An Overview of Essential Microelements and Common Metallic Nanoparticles and Their Effects on Male Fertility
Abstract
:1. Introduction
1.1. Sources of Metals
1.2. Mechanism of Metal Action
1.3. Male Fertility Indicators
2. Male Reproductive Toxicity of Micronutrient Metals
2.1. Zinc
2.2. Cobalt
2.3. Copper
2.4. Manganese
2.5. Selenium
2.6. Iron
2.7. Molibden
3. Male Reproductive Toxicity Due to Metallic Nanoparticles
3.1. Nanotoxicity and Male Fertility
3.1.1. The Sperm
3.1.2. NPs Accumulation in Testes
3.1.3. Spermatogenesis
4. Conclusions and Future Perspectives
- (i)
- Despite the existence of extensive data on exposure to single metals or metallic NPs, there is a gap in the safety assessment of multimetals, both on the pituitary–nucleus axis and sperm. There is a scarcity of such multi-element studies. An example is [296], which studied male Wistar rats’ exposure to Zn, Al, and Cu. To our knowledge, there are no studies that have assessed the effects of Multi NPs on the reproductive system.
- (ii)
- Most in vivo studies use the oral route of administration via the gastrointestinal system, while other routes of exposure are less frequently used. An example is a transdermal exposition, which is important in studying the absorption of NPs from cosmetics that are absorbed slowly through the skin into the body.
- (iii)
- NPs are able to cross biological membrane barriers, including the blood–testis barrier. The harmfulness of most NPs to male fertility (spermatogenesis) suggests extreme caution regarding the use of NPs in medicine (e.g., Nano-Ag).
- (iv)
- The cell membrane, as a negatively charged phospholipid bilayer, is generally not an obstacle for cationic nanoparticles. The functionalization of nanoparticles with appropriate ligands may improve or hinder their entry into cells.
- (v)
- The nanotoxicity of NPs depends on properties (i.e., composition, size, shape, and functionalization). The available reports rarely track the reproductive toxicity of functionalized NPs [214,215]. According to recent reports, the NPs’ surface, due to high reactivity, adsorbs proteins [297], plant metabolites [298], etc. Therefore, differential responses related to NPs surface properties can be expected.
- (vi)
- Since most studies are performed in vitro or in vivo in laboratory animals, no data are available on the effects of long-term exposure. Similarly, there is a lack of distinction between the adverse effects of the trace elements and nanomaterials on male fertility as temporary or permanent.
- (vii)
- Although significant advances have been made in the treatment of male infertility, e.g., by using multi-element supplementation, there is still no public awareness of the effects of an overdose of essential metals such as Se, Fe, or Zn on reproductive hormones and sperm quality.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, N.; Singh, A.K. Impact of environmental factors on human semen quality and male fertility: A narrative review. Environ. Sci. Eur. 2022, 34, 6. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Shoorei, H.; Mohaqiq, M.; Tahmasebi, M.; Seify, M.; Taheri, M. Counteracting effects of heavy metals and antioxidants on male fertility. BioMetals 2021, 34, 439–491. [Google Scholar] [CrossRef] [PubMed]
- Irvine, D.S. Male reproductive health: Cause for concern? Andrologia 2000, 32, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Boitrelle, F.; Shah, R.; Saleh, R.; Henkel, R.; Kandil, H.; Chung, E.; Vogiatzi, P.; Zini, A.; Arafa, M.; Agarwal, A. The Sixth Edition of the WHO Manual for Human Semen Analysis: A Critical Review and SWOT Analysis. Life 2021, 11, 1368. [Google Scholar] [CrossRef] [PubMed]
- Di Renzo, G.C.; Conry, J.A.; Blake, J.; DeFrancesco, M.S.; DeNicola, N.; Martin, J.N., Jr.; McCue, K.A.; Richmond, D.; Shah, A.; Sutton, P.; et al. International Federation of Gynecology and Obstetrics opinion on reproductive health impacts of exposure to toxic environmental chemicals. Int. J. Gynecol. Obstet. 2015, 131, 219–225. [Google Scholar] [CrossRef]
- Birnbaum, L.S. When environmental chemicals act like uncontrolled medicine. Trends Endocrinol. Metab. 2013, 24, 321–323. [Google Scholar] [CrossRef]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, E1–E150. [Google Scholar] [CrossRef] [PubMed]
- Dobrakowski, M.; Kaletka, Z.; Machoń-Grecka, A.; Kasperczyk, S.; Horak, S.; Birkner, E.; Zalejska-Fiolka, J.; Kasperczyk, A. The Role of Oxidative Stress, Selected Metals, and Parameters of the Immune System in Male Fertility. Oxidative Med. Cell. Longev. 2018, 2018, 6249536. [Google Scholar] [CrossRef]
- Perera, F.; Herbstman, J. Prenatal environmental exposures, epigenetics, and disease. Reprod. Toxicol. 2011, 31, 363–373. [Google Scholar] [CrossRef]
- Olszak-Wasik, K.; Tukiendorf, A.; Kasperczyk, A.; Wdowiak, A.; Horak, S. Environmental exposure to cadmium but not lead is associated with decreased semen quality parameters: Quality regionalism of sperm properties. Asian J. Androl. 2022, 24, 26–31. [Google Scholar] [CrossRef]
- Jurasović, J.; Cvitković, P.; Pizent, A.; Čolak, B.; Telišman, S. Semen quality and reproductive endocrine function with regard to blood cadmium in Croatian male subjects. BioMetals 2004, 17, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Lancranjan, I.; Popescu, H.I.; Găvănescu, O.; Klepsch, I.; Serbănescu, M. Reproductive Ability of Workmen Occupationally Exposed to Lead. Arch. Environ. Health Int. J. 1975, 30, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Varghese, A.C.; Mandal, S.; Bhattacharyya, S.; Nandi, P.; Rahman, S.M.; Kar, K.K.; Saha, R.; Roychoudhury, S.; Murmu, N. Lead and cadmium exposure induces male reproductive dysfunction by modulating the expression profiles of apoptotic and survival signal proteins in tea-garden workers. Reprod. Toxicol. 2020, 98, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Onul, N.M.; Biletska, E.M.; Stus, V.P.; Polion, M.Y. The role of lead in the etiopathogenesis of male fertility reduction. Wiad. Lek. 2018, 71, 1155–1160. [Google Scholar]
- Sengupta, P. Environmental and occupational exposure of metals and their role in male reproductive functions. Drug Chem. Toxicol. 2013, 36, 353–368. [Google Scholar] [CrossRef]
- López-Botella, A.; Velasco, I.; Acién, M.; Sáez-Espinosa, P.; Todolí-Torró, J.-L.; Sánchez-Romero, R.; Gómez-Torres, M.J. Impact of Heavy Metals on Human Male Fertility—An Overview. Antioxidants 2021, 10, 1473. [Google Scholar] [CrossRef]
- Datta, J.; Palmer, M.J.; Tanton, C.; Gibson, L.J.; Jones, K.G.; Macdowall, W.; Glasier, A.; Sonnenberg, P.; Field, N.; Mercer, C.; et al. Prevalence of infertility and help seeking among 15,000 women and men. Hum. Reprod. 2016, 31, 2108–2118. [Google Scholar] [CrossRef]
- Skakkebaek, N.E.; Rajpert-De Meyts, E.; Buck Louis, G.M.; Toppari, J.; Andersson, A.-M.; Eisenberg, M.L.; Jensen, T.K.; Jørgensen, N.; Swan, S.H.; Sapra, K.J.; et al. Male Reproductive Disorders and Fertility Trends: Influences of Environment and Genetic Susceptibility. Physiol. Rev. 2015, 96, 55–97. [Google Scholar] [CrossRef]
- Al-Saleh, I.; Coskun, S.; Mashhour, A.; Shinwari, N.; El-Doush, I.; Billedo, G.; Jaroudi, K.; Al-Shahrani, A.; Al-Kabra, M.; Mohamed, G.E. Exposure to heavy metals (lead, cadmium and mercury) and its effect on the outcome of in-vitro fertilization treatment. Int. J. Hyg. Environ. Health 2008, 211, 560–579. [Google Scholar] [CrossRef]
- Henriques, M.C.; Loureiro, S.; Fardilha, M.; Herdeiro, M.T. Exposure to mercury and human reproductive health: A systematic review. Reprod. Toxicol. 2019, 85, 93–103. [Google Scholar] [CrossRef]
