Nutrition Support Practices for Infants Born <750 Grams or <25 Weeks Gestation: A Call for More Research
1. Introduction
2. Physiologic Considerations
3. Current Evidence
4. Future Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thomas, S.; Asztalos, E. Gestation-Based Viability-Difficult Decisions with Far-Reaching Consequences. Children 2021, 8, 593. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Preterm Birth. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/preterm-birth (accessed on 9 June 2022).
- Ehrenkranz, R.; Dusick, A.; Vohr, B.; Wright, L.; Wrage, L.; Poole, W. Growth in the Neonatal Intensive Care Unit Influences Neurodevelopmental and Growth Outcomes of Extremely Low Birth Weight Infants. J. Pediatr. 2006, 117, 1253–1261. [Google Scholar] [CrossRef]
- World Review of Nutrition and Dietetics (Ed.) Nutritional Care of Preterm Infants, 2nd ed.; S. Karger: Basel, Switzerland, 2021; p. 459. [Google Scholar]
- Chou, J.H.; Roumiantsev, S.; Singh, R. PediTools Electronic Growth Chart Calculators: Applications in Clinical Care, Research, and Quality Improvement. J. Med. Internet Res. 2020, 22, e16204. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.; Bacha, D. Embryology, Pulmonary. In StatPearls; Anonymous, Ed.; StatPearls Publishing LLC: Treasure Island, FL, USA, 2022. [Google Scholar]
- Araki, S.; Kato, S.; Namba, F.; Ota, E. Vitamin A to Prevent Bronchopulmonary Dysplasia in Extremely Low Birth Weight Infants: A Systematic Review and Meta-Analysis. PLoS ONE 2018, 13, e0207730. [Google Scholar] [CrossRef]
- Lee, J.W.; Davis, J.M. Future Applications of Antioxidants in Premature Infants. Curr. Opin. Pediatr. 2011, 23, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, S. The Development and Shaping of the Brain; National Academies Press: Washington, DC, USA, 1992. [Google Scholar]
- Furness, J.B.; Callaghan, B.P.; Rivera, L.R.; Cho, H.J. The Enteric Nervous System and Gastrointestinal Innervation: Integrated Local and Central Control. Adv. Exp. Med. Biol. 2014, 817, 39–71. [Google Scholar]
- Indrio, F.; Neu, J.; Pettoello-Mantovani, M.; Marchese, F.; Martini, S.; Salatto, A.; Aceti, A. Development of the Gastrointestinal Tract in Newborns as a Challenge for an Appropriate Nutrition: A Narrative Review. Nutrients 2022, 14, 1405. [Google Scholar] [CrossRef] [PubMed]
- El-Khashab, E.K.; Hamdy, A.M.; Maher, K.M.; Fouad, M.A.; Abbas, G.Z. Effect of Maternal Vitamin A Deficiency during Pregnancy on Neonatal Kidney Size. J. Perinat. Med. 2013, 41, 199–203. [Google Scholar] [CrossRef]
- Goodyer, P.; Kurpad, A.; Rekha, S.; Muthayya, S.; Dwarkanath, P.; Iyengar, A.; Philip, B.; Mhaskar, A.; Benjamin, A.; Maharaj, S.; et al. Effects of Maternal Vitamin A Status on Kidney Development: A Pilot Study. Pediatr. Nephrol. 2007, 22, 209–214. [Google Scholar] [CrossRef]
- Lelièvre-Pégorier, M.; Vilar, J.; Ferrier, M.L.; Moreau, E.; Freund, N.; Gilbert, T.; Merlet-Bénichou, C. Mild Vitamin A Deficiency Leads to Inborn Nephron Deficit in the Rat. Kidney Int. 1998, 54, 1455–1462. [Google Scholar] [CrossRef]
- Vierge, M.; Laborie, S.; Bertholet-Thomas, A.; Carlier, M.C.; Picaud, J.C.; Claris, O.; Bacchetta, J. Neonatal Intoxication to Vitamin D in Premature Babies: A Series of 16 Cases. Arch. Pediatr. 2017, 24, 817–824. [Google Scholar] [CrossRef]
- Tsang, R.C.; Uauy, R.; Koletzko, B.; Zlotkin, S.H. (Eds.) Nutrition of the Preterm Infant: Scientific Basis and Practical Guidelines, 2nd ed.; Digital Educational Publishing, Inc.: Cincinnati, OH, USA, 2005; p. 245. [Google Scholar]
- Hamatschek, C.; Yousuf, E.I.; Möllers, L.S.; So, H.Y.; Morrison, K.M.; Fusch, C.; Rochow, N. Fat and Fat-Free Mass of Preterm and Term Infants from Birth to Six Months: A Review of Current Evidence. Nutrients 2020, 12, 288. [Google Scholar] [CrossRef]
