K. Determination of organic carbon in soil and plant material. Eur. J. Soil. Sci. 1959, 10, 316–326. [Google Scholar] [CrossRef]
- Jackson, R.B.; Canadell, J.; Ehleringer, J.R.; Mooney, H.; Sala, O.; Schulze, E.D. A global analysis of root distributions for terrestrial biomes. Oecologia 1996, 108, 389–411. [Google Scholar] [CrossRef] [PubMed]
- Gale, M.; Grigal, D. Vertical root distributions of northern tree species in relation to successional status. Can. J. Forest Res 1987, 17, 829–834. [Google Scholar] [CrossRef]
- Dijkstra, F.A.; Zhu, B.; Cheng, W. Root effects on soil organic carbon: A double-edged sword. New Phytol. 2021, 230, 60–65. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The verrical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Huang, G.; Zhao, X.; Su, Y.; Zhao, H.; Zhang, T. Vertical distribution, biomass, production and turnover of fine roots along a topographical gradient in a sandy shrubland. Plant Soil 2008, 308, 201–212. [Google Scholar] [CrossRef]
- Oppelt, A.L.; Kurth, W.; Jentschke, G.; Godbold, D.L. Contrasting rooting patterns of some arid-zone fruit tree species from Botswana–I. Fine root distribution. Agrofor. Syst. 2005, 64, 1–11. [Google Scholar] [CrossRef]
- Chimento, C.; Amaducci, S. Characterization of fine root system and potential contribution to soil organic carbon of six perennial bioenergy crops. Biomass Bioenergy 2015, 83, 116–122. [Google Scholar] [CrossRef]
- Olupot, G.; Daniel, H.; Lockwood, P.; McHenry, M.; McLeod, M. Root contributions to long-term storage of soil organic carbon: Theories, mechanisms and gaps. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 112–115. [Google Scholar]
- Ma, Z.; Wood, C.; Bransby, D.J. Impacts of soil management on root characteristics of switchgrass. Biomass Bioenerg 2000, 18, 105–112. [Google Scholar] [CrossRef]
- Monti, A.; Zatta, A. Root distribution and soil moisture retrieval in perennial and annual energy crops in Northern Italy. Agr. Ecosyst. Envrion. 2009, 132, 252–259. [Google Scholar] [CrossRef]
- Fairley, R.; Alexander, I. Methods of calculating fine root production in forests. Br. Ecol. Soc. 1985, 4, 37–42. [Google Scholar]
- Poonawala, I.S.; Jana, M.M.; Nadgauda, R.S. Factors influencing bud break and rooting and mass-scale micropropagation of three phragmites species: P. karka, P. communis and P. australis. Plant Cell Rep. 1999, 18, 696–700. [Google Scholar]
- Vogt, K.A.; Vogt, D.J.; Palmiotto, P.A.; Boon, P.; O’Hara, J.; Asbjornsen, H. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 1995, 187, 159–219. [Google Scholar] [CrossRef]
- Eissenstat, D.; Yanai, R. The ecology of root lifespan. Adv. Ecol. Res. 1997, 27, 1–60. [Google Scholar]
- Smith, P. Land use change and soil organic carbon dynamics. Nutr. Cycl. Agroecosys. 2007, 81, 169–178. [Google Scholar] [CrossRef]
- Smith, F.A. Plant roots: Growth, activity and interaction with soils. Ann. Botlondon 2007, 100, 151–152. [Google Scholar] [CrossRef]
- Kerr, D.D.; Ochsner, T.E. Soil organic carbon more strongly related to soil moisture than soil temperature in temperate grasslands. Soil. Sci. Soc. Am. J. 2020, 84, 587–596. [Google Scholar] [CrossRef]
- Hursh, A.; Ballantyne, A.; Cooper, L.; Maneta, M.; Kimball, J.; Watts, J. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Glob. Chang. Biol. 2017, 23, 2090–2103. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, C.; Han, X.; Mao, T.; Jia, X. Choosing an optimal land-use pattern for restoring eco-environments in a semiarid region of the Chinese Loess Plateau. Ecol. Eng. 2015, 74, 213–222. [Google Scholar] [CrossRef]