- Sun, J.; Yu, G.; Zhang, Y.; Liu, X.; Du, C.; Wang, L.; Li, Z.; Wang, C. Heavy Metal Level in Human Semen with Different Fertility: A Meta-Analysis. Biol. Trace Elem. Res. 2016, 176, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Louis, G.M.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Lynch, C.D.; Gore-Langton, R.E.; Chen, Z.; Kim, S.; Caldwell, K.L.; Barr, D.B. Heavy metals and couple fecundity, the LIFE Study. Chemosphere 2012, 87, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Taha, E.A.; Sayed, S.K.; Ghandour, N.M.; Mahran, A.M.; Saleh, M.A.; Amin, M.M.; Shamloul, R. Correlation between seminal lead and cadmium and seminal parameters in idiopathic oligoasthenozoospermic males. Central Eur. J. Urol. 2013, 66, 84–92. [Google Scholar] [CrossRef]
- Pant, N.; Upadhyay, G.; Pandey, S.; Mathur, N.; Saxena, D.K.; Srivastava, S.P. Lead and cadmium concentration in the seminal plasma of men in the general population: Correlation with sperm quality. Reprod. Toxicol. 2003, 17, 447–450. [Google Scholar] [CrossRef]
- Jockenhövel, F.; Bals-Pratsch, M.; Bertram, H.P.; Nieschlag, E. Seminal lead and copper in fertile and infertile men. Andrologia 1990, 22, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Mendiola, J.; Moreno, J.M.; Roca, M.; Vergara-Juárez, N.; Martínez-García, M.J.; García-Sánchez, A.; Elvira-Rendueles, B.; Moreno-Grau, S.; López-Espín, J.J.; Ten, J.; et al. Relationships between heavy metal concentrations in three different body fluids and male reproductive parameters: A pilot study. Environ. Health 2011, 10, 6. [Google Scholar] [CrossRef]
- García-Fortea, P.; Cohen-Corcia, I.; Córdoba-Doña, J.A.; Reche-Rosado, A.; González-Mesa, E. Toxic elements in hair and in vitro fertilization outcomes: A prospective cohort study. Reprod. Toxicol. 2018, 77, 43–52. [Google Scholar] [CrossRef]
- Clark, L.C.; Combs, G.F.; Turnbull, B.W.; Slate, E.H.; Chalker, D.K.; Chow, J.; Davis, L.S.; Glover, R.A.; Graham, G.F.; Gross, E.G.; et al. Effects of selenium supple-mentation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. J. Am. Med. Assoc. 1996, 276, 1957–1963. [Google Scholar] [CrossRef]
- Karp, D.D.; Lee, S.J.; Keller, S.M.; Wright, G.S.; Aisner, S.; Belinsky, S.A.; Johnson, D.H.; Johnston, M.R.; Goodman, G.; Clamon, G.; et al. Randomized, Double-Blind, Placebo-Controlled, Phase III Chemoprevention Trial of Selenium Supplementation in Patients with Resected Stage I Non–Small-Cell Lung Cancer: ECOG 5597. J. Clin. Oncol. 2013, 31, 4179–4187. [Google Scholar] [CrossRef]
- Maeda, E.; Murata, K.; Kumazawa, Y.; Sato, W.; Shirasawa, H.; Iwasawa, T.; Izumo, K.; Tatsuta, N.; Sakamoto, M.; Terada, Y. Associations of environmental exposures to methylmercury and selenium with female infertility: A case-control study. Environ. Res. 2018, 168, 357–363. [Google Scholar] [CrossRef]
- Pieczyńska, J.; Grajeta, H. The role of selenium in human conception and pregnancy. J. Trace Elem. Med. Biol. 2015, 29, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Food-chain selenium and human health: Emphasis on intake. Br. J. Nutr. 2008, 100, 254–268. [Google Scholar] [CrossRef] [PubMed]
- Nenkova, G.; Petrov, L.; Alexandrova, A. Role of Trace Elements for Oxidative Status and Quality of Human Sperm. Balk. Med. J. 2017, 34, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.C.; Braga, P.C.; Martins, A.D.; Silva, B.M.; Alves, M.G.; Oliveira, P.F. Antioxidants Present in Reproductive Tract Fluids and Their Relevance for Fertility. Antioxidants 2022, 10, 1441. [Google Scholar] [CrossRef]
- Jia, J.; Wang, Z.; Yue, T.; Su, G.; Teng, C.; Yan, B. Crossing Biological Barriers by Engineered Nanoparticles. Chem. Res. Toxicol. 2020, 33, 1055–1060. [Google Scholar] [CrossRef]
- Morishita, Y.; Yoshioka, Y.; Satoh, H.; Nojiri, N.; Nagano, K.; Abe, Y.; Kamada, H.; Tsunoda, S.-I.; Nabeshi, H.; Yoshikawa, T.; et al. Distribution and histologic effects of intravenously administered amorphous nanosilica particles in the testes of mice. Biochem. Biophys. Res. Commun. 2012, 420, 297–301. [Google Scholar] [CrossRef]
- Iavicoli, I.; Fontana, L.; Leso, V.; Bergamaschi, A. The Effects of Nanomaterials as Endocrine Disruptors. Int. J. Mol. Sci. 2013, 14, 16732–16801. [Google Scholar] [CrossRef]
- Adler, S.; Basketter, D.; Creton, S.; Pelkonen, O.; Van Benthem, J.; Zuang, V.; Andersen, K.E.; Angers-Loustau, A.; Aptula, A.; Bal-Price, A.; et al. Alternative (non-animal) methods for cosmetics testing: Current status and future prospects—2010. Arch. Toxicol. 2011, 85, 367–485. [Google Scholar] [CrossRef]
- Rogers, J.M.; Kavlock, R.J. Developmental Toxicology. In Casarett & Doull’s Toxicology, 6th ed.; Klaassen, C.D., Ed.; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Bergamo, P.; Volpe, M.G.; Lorenzetti, S.; Mantovani, A.; Notari, T.; Cocca, E.; Cerullo, S.; Di Stasio, M.; Cerino, P.; Montano, L. Human semen as an early, sensitive biomarker of highly polluted living environment in healthy men: A pilot biomonitoring study on trace elements in blood and semen and their relationship with sperm quality and RedOx status. Reprod. Toxicol. 2016, 66, 1–9. [Google Scholar] [CrossRef]
- Lian, M.; Wang, J.; Sun, L.; Xu, Z.; Tang, J.; Yan, J.; Zeng, X. Profiles and potential health risks of heavy metals in soil and crops from the watershed of Xi River in Northeast China. Ecotoxicol. Environ. Saf. 2019, 169, 442–448. [Google Scholar] [CrossRef]
- Han, Q.; Wang, M.; Cao, J.; Gui, C.; Liu, Y.; He, X.; He, Y.; Liu, Y. Health risk assessment and bioaccessibilities of heavy metals for children in soil and dust from urban parks and schools of Jiaozuo, China. Ecotoxicol. Environ. Saf. 2020, 191, 110157. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Q.; Ren, B.; Luo, J.; Yuan, J.; Ding, X.; Bian, H.; Yao, X. Trends and Health Risks of Dissolved Heavy Metal Pollution in Global River and Lake Water from 1970 to 2017. Rev. Environ. Contam. Toxicol. 2020, 251, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 2018, 119, 157–184. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). Public Health Statement for Cadmium, September 2008 (displayed 3 January 2012). Available online: http://www.atsdr.cdc.gov/phs/phs.asp?id=46&tid=15 (accessed on 3 January 2012).
- Tariba, B. Metals in Wine—Impact on Wine Quality and Health Outcomes. Biol. Trace Elem. Res. 2011, 144, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2, MR17. [Google Scholar] [CrossRef]
- Brooking, J.; Davis, S.S.; Illum, L. Transport of nanoparticles across the rat nasal mucosa. J. Drug Target. 2001, 9, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, Y.; Jiao, F.; Lao, F.; Li, W.; Gu, Y.; Li, Y.; Ge, C.; Zhou, G.; Li, B.; et al. Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology 2008, 254, 82–90. [Google Scholar] [CrossRef]
- Ema, M.; Kobayashi, N.; Naya, M.; Hanai, S.; Nakanishi, J. Reproductive and developmental toxicity studies of manufactured nanomaterials. Reprod. Toxicol. 2010, 30, 343–352. [Google Scholar] [CrossRef]
- Keramati Khiarak, B.; Karimipour, M.; Ahmadi, A.; Farjah, G.H. Effects of oral administration of titanium dioxide particles on sperm parameters and in vitro fertilization potential in mice: A comparison between nano- and fine-sized particles. Vet. Res. Forum 2020, 11, 401–408. [Google Scholar] [CrossRef]
- Moretti, E.; Terzuoli, G.; Renieri, T.; Iacoponi, F.; Castellini, C.; Giordano, C.; Collodel, G. In vitro effect of gold and silver nanoparticles on human spermatozoa. Andrologia 2013, 45, 392–396. [Google Scholar] [CrossRef]
- Xu, G.; Lin, G.; Lin, S.; Wu, N.; Deng, Y.; Feng, G.; Chen, Q.; Qu, J.; Chen, D.; Chen, S.; et al. The Reproductive Toxicity of CdSe/ZnS Quantum Dots on the in vivo Ovarian Function and in vitro Fertilization. Sci. Rep. 2016, 6, 37677. [Google Scholar] [CrossRef] [PubMed]