- Tyson, J.E.; Wright, L.L.; Oh, W.; Kennedy, K.A.; Mele, L.; Ehrenkranz, R.A.; Stoll, B.J.; Lemons, J.A.; Stevenson, D.K.; Bauer, C.R.; et al. Vitamin A Supplementation for Extremely-Low-Birth-Weight Infants. National Institute of Child Health and Human Development Neonatal Research Network. N. Engl. J. Med. 1999, 340, 1962–1968. [Google Scholar] [CrossRef]
- McConnell, C.; Thoene, M.; Van Ormer, M.; Furtado, J.D.; Korade, Z.; Genaro-Mattos, T.C.; Hanson, C.; Anderson-Berry, A. Plasma Concentrations and Maternal-Umbilical Cord Plasma Ratios of the Six most Prevalent Carotenoids Across Five Groups of Birth Gestational Age. Antioxidants 2021, 10, 1409. [Google Scholar] [CrossRef]
- Hanson, C.; Thoene, M.; Wagner, J.; Collier, D.; Lecci, K.; Anderson-Berry, A. Parenteral Nutrition Additive Shortages: The Short-Term, Long-Term and Potential Epigenetic Implications in Premature and Hospitalized Infants. Nutrients 2012, 4, 1977–1988. [Google Scholar] [CrossRef] [PubMed]
- Bone, R.A.; Landrum, J.T.; Fernandez, L.; Tarsis, S.L. Analysis of the Macular Pigment by HPLC: Retinal Distribution and Age Study. Investig. Ophthalmol. Vis. Sci. 1988, 29, 843–849. [Google Scholar]
- Manzoni, P.; Guardione, R.; Bonetti, P.; Priolo, C.; Maestri, A.; Mansoldo, C.; Mostert, M.; Anselmetti, G.; Sardei, D.; Bellettato, M.; et al. Lutein and Zeaxanthin Supplementation in Preterm very Low-Birth-Weight Neonates in Neonatal Intensive Care Units: A Multicenter Randomized Controlled Trial. Am. J. Perinatol. 2013, 30, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Stephens, B.E.; Walden, R.V.; Gargus, R.A.; Tucker, R.; McKinley, L.; Mance, M.; Nye, J.; Vohr, B.R. First-Week Protein and Energy Intakes are Associated with 18-Month Developmental Outcomes in Extremely Low Birth Weight Infants. Pediatrics 2009, 123, 1337–1343. [Google Scholar] [CrossRef]
- Klevebro, S.; Westin, V.; Stoltz Sjostrom, E.; Norman, M.; Domellof, M.; Edstedt Bonamy, A.K.; Hallberg, B. Early Energy and Protein Intakes and Associations with Growth, BPD, and ROP in Extremely Preterm Infants. Clin. Nutr. 2019, 38, 1289–1295. [Google Scholar] [CrossRef]
- Stoltz Sjöström, E.; Lundgren, P.; Öhlund, I.; Holmström, G.; Hellström, A.; Domellöf, M. Low Energy Intake during the First 4 Weeks of Life Increases the Risk for Severe Retinopathy of Prematurity in Extremely Preterm Infants. Arch. Dis. Child. Fetal Neonatal Ed. 2016, 101, 108–113. [Google Scholar] [CrossRef]
- Oddie, S.J.; Young, L.; McGuire, W. Slow Advancement of Enteral Feed Volumes to Prevent Necrotising Enterocolitis in very Low Birth Weight Infants. Cochrane Database Syst. Rev. 2021, 8, CD001241. [Google Scholar] [CrossRef] [PubMed]
- Young, L.; Oddie, S.J.; McGuire, W. Delayed Introduction of Progressive Enteral Feeds to Prevent Necrotising Enterocolitis in very Low Birth Weight Infants. Cochrane Database Syst. Rev. 2022, 1, CD001970. [Google Scholar] [CrossRef] [PubMed]
- Buchman, A.L.; Moukarzel, A.A.; Bhuta, S.; Belle, M.; Ament, M.E.; Eckhert, C.D.; Hollander, D.; Gornbein, J.; Kopple, J.D.; Vijayaroghavan, S.R. Parenteral Nutrition is Associated with Intestinal Morphologic and Functional Changes in Humans. JPEN J. Parenter. Enteral Nutr. 1995, 19, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Stoll, B.; Burrin, D.G.; Holst, J.J.; Moore, D.D. Enteral Bile Acid Treatment Improves Parenteral Nutrition-Related Liver Disease and Intestinal Mucosal Atrophy in Neonatal Pigs. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302, G218–G224. [Google Scholar] [CrossRef]