- Liu, T.; Wu, X.; Li, H.; Alharbi, H.; Wang, J.; Dang, P.; Chen, X.; Kuzyakov, Y.; Yan, W. Soil organic matter, nitrogen and pH driven change in bacterial community following forest conversion. Forest. Ecol. Manag. 2020, 477, 118473. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microb. 2009, 75, 5111–5120. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Tang, J.; Li, Z.; Zhou, Z.; Wang, J.; Wang, S.; Cao, Y. Soil enzyme activity and microbial metabolic function diversity in soda saline–alkali rice paddy fields of northeast China. Sustainability 2020, 12, 10095. [Google Scholar] [CrossRef]
- Von Luetzow, M.; Kögel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. Eur. J. Soil. Sci. 2006, 57, 426–445. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, M.; Shao, M.; Warrington, D.N. A comparison of fine root distribution and water consumption of mature Caragana korshinkii Kom grown in two soils in a semiarid region, China. Plant Soil 2009, 315, 149–161. [Google Scholar] [CrossRef]
- Gwenzi, W.; Veneklaas, E.J.; Holmes, K.W.; Bleby, T.M.; Phillips, I.R.; Hinz, C. Spatial analysis of fine root distribution on a recently constructed ecosystem in a water-limited environment. Plant Soil 2011, 344, 255–272. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Li, X.R.; Liu, L.C.; Jia, R.L.; Zhang, J.G.; Wang, T. Distribution, biomass, and dynamics of roots in a revegetated stand of Caragana korshinskii in the Tengger Desert, northwestern China. J. Plant. Res. 2009, 122, 109–119. [Google Scholar] [CrossRef]
- Wang, X.; Ma, L.; Jia, Z.; Jia, L. Root inclusion net method: Novel approach to determine fine root production and turnover in Larix principis-rupprechtii Mayr plantation in north China. Turk. J. Agric. For. 2014, 38, 388–398. [Google Scholar] [CrossRef]
- Fogel, R. Soil. Root turnover and productivity of coniferous forests. Plant Soil 1983, 71, 75–85. [Google Scholar] [CrossRef]
- Santantonio, D.; Grace, J. Estimating fine-root production and turnover from biomass and decomposition data: A compartment-flow model. Can. J. Forest Res. 1987, 17, 900–908. [Google Scholar] [CrossRef]
- Yang, Y.S.; Chen, G.S.; Lin, P.; Xie, J.S.; Guo, J.F. Fine root distribution, seasonal pattern and production in four plantations compared with a natural forest in subtropical China. Ann. Forest Sci. 2004, 61, 617–627. [Google Scholar] [CrossRef]
- Asaye, Z.; Zewdie, S. Soil. Fine root dynamics and soil carbon accretion under thinned and un-thinned Cupressus lusitanica stands in, southern Ethiopia. Plant Soil 2013, 366, 261–271. [Google Scholar] [CrossRef]
- Cusack, D.F.; Turner, B.L. Fine root and soil organic carbon depth distributions are inversely related across fertility and rainfall gradients in lowland tropical forests. Ecosystems 2021, 24, 1075–1092. [Google Scholar] [CrossRef]
- Matamala, R.; Gonzàlez-Meler, M.A.; Jastrow, J.D.; Norby, R.J.; Schlesinger, W.H. Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 2003, 302, 1385–1387. [Google Scholar] [CrossRef] [PubMed]
- Uselman, S.M.; Qualls, R.G.; Lilienfein, J. Contribution of root vs. leaf litter to dissolved organic carbon leaching through soil. Soil. Sci. Soc. Am. J. 2007, 71, 1555–1563. [Google Scholar] [CrossRef]
- Sokol, N.W.; Kuebbing, S.E.; Karlsen-Ayala, E.; Bradford, M. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New. Phytol. 2019, 221, 233–246. [Google Scholar] [CrossRef] [Green Version]
Dominant Species | Accompanying Species | Elevation (m) | Longitude & Latitude | pH |