- Dianová, L.; Tirpák, F.; Halo, M.; Slanina, T.; Massányi, M.; Stawarz, R.; Formicki, G.; Madeddu, R.; Massányi, P. Effects of Selected Metal Nanoparticles (Ag, ZnO, TiO2) on the Structure and Function of Reproductive Organs. Toxics 2022, 10, 459. [Google Scholar] [CrossRef] [PubMed]
- De Brito, J.L.M.; de Lima, V.N.; Ansa, D.O.; Moya, S.E.; Morais, P.C.; de Azevedo, R.B.; Lucci, C.M. Acute reproductive toxicology after intratesticular injection of silver nanoparticles (AgNPs) in Wistar rats. Nanotoxicology 2020, 14, 893–907. [Google Scholar] [CrossRef]
- Hamdi, H. Testicular dysfunction induced by aluminum oxide nanoparticle administration in albino rats and the possible protective role of the pumpkin seed oil. J. Basic Appl. Zool. 2020, 81, 42. [Google Scholar] [CrossRef]
- Park, M.V.; Annema, W.; Salvati, A.; Lesniak, A.; Elsaesser, A.; Barnes, C.; McKerr, G.; Howard, C.V.; Lynch, I.; Dawson, K.A.; et al. In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles. Toxicol. Appl. Pharmacol. 2009, 240, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Shaban, E.E.; Salama, D.M.; El-Aziz, A.; Ibrahim, K.S.; Nasr, S.M.; Desouky, H.M.; Elbakry, H.F.H. The effect of exposure to MoO3-NP and common bean fertilized by MoO3-NPs on biochemical, hematological, and histopathological parameters in rats. Sci. Rep. 2022, 12, 12074. [Google Scholar] [CrossRef] [PubMed]
- Nordström, S.; Beckman, L.; Nordenson, I. Occupational and environmental risks in and around a smelter in northern Sweden. I. Variations in birth weight. Hereditas 2009, 88, 43–46. [Google Scholar] [CrossRef]
- Hemminki, K.; Niemi, M.L.; Koskinen, K.; Vainio, H. Spontaneous abortions among women employed in the metal industry in Finland. Int. Arch. Occup. Environ. Health 1980, 47, 53–60. [Google Scholar] [CrossRef]
- Bellés, M.; Albina, M.L.; Sánchez, D.J.; Corbella, J.; Domingo, J.L. Interactions in Developmental Toxicology: Effects of Concurrent Exposure to Lead, Organic Mercury, and Arsenic in Pregnant Mice. Arch. Environ. Contam. Toxicol. 2002, 42, 93–98. [Google Scholar] [CrossRef]
- Wu, S.; Wang, M.; Deng, Y.; Qiu, J.; Zhang, X.; Tan, J. Associations of toxic and essential trace elements in serum, follicular fluid, and seminal plasma with In vitro fertilization outcomes. Ecotoxicol. Environ. Saf. 2020, 204, 110965. [Google Scholar] [CrossRef]
- Telisman, S. Interactions of essential and/or toxic metals and metalloid regarding interindividual differences in susceptibility to various toxicants and chronic diseases in man. Arch. Ind. Hyg. Toxicol. 1995, 46, 459–476. [Google Scholar]
- Pizent, A.; Jurasović, J.; Telišman, S. Serum calcium, zinc, and copper in relation to biomarkers of lead and cadmium in men. J. Trace Elem. Med. Biol. 2003, 17, 199–205. [Google Scholar] [CrossRef]
- Lazarus, M. Cadmium and Selenium Interaction in Mammals. Arch. Ind. Hyg. Toxicol. 2010, 61, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Matović, V.; Buha, A.; Bulat, Z.; Đukić-Ćosić, D. Cadmium Toxicity Revisited: Focus on Oxidative Stress Induction and Interactions with Zinc and Magnesium. Arch. Ind. Hyg. Toxicol. 2011, 62, 65–76. [Google Scholar] [CrossRef]
- Foulkes, E.C. Transport of toxic heavy metals across cell membranes. Proc. Soc. Exp. Biol. Med. 2000, 223, 234–240. [Google Scholar] [CrossRef]
- Shen, H.; Xu, W.; Zhang, J.; Chen, M.; Martin, F.L.; Xia, Y.; Liu, L.; Dong, S.; Zhu, Y.-G. Urinary Metabolic Biomarkers Link Oxidative Stress Indicators Associated with General Arsenic Exposure to Male Infertility in a Han Chinese Population. Environ. Sci. Technol. 2013, 47, 8843–8851. [Google Scholar] [CrossRef]
- Jamalan, M.; Ghaffari, M.A.; Hoseinzadeh, P.; Hashemitabar, M.; Zeinali, M. Human Sperm Quality and Metal Toxicants: Protective Effects of some Flavonoids on Male Reproductive Function. Int. J. Fertil. Steril. 2016, 10, 215–223. [Google Scholar] [CrossRef]
- Castiello, F.; Olmedo, P.; Gil, F.; Molina, M.; Mundo, A.; Romero, R.R.; Ruíz, C.; Gómez-Vida, J.; Vela-Soria, F.; Freire, C. Association of urinary metal concentrations with blood pressure and serum hormones in Spanish male adolescents. Environ. Res. 2020, 182, 108958. [Google Scholar] [CrossRef]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 6th ed.; WHO Press: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240030787 (accessed on 3 December 2021).
- Marzec-Wróblewska, U.; Kamiński, P.; Łakota, P.; Szymański, M.; Wasilow, K.; Ludwikowski, G.; Jerzak, L.; Stuczyński, T.; Woźniak, A.; Buciński, A. Human Sperm Characteristics with Regard to Cobalt, Chromium, and Lead in Semen and Activity of Catalase in Seminal Plasma. Biol. Trace Elem. Res. 2019, 188, 251–260. [Google Scholar] [CrossRef]
- Rodríguez-Díaz, R.; Blanes-Zamora, R.; Vaca-Sánchez, R.; Gómez-Rodríguez, J.; Hardisson, A.; González-Weller, D.; Gutiérrez, J.; Paz, S.; Rubio, C.; González-Dávila, E. Influence of Seminal Metals on Assisted Reproduction Outcome. Biol. Trace Elem. Res. 2022, 1–15. [Google Scholar] [CrossRef]
- Brown, S.; Publicover, S.; Barratt, C.; Martins da Silva, S. Human sperm ion channel (dys)function: Implications for ferti-lization. Hum. Reprod. Update 2022, 25, 758–776. [Google Scholar] [CrossRef]
- Harchegani, A.B.; Irandoost, A.; Mirnamniha, M.; Rahmani, H.; Tahmasbpour, E.; Shahriary, A. Possible mechanisms for the effects of calcium deficiency on male infertility. Int. J. Fertil. Steril. 2019, 12, 267–272. [Google Scholar] [CrossRef]
- Vickram, S.; Rohini, K.; Srinivasan, S.; Veenakumari, D.N.; Archana, K.; Anbarasu, K.; Jeyanthi, P.; Thanigaivel, S.; Gulothungan, G.; Rajendiran, N.; et al. Role of Zinc (Zn) in Human Reproduction: A Journey from Initial Spermatogenesis to Childbirth. Int. J. Mol. Sci. 2021, 22, 2188. [Google Scholar] [CrossRef] [PubMed]
- Mirnamniha, M.; Faroughi, F.; Tahmasbpour, E.; Ebrahimi, P.; Harchegani, A.B. An overview on role of some trace elements in human reproductive health, sperm function and fertilization process. Rev. Environ. Health 2019, 34, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Afridi, H.I.; Kazi, T.G.; Talpur, F.N.; Baig, J.A.; Chanihoon, G.Q. Essential trace and Toxic elemental concentrations in biological samples of male adult referent and Eunuch subjects. Clin. Chim. Acta 2022, 529, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-X.; Wang, P.; Feng, W.; Liu, C.; Yang, P.; Chen, Y.-J.; Sun, L.; Sun, Y.; Yue, J.; Gu, L.-J.; et al. Relationships between seminal plasma metals/metalloids and semen quality, sperm apoptosis and DNA integrity. Environ. Pollut. 2017, 224, 224–234. [Google Scholar] [CrossRef]
- Colagar, A.H.; Marzony, E.T.; Chaichi, M.J. Zinc levels in seminal plasma are associated with sperm quality in fertile and infertile men. Nutr. Res. 2009, 29, 82–88. [Google Scholar] [CrossRef]
- Ebisch, I.M.; Pierik, F.H.; De Jong, F.H.; Thomas, C.M.; Steegers-Theunissen, R.P. Does folic acid and zinc sulphate intervention affect endocrine parameters and sperm characteristics in men? Int. J. Androl. 2006, 29, 339–345. [Google Scholar] [CrossRef]
- Noack-Füller, G.; De Beer, C.; Seibert, H. Cadmium, lead, selenium, and zinc in semen of occupationally unexposed men. Andrologia 1993, 25, 7–12. [Google Scholar] [CrossRef]
- Aljaser, F.; Tabassum, H.; Fatima, S.; Abudawood, M.; Banu, N. Effect of trace elements on the seminal oxidative status and correlation to sperm motility in infertile Saudi males. Saudi J. Biol. Sci. 2021, 28, 4455–4460. [Google Scholar] [CrossRef]
- Abd Elhady, M.S.; Kandil, A.H.; Albalat, W.M. Trace Element’s Role in Male Infertility. Egypt. J. Hosp. Med. 2021, 85, 3678–3681. [Google Scholar] [CrossRef]