- Viswanathan, S.; Merheb, R.; Wen, X.; Collin, M.; Groh-Wargo, S. Standardized Slow Enteral Feeding Protocol Reduces Necrotizing Enterocolitis in Micropremies. J. Neonatal Perinatal Med. 2017, 10, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Konnikova, Y.; Zaman, M.M.; Makda, M.; D’Onofrio, D.; Freedman, S.D.; Martin, C.R. Late Enteral Feedings are Associated with Intestinal Inflammation and Adverse Neonatal Outcomes. PLoS ONE 2015, 10, e0132924. [Google Scholar] [CrossRef]
- Tanumihardjo, S.A.; Russell, R.M.; Stephensen, C.B.; Gannon, B.M.; Craft, N.E.; Haskell, M.J.; Lietz, G.; Schulze, K.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)—Vitamin A Review. J. Nutr. 2016, 146, 1816S–1848S. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease Across the Life Span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Dahlgren, A.F.; Pan, A.; Lam, V.; Gouthro, K.C.; Simpson, P.M.; Salzman, N.H.; Nghiem-Rao, T.H. Longitudinal Changes in the Gut Microbiome of Infants on Total Parenteral Nutrition. Pediatr. Res. 2019, 86, 107–114. [Google Scholar] [CrossRef]
- Pan, W.; Stone, K.P.; Hsuchou, H.; Manda, V.K.; Zhang, Y.; Kastin, A.J. Cytokine Signaling Modulates Blood-Brain Barrier Function. Curr. Pharm. Des. 2011, 17, 3729–3740. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.; Vassar, R.; Cahill-Rowley, K.; Hintz, S.R.; Stevenson, D.K. Neonatal Biomarkers of Inflammation: Correlates of Early Neurodevelopment and Gait in very-Low-Birth-Weight Preterm Children. Am. J. Perinatol. 2016, 33, 71–78. [Google Scholar] [PubMed]
- Cuestas, E.; Aguilera, B.; Cerutti, M.; Rizzotti, A. Sustained Neonatal Inflammation is Associated with Poor Growth in Infants Born very Preterm during the First Year of Life. J. Pediatr. 2019, 205, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Kutlesic, V.; Brewinski Isaacs, M.; Freund, L.S.; Hazra, R.; Raiten, D.J. Executive Summary: Research Gaps at the Intersection of Pediatric Neurodevelopment, Nutrition, and Inflammation in Low-Resource Settings. Pediatrics 2017, 139, S1–S11. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Claud, E.C. Connection between Gut Microbiome and Brain Development in Preterm Infants. Dev. Psychobiol. 2019, 61, 739–751. [Google Scholar] [CrossRef] [PubMed]
- Stiemsma, L.T.; Michels, K.B. The Role of the Microbiome in the Developmental Origins of Health and Disease. Pediatrics 2018, 141, e20172437. [Google Scholar] [CrossRef]
- Tirone, C.; Pezza, L.; Paladini, A.; Tana, M.; Aurilia, C.; Lio, A.; D’Ippolito, S.; Tersigni, C.; Posteraro, B.; Sanguinetti, M.; et al. Gut and Lung Microbiota in Preterm Infants: Immunological Modulation and Implication in Neonatal Outcomes. Front. Immunol. 2019, 10, 2910. [Google Scholar] [CrossRef]
- Underwood, M.A.; Gilbert, W.M.; Sherman, M.P. Amniotic Fluid: Not just Fetal Urine Anymore. J. Perinatol. 2005, 25, 341–348. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thoene, M.; Anderson-Berry, A. Nutrition Support Practices for Infants Born <750 Grams or <25 Weeks Gestation: A Call for More Research. Int. J. Environ. Res. Public Health 2022, 19, 10957. https://doi.org/10.3390/ijerph191710957
Thoene M, Anderson-Berry A. Nutrition Support Practices for Infants Born <750 Grams or <25 Weeks Gestation: A Call for More Research. International Journal of Environmental Research and Public Health. 2022; 19(17):10957. https://doi.org/10.3390/ijerph191710957
Chicago/Turabian StyleThoene, Melissa, and Ann Anderson-Berry. 2022. "Nutrition Support Practices for Infants Born <750 Grams or <25 Weeks Gestation: A Call for More Research" International Journal of Environmental Research and Public Health 19, no. 17: 10957. https://doi.org/10.3390/ijerph191710957
APA StyleThoene, M., & Anderson-Berry, A. (2022). Nutrition Support Practices for Infants Born <750 Grams or <25 Weeks Gestation: A Call for More Research. International Journal of Environmental Research and Public Health, 19(17), 10957. https://doi.org/10.3390/ijerph191710957