---|---|---|---|---|
Alhagi sparsifolia | Peganum harmala | 472 | 44°20.334′ N | 8.65 |
Ceratocarpus arenarius | 88°00.308′ E | |||
Tamarixramosissima | Nitraria sibirica | 465 | 44°18.196′ N | 9.29 |
Petrosimonia sibirica | 87°51.519′ E | |||
Reaumuria soongorica | Ceratocarpus arenarius | 485 | 44°20.147′ N 88°07.807′ E | 9.31 |
Salsolacollina | ||||
Haloxylon ammodendron | ||||
Haloxylon ammodendron | Salsola collina | 462 | 44°19.094′ N | 9.51 |
Nitraria sibirica | 87°50.329′ E | |||
Phragmites communis | Salicornia europaea | 462 | 44°18.912′ N | 8.73 |
Nitraria sibirica | 87°50.185′ E |
Month | Communities | ||||
---|---|---|---|---|---|
A. sparsifolia | T. chinensis | R. soongorica | H. ammodendron | P. communis | |
June | 3.08 ± 0.13 a | 2.35 ± 0.16 b | 2.34 ± 0.27 b | 2.25 ± 0.31 b | 1.19 ± 0.14 c |
July | 2.85 ± 0.28 a | 2.15 ± 0.07 b | 1.68 ± 0.18 b | 1.62 ± 0.18 b | 1.88 ± 0.17 b |
August | 2.79 ± 0.30 a | 2.28 ± 0.06 b | 1.82 ± 0.13 c | 1.98 ± 0.15 bc | 1.50 ± 0.23 c |
September | 2.81 ± 0.23 a | 2.17 ± 0.12 b | 2.21 ± 0.29 b | 2.31 ± 0.28 ab | 1.84 ± 0.13 c |
October | 2.94 ± 0.16 a | 2.07 ± 0.26 b | 1.72 ± 0.17 cb | 1.99 ± 0.23 bc | 1.35 ± 0.03 c |
Communities | Fine Root Production | Decomposition | Supplementary SOC | Turnover Rate |
---|---|---|---|---|
(g/m2/a) | (g/m2/a) | (g/m2/a) | (Times/a) | |
A. sparsifolia | 118.81 c | 36.88 c | 15.13 c | 1.75 b |
T.ramosissima | 83.60 d | 17.41 d | 7.38 d | 1.98 a |
R. soongorica | 50.67 e | 16.08 e | 7.14 d | 1.41 d |
H. ammodendron | 168.02 b | 57.29 b | 25.08 b | 1.25 e |
P. communis | 486.92 a | 130.24 a | 50.42 a | 1.61 c |
Ecological Factors | Regression Equation | R2 | Number of Samples |
---|---|---|---|
Soil water content (%) | y = 0.01x2 − 0.42x + 5.62 | 0.571 ** | 106 |
Soil bulk density (g/cm3) | y = 3.24x2 − 9.28x + 8.98 | 0.080 * | 93 |
Soil electrical conductivity (ms/cm) | y = 0.06x2 − 0.57x + 3.77 | 0.026 | 67 |
pH | y = 0.88x2 − 16.95x + 83.91 | 0.084 | 67 |
Communities | Regression Equation | R2 | Number of Samples |
---|---|---|---|
A. sparsifolia | y = −0.002x2 + 0.18x + 1.29 | 0.582 ** | 30 |
T. ramosissima | y = −0.01x2 − 0.25x + 3.86 | 0.308 ** | 30 |
R. soongorica | y = −0.004x2 + 0.14x + 1.56 | 0.258 * | 30 |
H. ammodendron | y = −0.001x2 + 0.06x + 1.12 | 0.204 * | 30 |
P. communis | y = −0.000018x2 − 0.01x + 2.19 | 0.401 ** | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, S.; Liu, X.; Jin, B.; Zhao, X. Contribution of Fine Roots to Soil Organic Carbon Accumulation in Different Desert Communities in the Sangong River Basin. Int. J. Environ. Res. Public Health 2022, 19, 10936. https://doi.org/10.3390/ijerph191710936
Tian S, Liu X, Jin B, Zhao X. Contribution of Fine Roots to Soil Organic Carbon Accumulation in Different Desert Communities in the Sangong River Basin. International Journal of Environmental Research and Public Health. 2022; 19(17):10936. https://doi.org/10.3390/ijerph191710936
Chicago/Turabian StyleTian, Sihui, Xin Liu, Baocheng Jin, and Xuechun Zhao. 2022. "Contribution of Fine Roots to Soil Organic Carbon Accumulation in Different Desert Communities in the Sangong River Basin" International Journal of Environmental Research and Public Health 19, no. 17: 10936. https://doi.org/10.3390/ijerph191710936
APA StyleTian, S., Liu, X., Jin, B., & Zhao, X. (2022). Contribution of Fine Roots to Soil Organic Carbon Accumulation in Different Desert Communities in the Sangong River Basin. International Journal of Environmental Research and Public Health, 19(17), 10936. https://doi.org/10.3390/ijerph191710936