- Khan, M.S.; Zaman, S.; Sajjad, M.; Shoaib, M.; Gilani, G. Assessment of the level of trace element zinc in seminal plasma of males and evaluation of its role in male infertility. Int. J. Appl. Basic Med. Res. 2011, 1, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Zakošek Pipan, M.; Zrimšek, P.; Jakovac Strajn, B.; Pavšič Vrtač, K.; Knific, T.; Mrkun, J. Macro- and microelements in serum and seminal plasma as biomarkers for bull sperm cryotolerance. Acta Vet. Scand. 2021, 63, 25. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhong, Y.; Jiang, X.; Wang, C.; Zuo, Z.; Sha, A. Seminal Plasma Metals Concentration with Respect to Semen Quality. Biol. Trace Elem. Res. 2012, 148, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.M.; Behnampour, N.; Nejabat, M.; Tabandeh, A.; Ghazi-Moghaddam, B.; Joshaghani, H.R. Impact of Seminal Plasma Trace Elements on Human Sperm Motility Parameters. Rom. J. Intern. Med. 2018, 56, 15–20. [Google Scholar] [CrossRef]
- Ali, S.; Chaspoul, F.; Anderson, L.; Bergé-Lefranc, D.; Achard, V.; Perrin, J.; Gallice, P.; Guichaoua, M. Mapping Fifteen Trace Elements in Human Seminal Plasma and Sperm DNA. Biol. Trace Elem. Res. 2017, 175, 244–253. [Google Scholar] [CrossRef]
- Şeren, G.; Kaplan, M.; Ibar, H. A Comparative Study of Human Seminal Plasma and Blood Serum Trace Elements in Fertile and Infertile Men. Anal. Lett. 2002, 35, 1785–1794. [Google Scholar] [CrossRef]
- Umair, M.; Alfadhel, M. Genetic Disorders Associated with Metal Metabolism. Cells 2019, 8, 1598. [Google Scholar] [CrossRef]
- Fallah, A.; Mohammad-Hasani, A.; Colagar, A.H. Zinc is an Essential Element for Male Fertility: A Review of Zn Roles in Men’s Health, Germination, Sperm Quality, and Fertilization. J. Reprod. Infertil. 2018, 19, 69–81. [Google Scholar]
- Allouche-Fitoussi, D.; Breitbart, H. The Role of Zinc in Male Fertility. Int. J. Mol. Sci. 2020, 21, 7796. [Google Scholar] [CrossRef]
- Skalny, A.V.; Aschner, M.; Tinkov, A.A. Zinc. Adv. Food Nutr. Res. 2021, 96, 251–310. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Dong, X.; Hu, X.; Long, Z.; Wang, L.; Liu, Q.; Sun, B.; Wang, Q.; Wu, Q.; Li, L. Zinc levels in seminal plasma and their correlation with male infertility: A systematic review and meta-analysis. Sci. Rep. 2016, 6, 22386. [Google Scholar] [CrossRef]
- Boran, C.; Ozkan, K.U. The effect of zinc therapy on damaged testis in pre-pubertal rats. Pediatr. Surg. Int. 2004, 20, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Cheah, Y.; Yang, W. Functions of essential nutrition for high quality spermatogenesis. Adv. Biosci. Biotechnol. 2011, 2, 182–197. [Google Scholar] [CrossRef]
- Kambe, T.; Tsuji, T.; Hashimoto, A.; Itsumura, N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol. Rev. 2015, 95, 749–784. [Google Scholar] [CrossRef]
- Schneider, M.; Forster, H.; Boersma, A.; Seiler, A.; Wehnes, H.; Sinowatz, F.; Neumüller, C.; Deutsch, M.J.; Walch, A.; de Angelis, M.H.; et al. Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB J. 2009, 23, 3233–3242. [Google Scholar] [CrossRef]
- Croxford, T.P.; McCormick, N.H.; Kelleher, S.L. Moderate Zinc Deficiency Reduces Testicular Zip6 and Zip10 Abundance and Impairs Spermatogenesis in Mice. J. Nutr. 2011, 141, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Elias, V.; Loban, A.; Scrimgeour, A.G.; Ho, E. Marginal zinc deficiency increases oxidative DNA damage in the prostate after chronic exercise. Free Radic. Biol. Med. 2010, 48, 82–88. [Google Scholar] [CrossRef]
- Yan, M.; Hardin, K.; Ho, E. Differential response to zinc-induced apoptosis in benign prostate hyperplasia and prostate cancer cells. J. Nutr. Biochem. 2010, 21, 687–694. [Google Scholar] [CrossRef]
- Hunt, C.D.; Johnson, P.E.; Herbel, J.; Mullen, L.K. Effects of dietary zinc depletion on seminal volume and zinc loss, serum testosterone concentrations, and sperm morphology in young men. Am. J. Clin. Nutr. 1992, 56, 148–157. [Google Scholar] [CrossRef]
- Ali, H.; Ahmed, M.; Baig, M.; Ali, M. Relationship of zinc concentrations in blood and seminal plasma with various semen parameters in infertile subjects. Pak. J. Med. Sci. 2007, 23, 111–114. [Google Scholar]
- Foresta, C.; Garolla, A.; Cosci, I.; Menegazzo, M.; Ferigo, M.; Gandin, V.; De Toni, L. Role of zinc trafficking in male fertility: From germ to sperm. Hum. Reprod. 2014, 29, 1134–1145. [Google Scholar] [CrossRef]
- Michailov, Y.; Ickowicz, D.; Breitbart, H. Zn2+-stimulation of sperm capacitation and of the acrosome reaction is mediated by EGFR activation. Dev. Biol. 2014, 396, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Kerns, K.; Zigo, M.; Drobnis, E.Z.; Sutovsky, M.; Sutovsky, P. Zinc ion flux during mammalian sperm capacitation. Nat. Commun. 2018, 9, 2061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allouche-Fitoussi, D.; Bakhshi, D.; Breitbart, H. Signaling pathways involved in human sperm hyperactivated motility stimulated by Zn2+. Mol. Reprod. Dev. 2018, 85, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Picco, S.; Anchordoquy, J.M.; de Matos, D.G.; Anchordoquy, J.P.; Seoane, A.; Mattioli, G.A.; Errecalde, A.L.; Furnus, C.C. Effect of increasing zinc sulphate concentration during in vitro maturation of bovine oocytes. Theriogenology 2010, 74, 1141–1148. [Google Scholar] [CrossRef]
- Wooldridge, L.K.; Nardi, M.E.; Ealy, A.D. Zinc supplementation during in vitro embryo culture increases inner cell mass and total cell numbers in bovine blastocysts1. J. Anim. Sci. 2019, 97, 4946–4950. [Google Scholar] [CrossRef]
- Kerns, K.; Zigo, M.; Sutovsky, P. Zinc: A Necessary Ion for Mammalian Sperm Fertilization Competency. Int. J. Mol. Sci. 2018, 19, 4097. [Google Scholar] [CrossRef]
- Chabchoub, I.; Nouioui, M.A.; Araoud, M.; Mabrouk, M.; Amira, D.; Ben Aribia, M.H.; Mahmoud, K.; Zhioua, F.; Merdassi, G.; Hedhili, A. Effects of lead, cadmium, copper and zinc levels on the male reproductive function. Andrologia 2021, 53, e14181. [Google Scholar] [CrossRef]
- Omu, A.E.; Al-Azemi, M.K.; Al-Maghrebi, M.; Mathew, C.T.; Omu, F.E.; Kehinde, E.O.; Anim, J.T.; Oriowo, M.A.; Memon, A. Molecular basis for the effects of zinc deficiency on spermatogenesis: An experimental study in the Sprague-dawley rat model. Indian J. Urol. 2015, 31, 57–64. [Google Scholar] [CrossRef]
- Kumari, D.; Nair, N.; Bedwal, R.S. Effect of dietary zinc deficiency on testes of Wistar rats: Morphometric and cell quantification studies. J. Trace Elem. Med. Biol. 2011, 25, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, J.; Wang, Y.; Yang, M.; Guo, M. Zinc Deficiency Promotes Testicular Cell Apoptosis in Mice. Biol. Trace Elem. Res. 2020, 195, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Maremanda, K.P.; Khan, S.; Jena, G.B. Role of Zinc Supplementation in Testicular and Epididymal Damages in Diabetic Rat: Involvement of Nrf2, SOD1, and GPX5. Biol. Trace Elem. Res. 2016, 173, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Zafar, A.; Eqani, S.A.M.A.S.; Bostan, N.; Cincinelli, A.; Tahir, F.; Shah, S.T.; Hussain, A.; Alamdar, A.; Huang, Q.; Peng, S.; et al. Toxic metals signature in the human seminal plasma of Pakistani population and their potential role in male infertility. Environ. Geochem. Health 2015, 37, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Mishra, V.; Thaker, R.; Gor, M.; Perumal, S.; Joshi, P.; Sheth, H.; Shaikh, I.; Gautam, A.K.; Verma, Y. Role of environmental factors & oxidative stress with respect to in vitro fertilization outcome. Indian J. Med Res. 2018, 148 (Suppl. 1), S125–S133. [Google Scholar] [CrossRef]
- Prasad, A.S. Discovery of Human Zinc Deficiency: Its Impact on Human Health and Disease. Adv. Nutr. 2013, 4, 176–190. [Google Scholar] [CrossRef]
- Khadivi, F.; Razavi, S.; Hashemi, F. Protective effects of zinc on rat sperm chromatin integrity involvement: DNA methylation, DNA fragmentation, ubiquitination and protamination after bleomycin etoposide and cis-platin treatment. Theriogenology 2020, 142, 177–183. [Google Scholar] [CrossRef]
- Taravati, A.; Tohidi, F. Association between seminal plasma zinc level and asthenozoospermia: A meta-analysis study. Andrologia 2016, 48, 646–653. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; Rosique-Esteban, N.; Becerra-Tomás, N.; Vizmanos, B.; Bulló, M.; Salas-Salvadó, J. The Effect of Nutrients and Dietary Supplements on Sperm Quality Parameters: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Adv. Nutr. 2018, 9, 833–848. [Google Scholar] [CrossRef]
- Hadwan, M.H.; Almashhedy, L.A.; Alsalman, A.R. Oral zinc supplementation restore high molecular weight seminal zinc binding protein to normal value in Iraqi infertile men. BMC Urol. 2012, 12, 32. [Google Scholar] [CrossRef]
- Giacone, F.; Condorelli, R.A.; Mongioì, L.M.; Bullara, V.; La Vignera, S.; Calogero, A.E. In vitro effects of zinc, D-aspartic acid, and coenzyme-Q10 on sperm function. Endocrine 2017, 56, 408–415. [Google Scholar] [CrossRef]
- Irani, M.; Amirian, M.; Sadeghi, R.; Lez, J.L.; Latifnejad Roudsari, R. The Effect of Folate and Folate Plus Zinc Supple-mentation on Endocrine Parameters and Sperm Characteristics in Sub-Fertile Men: A Systematic Review and Meta-Analysis. Urol. J. 2017, 14, 4069–4078. [Google Scholar] [PubMed]
- Garolla, A.; Petre, G.C.; Francini-Pesenti, F.; De Toni, L.; Vitagliano, A.; Di Nisio, A.; Foresta, C. Dietary Supplements for Male Infertility: A Critical Evaluation of Their Composition. Nutrients 2020, 12, 1472. [Google Scholar] [CrossRef] [PubMed]
- Fatima, P.; Hossain, M.M.; Rahman, D.; Mugni, C.R.; Sumon, G.M.; Hossain, H.B.; Hossain, H.N. Impact of Seminal Plasma Zinc and Serum Zinc Level on Semen Parameter of Fertile and Infertile Males. J. Bangladesh Coll. Physicians Surg. 2017, 35, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-González, E.; Castelló, A.; Fernández-Navarro, P.; Castaño-Vinyals, G.; Llorca, J.; Salas-Trejo, D.; Salcedo-Bellido, I.; Aragonés, N.; Fernández-Tardón, G.; Alguacil, J.; et al. Dietary Zinc and Risk of Prostate Cancer in Spain: MCC-Spain Study. Nutrients 2018, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Turgut, G.; Abban, G.; Turgut, S.; Take, G. Effect of Overdose Zinc on Mouse Testis and Its Relation with Sperm Count and Motility. Biol. Trace Elem. Res. 2003, 96, 271–280. [Google Scholar] [CrossRef]
- Bhardwaj, J.K.; Paliwal, A.; Saraf, P. Effects of heavy metals on reproduction owing to infertility. J. Biochem. Mol. Toxicol. 2021, 35, e22823. [Google Scholar] [CrossRef]
- Pedigo, N.G.; George, W.J.; Anderson, M.B. Effects of acute and chronic exposure to cobalt on male reproduction in mice. Reprod. Toxicol. 1988, 2, 45–53. [Google Scholar] [CrossRef]
- Madzharova, M.; Gluhcheva, Y.; Pavlova, E.; Atanassova, N. Effect of Cobalt on Male Reproductive Organs during Puberty. Biotechnol. Biotechnol. Equip. 2010, 24, 321–324. [Google Scholar] [CrossRef]
- Armstrong, C.W.; Moore, L.W., Jr.; Hackler, R.L.; Miller, G.B., Jr.; Stroube, R.B. An outbreak of metal fume fever. Diagnostic use of urinary copper and zinc determinations. J. Occup. Med. 1983, 25, 886–888. [Google Scholar] [CrossRef]
- Ellingsen, D.G.; Moller, L.B.; Aaseth, J. Handbook of the Toxicology of Metals, 4th ed.; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Li, Y.; Gao, Q.; Li, M.; Li, M.; Gao, X. Cadmium, Chromium, and Copper Concentration plus Semen-Quality in Environmental Pollution Site, China. Iran J. Public Health 2014, 43, 35–41. [Google Scholar] [PubMed]
- Mohammed, S.A.; Bakery, H.H.; Abuo Salem, M.E.; Nabila, A.M.; Elham, A.E. Toxicological effect of copper sulphate and cobalt chloride as feed additives on fertility in male albino rats. Benha Vet. Med. J. 2014, 27, 135–145. [Google Scholar]
- Hardneck, F.; de Villiers, C.; Maree, L. Effect of Copper Sulphate and Cadmium Chloride on Non-Human Primate Sperm Function In Vitro. Int. J. Environ. Res. Public Health 2021, 18, 6200. [Google Scholar] [CrossRef] [PubMed]
- Skandhan, K.P. Review on copper in male reproduction and contraception. Rev. Fr. Gynecol. Obstet. 1992, 87, 594–598. [Google Scholar]
- Eidi, M.; Eidi, A.; Pouyan, O.; Shahmohammadi, P.; Fazaeli, R.; Bahar, M. Seminal plasma level of copper and its relationship with seminal parameters. Iran J. Reprod. Med. 2010, 8, 60–65. [Google Scholar]
- Chattopadhyay, A.; Sarkar, M.; Biswas, N.M. Dose-dependent effect of copper chloride on male reproductive function in immature rats. Kathmandu Univ. Med. J. 2005, 3, 392–400. [Google Scholar]
- Campanella, L.; Gatta, T.; Ravera, O. Relationship between anti-oxidant capacity and manganese accumulation in the soft tissues of two freshwater molluscs: Unio pictorum mancus (Lamellibranchia, Unionidae) and Viviparus ater (Gastropoda, Prosobranchia). J. Limnol. 2005, 64, 153–158. [Google Scholar] [CrossRef]
- Coassin, M.; Ursini, F.; Bindoli, A. Antioxidant effect of manganese. Arch. Biochem. Biophys. 1992, 299, 330–333. [Google Scholar] [CrossRef]
- Cavallini, L.; Valente, M.; Bindoli, A. On the mechanism of inhibition of lipid peroxidation by manganese. Inorg. Chim. Acta 1984, 91, 117–120. [Google Scholar] [CrossRef]
- Cheema, R.S.; Bansal, A.K.; Bilaspuri, G.S. Manganese Provides Antioxidant Protection for Sperm Cryopreservation that May Offer New Consideration for Clinical Fertility. Oxidative Med. Cell. Longev. 2009, 2, 152–159. [Google Scholar] [CrossRef]
- Barber, S.J.; Parker, H.M.; McDaniel, C.D. Broiler breeder semen quality as affected by trace minerals in vitro. Poult. Sci. 2005, 84, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Tajaddini, S.; Ebrahimi, S.; Behnam, B.; Bakhtiyari, M.; Joghataei, M.T.; Abbasi, M.; Amini, M.; Amanpour, S.; Koruji, M. Antioxidant effect of manganese on the testis structure and sperm parameters of formalin-treated mice. Andrologia 2014, 46, 246–253. [Google Scholar] [CrossRef]
- Chen, P.; Bornhorst, J.; Aschner, M. Manganese metabolism in humans. Front. Biosci. 2018, 23, 1655–1679. [Google Scholar] [CrossRef] [PubMed]
- Peres, T.V.; Schettinger, M.R.C.; Chen, P.; Carvalho, F.; Avila, D.S.; Bowman, A.B.; Aschner, M.; Peres, T.V.; Schettinger, M.R.C.; Chen, P.; et al. Manganese-induced neurotoxicity: A review of its behavioral consequences and neuroprotective strategies. BMC Pharmacol. Toxicol. 2016, 17, 57. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Tian, C.; Zhu, Y.; Zhang, L.; Lu, L.; Luo, X. Effects of inorganic and organic manganese supplementation on gonadotropin-releasing hormone-I and follicle-stimulating hormone expression and reproductive performance of broiler breeder hens. Poult. Sci. 2014, 93, 959–969. [Google Scholar] [CrossRef]
- Migliaccio, O.; Castellano, I.; Cirino, P.; Romano, G.; Palumbo, A. Maternal Exposure to Cadmium and Manganese Impairs Reproduction and Progeny Fitness in the Sea Urchin Paracentrotus lividus. PLoS ONE 2015, 10, e0131815. [Google Scholar] [CrossRef]
- Srivastava, V.K.; Hiney, J.K.; Dees, W.L. Early life manganese exposure upregulates tumor-associated genes in the hypothalamus of female rats: Relationship to manganese-induced precocious puberty. Toxicol. Sci. 2013, 136, 373–381. [Google Scholar] [CrossRef]
- Lee, B.; Pine, M.; Johnson, L.; Rettori, V.; Hiney, J.K.; Dees, W.L. Manganese acts centrally to activate reproductive hormone secretion and pubertal development in male rats. Reprod. Toxicol. 2006, 22, 580–585. [Google Scholar] [CrossRef]
- Wirth, J.J.; Rossano, M.G.; Daly, D.C.; Paneth, N.; Puscheck, E.; Potter, R.C.; Diamond, M.P. Ambient Manganese Exposure is Negatively Associated with Human Sperm Motility and Concentration. Epidemiology 2007, 18, 270–273. [Google Scholar] [CrossRef]
- Li, Y.; Wu, J.; Zhou, W.; Gao, E. Effects of manganese on routine semen quality parameters: Results from a population-based study in China. BMC Public Health 2012, 12, 919. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Sun, Y.; Huang, Z.; Wang, P.; Feng, W.; Li, J.; Yang, P.; Wang, M.; Sun, L.; Chen, Y.-J.; et al. Associations of urinary metal levels with serum hormones, spermatozoa apoptosis and sperm DNA damage in a Chinese population. Environ. Int. 2016, 94, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Emara, A.M.; El-Ghawabi, S.H.; Madkour, O.I.; El-Samra, G.H. Chronic manganese poisoning in the dry battery industry. Br. J. Ind. Med. 1971, 28, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, J.; Yang, X.; Wu, F.; Qi, Z.; Xu, B.; Liu, W.; Deng, Y. Occupational manganese exposure, reproductive hormones, and semen quality in male workers: A cross-sectional study. Toxicol. Ind. Health 2019, 35, 53–62. [Google Scholar] [CrossRef]
- Chandra, S.V.; Ara, R.; Nagar, N.; Seth, P.K. Sterility in experimental manganese toxicity. Acta Biol. Med. Ger. 1973, 30, 857–862. [Google Scholar] [PubMed]
- Laskey, J.W.; Rehnberg, G.L.; Hein, J.F.; Carter, S.D. Effects of chronic manganese (Mn3O4) exposure on selected reproductive parameters in rats. J. Toxicol. Environ. Health Part A 1982, 9, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Ponnapakkam, T.P.; Bailey, K.S.; Graves, K.A.; Iszard, M.B. Assessment of male reproductive system in the CD-1 mice following oral manganese exposure. Reprod. Toxicol. 2003, 17, 547–551. [Google Scholar] [CrossRef]
- Brown, K.M.; Arthur, J.R. Selenium, selenoproteins and human health: A review. Public Health Nutr. 2001, 4, 593–599. [Google Scholar] [CrossRef]
- Watanabe, T.; Endo, A. Effects of selenium deficiency on sperm morphology and spermatocyte chromosomes in mice. Mutat. Res. Lett. 1991, 262, 93–99. [Google Scholar] [CrossRef]
- Moslemi, M.K.; Tavanbakhsh, S. Selenium–vitamin E supplementation in infertile men: Effects on semen parameters and pregnancy rate. Int. J. Gen. Med. 2011, 4, 99–104. [Google Scholar] [CrossRef]
- Morbat, M.M.; Hadi, A.; Hadri, D.H. Effect of Selenium in Treatment of Male Infertility. Exp. Tech. Urol. Nephrol. 2018, 1, ETUN.000521. [Google Scholar] [CrossRef]
- Ghafarizadeh, A.A.; Vaezi, G.; Shariatzadeh, M.A.; Malekirad, A.A. Effect of in vitro selenium supplementation on sperm quality in asthenoteratozoospermic men. Andrologia 2018, 50, e12869. [Google Scholar] [CrossRef] [PubMed]
- Nebbia, C.; Brando, C.; Burdino, E.; Rasero, R.; Valenza, F.; Arisio, R.; Ugazio, G. Effects of the chronic administration of sodium selenite on rat testes. Res. Commun. Chem. Pathol. Pharmacol. 1987, 58, 183–197. [Google Scholar] [PubMed]
- Ahsan, U.; Kamran, Z.; Raza, I.; Ahmad, S.; Babar, W.; Riaz, M.; Iqbal, Z. Role of selenium in male reproduction—A review. Anim. Reprod. Sci. 2014, 146, 55–62. [Google Scholar] [CrossRef]
- Boitani, C.; Puglisi, R. Selenium, a Key Element in Spermatogenesis and Male Fertility. In Molecular Mechanisms in Spermatogenesis. Advances in Experimental Medicine and Biology; Cheng, C.Y., Ed.; Springer: New York, NY, USA, 2009; Volume 636, pp. 65–73. [Google Scholar] [CrossRef]
- Qazi, I.H.; Angel, C.; Yang, H.; Zoidis, E.; Pan, B.; Wu, Z.; Ming, Z.; Zeng, C.-J.; Meng, Q.; Han, H.; et al. Role of Selenium and Selenoproteins in Male Reproductive Function: A Review of Past and Present Evidences. Antioxidants 2019, 8, 268. [Google Scholar] [CrossRef]
- Lv, Q.; Liang, X.; Nong, K.; Gong, Z.; Qin, T.; Qin, X.; Wang, D.; Zhu, Y. Advances in Research on the Toxicological Effects of Selenium. Bull. Environ. Contam. Toxicol. 2021, 106, 715–726. [Google Scholar] [CrossRef]
- Chen, S.; Hou, Z.Z. Effects of subacute selenium poisoning on testicular cell structure in mice. Anim. Husb. Vet. Med. 2015, 47, 97–100. [Google Scholar]
- Han, Y.; Hou, Z.Z. Studies on toxic effects of Sodium selentite on female reproductive system. Chin. J. Vet. Med. 2012, 48, 8–10. [Google Scholar] [CrossRef]
- Yao, L.; Du, Q.; Yao, H.; Chen, X.; Zhang, Z.; Xu, S. Roles of oxidative stress and endoplasmic reticulum stress in selenium deficien-cy-induced apoptosis in chicken liver. Biometals 2015, 28, 255–265. [Google Scholar] [CrossRef]
- Speckmann, B.; Grune, T. Epigenetic effects of selenium and their implications for health. Epigenetics 2015, 10, 179–190. [Google Scholar] [CrossRef]
- Zachariah, M.; Maamoun, H.; Milano, L.; Meira, L.B.; Agouni, A.; Rayman, M.P. P31 endoplasmic reticulum stress drives high selenium induced endothelial dysfunction. Heart 2016, 102, A11–A12. [Google Scholar] [CrossRef]
- Mu, W.P.; Tian, Y.; Piao, J.H.; Gu, L.; Yang, X. Studies on comparing the toxicity between sodium selenite and selenomethionine in rats. J. Hyg. Res. 2004, 33, 700–703. [Google Scholar] [CrossRef]
- Kasperczyk, A.; Dobrakowski, M.; Czuba, Z.P.; Kapka-Skrzypczak, L.; Kasperczyk, S. Influence of iron on sperm motility and selected oxidative stress parameters in fertile males—A pilot study. Ann. Agric. Environ. Med. 2016, 23, 292–296. [Google Scholar] [CrossRef]
- Habib, S.; Elbakry, M.; Sakran, M.; Toson, E.; El-Baz, R.; Elafify, M. The impact of heavy metals in impairment of sper-matogenesis and sperm density in the human. J. Biochem. Technol. 2018, 9, 1–8. [Google Scholar]
- Pandey, R.; Singh, S.P. Effects of molybdenum on fertility of male rats. BioMetals 2002, 15, 65–72. [Google Scholar] [CrossRef]
- Hussain, S.M.; Hess, K.L.; Gearhart, J.M.; Geiss, K.T.; Schlager, J.J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 2005, 19, 975–983. [Google Scholar] [CrossRef]
- Zhang, S.; Bian, Z.; Gu, C.; Zhang, Y.; He, S.; Gu, N.; Zhang, J. Preparation of anti-human cardiac troponin I immunomagnetic nanoparticles and biological activity assays. Colloids Surf. B Biointerfaces 2007, 55, 143–148. [Google Scholar] [CrossRef]
- Larsen, P.B.; Mørck, T.A.; Andersen, D.N.; Hougaard, K.S. A Critical Review of Studies on the Reproductive and Developmental Toxicity of Nanomaterials; The European Chemicals Agency (ECHA): Helsinki, Finland, 2020. [CrossRef]
- Bartneck, M.; Ritz, T.; Keul, H.A.; Wambach, M.; Bornemann, J.; Gbureck, U.; Ehling, J.; Lammers, T.; Heymann, F.; Gassler, N.; et al. Peptide-Functionalized Gold Nanorods Increase Liver Injury in Hepatitis. ACS Nano 2012, 6, 8767–8777. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, T.; Huang, F.; Wang, Z. The reproductive and developmental toxicity of nanoparticles: A bibliometric analysis. Toxicol. Ind. Health 2018, 34, 169–177. [Google Scholar] [CrossRef]
- Souza, M.R.; Mazaro-Costa, R.; Rocha, T.L. Can nanomaterials induce reproductive toxicity in male mammals? A historical and critical review. Sci. Total Environ. 2021, 769, 144354. [Google Scholar] [CrossRef]
- Wang, Y.; O’Connor, D.; Shen, Z.; Lo, I.M.; Tsang, D.C.; Pehkonen, S.; Pu, S.; Hou, D. Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors. J. Clean. Prod. 2019, 226, 540–549. [Google Scholar] [CrossRef]
- Ryman-Rasmussen, J.P.; Riviere, J.E.; Monteiro-Riviere, N.A. Variables Influencing Interactions of Untargeted Quantum Dot Nanoparticles with Skin Cells and Identification of Biochemical Modulators. Nano Lett. 2007, 7, 1344–1348. [Google Scholar] [CrossRef] [PubMed]
- Hagens, W.I.; Oomen, A.G.; de Jong, W.H.; Cassee, F.R.; Sips, A.J. What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul. Toxicol. Pharmacol. 2007, 49, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef] [PubMed]
- Vega-Villa, K.R.; Takemoto, J.K.; Yáñez, J.A.; Remsberg, C.M.; Forrest, M.L.; Davies, N.M. Clinical toxicities of nanocarrier systems. Adv. Drug Deliv. Rev. 2008, 60, 929–938. [Google Scholar] [CrossRef]
- Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Nanomedicine: Current status and future prospects. FASEB J. 2005, 19, 311–330. [Google Scholar] [CrossRef]
- Curtis, J.; Greenberg, M.; Kester, J.; Phillips, S.; Krieger, G. Nanotechnology and Nanotoxicology: A primer for clinicians. Toxicol. Rev. 2006, 25, 245–260. [Google Scholar] [CrossRef]
- El-Ansary, A.; Al-Daihan, S. On the Toxicity of Therapeutically Used Nanoparticles: An Overview. J. Toxicol. 2009, 2009, 754810. [Google Scholar] [CrossRef]
- Oberdörster, G.; Stone, V.; Donaldson, K. Toxicology of nanoparticles: A historical perspective. Nanotoxicology 2007, 1, 2–25. [Google Scholar] [CrossRef]
- Sood, A.; Salih, S.; Roh, D.; Lacharme-Lora, L.; Parry, M.; Hardiman, B.; Keehan, R.; Grummer, R.; Winterhager, E.; Gokhale, P.; et al. Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness. Nat. Nanotechnol. 2011, 6, 824–833. [Google Scholar] [CrossRef]
- Mitchell, L.A.; Lauer, F.T.; Burchiel, S.W.; McDonald, J.D. Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat. Nanotechnol. 2009, 4, 451–456. [Google Scholar] [CrossRef]
- Bhabra, G.; Sood, A.; Fisher, B.; Cartwright, L.; Saunders, M.; Evans, W.H.; Surprenant, A.; Lopez-Castejon, G.; Mann, S.; Davis, S.A.; et al. Nanoparticles can cause DNA damage across a cellular barrier. Nat. Nanotechnol. 2009, 4, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Rajani, C.; Borisa, P.; Bagul, S.; Shukla, K.; Tambe, V.; Desai, N.; Tekade, R.K. Developmental toxicity of nanomaterials used in drug delivery: Understanding molecular biomechanics and potential remedial measures. In Advances in Pharmaceutical Product Development and Research, Pharmacokinetics and Toxicokinetic Considerations; Tekade, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 685–725. [Google Scholar] [CrossRef]
- Oberdörster, G.; Maynard, A.; Donaldson, K.; Castranova, V.; Fitzpatrick, J.; Ausman, K.; Carter, J.; Karn, B.; Kreyling, W.; Lai, D.; et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Part. Fibre Toxicol. 2005, 2, 8. [Google Scholar] [CrossRef] [PubMed]
- Limbach, L.K.; Wick, P.; Manser, P.; Grass, R.N.; Bruinink, A.; Stark, W.J. Exposure of Engineered Nanoparticles to Human Lung Epithelial Cells: Influence of Chemical Composition and Catalytic Activity on Oxidative Stress. Environ. Sci. Technol. 2007, 41, 4158–4163. [Google Scholar] [CrossRef]
- Wright, J.B.; Lam, K.; Buret, A.G.; Olson, M.E.; Burrell, R.E. Early healing events in a porcine model of contaminated wounds: Effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing. Wound Repair Regen. 2002, 10, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Supp, A.P.; Neely, A.N.; Supp, D.M.; Warden, G.D.; Boyce, S.T. Evaluation of cytotoxicity and antimicrobial activity of Acticoat Burn Dressing for management of microbial contamination in cultured skin substitutes grafted to athymic mice. J. Burn Care Rehabil. 2005, 26, 238–246. [Google Scholar]
- Chen, H.-W.; Su, S.; Chien, C.; Lin, W.; Yu, S.-L.; Chou, C.; Chen, J.J.; Yang, P. Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J. 2006, 20, 2393–2395. [Google Scholar] [CrossRef]
- Muangman, P.; Chuntrasakul, C.; Silthram, S.; Suvanchote, S.; Benjathanung, R.; Kittidacha, S.; Rueksomtawin, S. Comparison of efficacy of 1% silver sulfadiazine and Acticoat for treatment of partial-thickness burn wounds. J. Med. Assoc. Thail. 2006, 89, 953–958. [Google Scholar]
- Paddle-Ledinek, J.E.; Nasa, Z.; Cleland, H.J. Effect of Different Wound Dressings on Cell Viability and Proliferation. Plast. Reconstr. Surg. 2006, 117 (Suppl. 7), 110S–118S, discussion 119S–120S. [Google Scholar] [CrossRef]
- Braydich-Stolle, L.; Hussain, S.; Schlager, J.J.; Hofmann, M.-C. In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells. Toxicol. Sci. 2005, 88, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.M.; Javorina, A.K.; Schrand, A.M.; Duhart, H.M.; Ali, S.F.; Schlager, J.J. The Interaction of Manganese Nanoparticles with PC-12 Cells Induces Dopamine Depletion. Toxicol. Sci. 2006, 92, 456–463. [Google Scholar] [CrossRef]
- Chung, Y.-C.; Chen, I.-H.; Chen, C.-J. The surface modification of silver nanoparticles by phosphoryl disulfides for improved biocompatibility and intracellular uptake. Biomaterials 2008, 29, 1807–1816. [Google Scholar] [CrossRef]
- Zhao, Y.; Meng, H.; Chen, Z.; Zhao, F.; Chai, Z.F. Dependence of nanotoxicity on nanoscale characteristics and strategies for reducing and eliminating nanotoxicity. In Nanotoxicology; Zhao, Y.L., Nalwa, H.S., Eds.; American Scientific: Stevenson Ranch, CA, USA, 2007. [Google Scholar]
- Missaoui, W.N.; Arnold, R.D.; Cummings, B.S. Toxicological status of nanoparticles: What we know and what we don’t know. Chem. Biol. Interact. 2018, 295, 1–12. [Google Scholar] [CrossRef]
- Chen, Z.; Meng, H.; Xing, G.; Chen, C.; Zhao, Y.; Jia, G.; Wang, T.; Yuan, H.; Ye, C.; Zhao, F.; et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett. 2006, 163, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Bermudez, E.; Mangum, J.B.; Asgharian, B.; Wong, B.A.; Reverdy, E.E.; Janszen, D.B.; Hext, P.M.; Warheit, D.B.; Everitt, J.I. Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles. Toxicol. Sci. 2002, 70, 86–97. [Google Scholar] [CrossRef]
- Bermudez, E.; Mangum, J.B.; Wong, B.A.; Asgharian, B.; Hext, P.M.; Warheit, D.B.; Everitt, J.I. Pulmonary Responses of Mice, Rats, and Hamsters to Subchronic Inhalation of Ultrafine Titanium Dioxide Particles. Toxicol. Sci. 2004, 77, 347–357. [Google Scholar] [CrossRef]
- Warheit, D.B.; Brock, W.J.; Lee, K.P.; Webb, T.R.; Reed, K.L. Comparative Pulmonary Toxicity Inhalation and Instillation Studies with Different TiO2 Particle Formulations: Impact of Surface Treatments on Particle Toxicity. Toxicol. Sci. 2005, 88, 514–524. [Google Scholar] [CrossRef]
- Warheit, D.B.; Webb, T.R.; Reed, K.L.; Frerichs, S.; Sayes, C.M. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: Differential responses related to surface properties. Toxicology 2007, 230, 90–104. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Q.; Xu, J.; Li, J.; Cai, X.; Liu, R.; Li, Y.; Ma, J.; Li, W. Comparative study on the acute pulmonary toxicity induced by 3 and 20 nm TiO2 primary particles in mice. Environ. Toxicol. Pharmacol. 2007, 24, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Wörle-Knirsch, J.M.; Kern, K.; Schleh, C.; Adelhelm, C.; Feldmann, C.; Krug, H.F. Nanoparticulate Vanadium Oxide Potentiated Vanadium Toxicity in Human Lung Cells. Environ. Sci. Technol. 2007, 41, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Sani, A.; Cao, C.; Cui, D. Toxicity of gold nanoparticles (AuNPs): A review. Biochem. Biophys. Rep. 2021, 26, 100991. [Google Scholar] [CrossRef] [PubMed]
- Andrade, L.M.; Martins, E.M.; Versiani, A.F.; Reis, D.S.; da Fonseca, F.G.; Souza, I.P.; Paniago, R.M.; Pereira-Maia, E.; Ladeira, L.O. The physicochemical and biological characterization of a 24-month-stored nanocomplex based on gold nanoparticles conjugated with cetuximab demonstrated long-term stability, EGFR affinity and cancer cell death due to apoptosis. Mater. Sci. Eng. C 2020, 107, 110203. [Google Scholar] [CrossRef] [PubMed]
- Cedervall, T.; Lynch, I.; Foy, M.; Berggård, T.; Donnelly, S.C.; Cagney, G.; Linse, S.; Dawson, K.A. Detailed Identification of Plasma Proteins Adsorbed on Copolymer Nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 5754–5756. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.R.; Andrieux, K.; Gil, S.; Taverna, M.; Chacun, H.; Desmaële, D.; Taran, F.; Georgin, D.; Couvreur, P. Translocation of Poly(ethylene glycol-co-hexadecyl)cyanoacrylate Nanoparticles into Rat Brain Endothelial Cells: Role of Apolipoproteins in Receptor-Mediated Endocytosis. Biomacromolecules 2007, 8, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Brohi, R.D.; Wang, L.; Talpur, H.S.; Wu, D.; Khan, F.A.; Bhattarai, D.; Rehman, Z.-U.; FarmanUllah, F.; Huo, L.-J. Toxicity of Nanoparticles on the Reproductive System in Animal Models: A Review. Front. Pharmacol. 2017, 8, 606. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, M.; Noureen, A.; Uzair, M.; Jabeen, F.; Daim, M.A.; Cappello, T. Perspectives of Nanoparticles in Male Infertility: Evidence for Induced Abnormalities in Sperm Production. Int. J. Environ. Res. Public Health 2021, 18, 1758. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, Y.; Jia, J.; Gao, N.; Li, Y.; Zhang, R.; Jiang, G.; Yan, B. Perturbation of physiological systems by nanoparticles. Chem. Soc. Rev. 2014, 43, 3762–3809. [Google Scholar] [CrossRef] [PubMed]
- Ema, M.; Okuda, H.; Gamo, M.; Honda, K. A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reprod. Toxicol. 2017, 67, 149–164. [Google Scholar] [CrossRef]
- Dantas, G.P.; Ferraz, F.S.; Andrade, L.M.; Costa, G.M. Male reproductive toxicity of inorganic nanoparticles in rodent models: A systematic review. Chem. Interact. 2022, 363, 110023. [Google Scholar] [CrossRef]
- Hussein, M.M.A.; Ali, H.A.; Saadeldin, I.M.; Ahmed, M.M. Querectin Alleviates Zinc Oxide Nanoreprotoxicity in Male Albino Rats. J. Biochem. Mol. Toxicol. 2016, 30, 489–496. [Google Scholar] [CrossRef]
- Lan, Z.; Yang, W.-X. Nanoparticles and spermatogenesis: How do nanoparticles affect spermatogenesis and penetrate the blood–testis barrier. Nanomedicine 2012, 7, 579–596. [Google Scholar] [CrossRef]
- Pietroiusti, A.; Campagnolo, L.; Fadeel, B. Interactions of Engineered Nanoparticles with Organs Protected by Internal Biological Barriers. Small 2013, 9, 1557–1572. [Google Scholar] [CrossRef]
- Falchi, L.; Khalil, W.; Hassan, M.; Marei, W.F. Perspectives of nanotechnology in male fertility and sperm function. Int. J. Vet. Sci. Med. 2018, 6, 265–269. [Google Scholar] [CrossRef]
- D’Occhio, M.; Hengstberger, K.; Johnston, S. Biology of sperm chromatin structure and relationship to male fertility and embryonic survival. Anim. Reprod. Sci. 2007, 101, 1–17. [Google Scholar] [CrossRef]
- Makhluf, S.B.-D.; Qasem, R.; Rubinstein, S.; Gedanken, A.; Breitbart, H. Loading Magnetic Nanoparticles into Sperm Cells Does Not Affect Their Functionality. Langmuir 2006, 22, 9480–9482. [Google Scholar] [CrossRef]
- Wiwanitkit, V.; Sereemaspun, A.; Rojanathanes, R. Effect of gold nanoparticles on spermatozoa: The first world report. Fertil. Steril. 2009, 91, e7–e8. [Google Scholar] [CrossRef]
- Manin, O.I.; Nikolaev, V.A.; Kolomiĭtsev, A.A.; Lebedenko, I.I. Comparative toxicological evaluation of domestic golden alloys for soldering. Stomatologiya 2007, 86, 64–67. (In Russian) [Google Scholar]
- Haruta, M. When Gold Is Not Noble: Catalysis by Nanoparticles. Chem. Rec. 2003, 3, 75–87. [Google Scholar] [CrossRef]
- Komatsu, T.; Tabata, M.; Kubo-Irie, M.; Shimizu, T.; Suzuki, K.-I.; Nihei, Y.; Takeda, K. The effects of nanoparticles on mouse testis Leydig cells in vitro. Toxicol. In Vitro 2008, 22, 1825–1831. [Google Scholar] [CrossRef]
- Braydich-Stolle, L.K.; Lucas, B.; Schrand, A.; Murdock, R.C.; Lee, T.; Schlager, J.J.; Hussain, S.M.; Hofmann, M.-C. Silver Nanoparticles Disrupt GDNF/Fyn kinase Signaling in Spermatogonial Stem Cells. Toxicol. Sci. 2010, 116, 577–589. [Google Scholar] [CrossRef]
- Philbrook, N.A.; Winn, L.M.; Afrooz, A.R.M.N.; Saleh, N.B.; Walker, V.K. The effect of TiO2 and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicol. Appl. Pharmacol. 2011, 257, 429–436. [Google Scholar] [CrossRef]
- Kobyliak, N.M.; Falalyeyeva, T.M.; Kuryk, O.G.; Beregova, T.V.; Bodnar, P.M.; Zholobak, N.M.; Shcherbakov, O.B.; Bubnov, R.V.; Spivak, M.Y. Antioxidative effects of cerium dioxide nanoparticles ameliorate age-related male infertility: Optimistic results in rats and the review of clinical clues for integrative concept of men health and fertility. EPMA J. 2015, 6, 12. [Google Scholar] [CrossRef] [PubMed]
- Falchi, L.; Galleri, G.; Dore, G.M.; Zedda, M.T.; Pau, S.; Bogliolo, L.; Ariu, F.; Pinna, A.; Nieddu, S.; Innocenzi, P.; et al. Effect of exposure to CeO2 nanoparticles on ram spermatozoa during storage at 4 °C for 96 h. Reprod. Biol. Endocrinol. 2018, 16, 19. [Google Scholar] [CrossRef] [PubMed]
- Pirmohamed, T.; Dowding, J.M.; Singh, S.; Wasserman, B.; Heckert, E.; Karakoti, A.S.; King, J.E.S.; Seal, S.; Self, W.T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 2010, 46, 2736–2738. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-W.; Mahapatra, C.; Hong, J.-Y.; Kim, M.S.; Leong, K.W.; Kim, H.-W.; Hyun, J.K. Functional Recovery of Contused Spinal Cord in Rat with the Injection of Optimal-Dosed Cerium Oxide Nanoparticles. Adv. Sci. 2017, 4, 1700034. [Google Scholar] [CrossRef]
- Singh, R.; Karakoti, A.; Self, W.; Seal, S.; Singh, S. Redox-Sensitive Cerium Oxide Nanoparticles Protect Human Keratinocytes from Oxidative Stress Induced by Glutathione Depletion. Langmuir 2016, 32, 12202–12211. [Google Scholar] [CrossRef]
- Nemmar, A.; Al-Salam, S.; Beegam, S.; Yuvaraju, P.; Ali, B.H. The acute pulmonary and thrombotic effects of cerium oxide nanoparticles after intratracheal instillation in mice. Int. J. Nanomed. 2017, 12, 2913–2922. [Google Scholar] [CrossRef]
- Kumari, M.; Kumari, S.I.; Kamal, S.S.K.; Grover, P. Genotoxicity assessment of cerium oxide nanoparticles in female Wistar rats after acute oral exposure. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014, 775–776, 7–19. [Google Scholar] [CrossRef]
- Preaubert, L.; Courbiere, B.; Achard, V.; Tassistro, V.; Greco, F.; Orsiere, T.; Bottero, J.-Y.; Rose, J.; Auffan, M.; Perrin, J. Cerium dioxide nanoparticles affect in vitro fertilization in mice. Nanotoxicology 2016, 10, 111–117. [Google Scholar] [CrossRef]
- Ariu, F.; Bogliolo, L.; Pinna, A.; Malfatti, L.; Innocenzi, P.; Falchi, L.; Bebbere, D.; Ledda, S. Cerium oxide nanoparticles (CeO2 NPs) improve the developmental competence of in vitro-matured prepubertal ovine oocytes. Reprod. Fertil. Dev. 2017, 29, 1046. [Google Scholar] [CrossRef]
- Jahanbin, R.; Yazdanshenas, P.; Rahimi, M.; Hajarizadeh, A.; Tvrda, E.; Nazari, S.A.; Mohammadi-Sangcheshmeh, A.; Ghanem, N. In Vivo and In Vitro Evaluation of Bull Semen Processed with Zinc (Zn) Nanoparticles. Biol. Trace Elem. Res. 2021, 199, 126–135. [Google Scholar] [CrossRef]
- Shi, L.; Xun, W.; Yue, W.; Zhang, C.; Ren, Y.; Shi, L.; Wang, Q.; Yang, R.; Lei, F. Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Rumin. Res. 2011, 96, 49–52. [Google Scholar] [CrossRef]
- Shi, L.-G.; Yang, R.-J.; Yue, W.-B.; Xun, W.-J.; Zhang, C.-X.; Ren, Y.-S.; Shi, L.; Lei, F.-L. Effect of elemental nano-selenium on semen quality, glutathione peroxidase activity, and testis ultrastructure in male Boer goats. Anim. Reprod. Sci. 2010, 118, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Caldeira, D.F.; Paulini, F.; Silva, R.C.; de Azevedo, R.B.; Lucci, C.M. In vitro exposure of bull sperm cells to DMSA-coated maghemite nanoparticles does not affect cell functionality or structure. Int. J. Hyperth. 2018, 34, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Yue, Z.; Li, Q.; Zhou, R.; Liu, L. Exposure to PbSe Nanoparticles and Male Reproductive Damage in a Rat Model. Environ. Sci. Technol. 2019, 53, 13408–13416. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Ze, Y.; Zhao, X.; Sang, X.; Zheng, L.; Ze, X.; Gui, S.; Sheng, L.; Sun, Q.; Hong, J.; et al. Titanium dioxide nanoparticle-induced testicular damage, spermatogenesis suppression, and gene expression alterations in male mice. J. Hazard. Mater. 2013, 258–259, 133–143. [Google Scholar] [CrossRef]
- Kielbik, P.; Kaszewski, J.; Dabrowski, S.; Faundez, R.; Witkowski, B.S.; Wachnicki, L.; Zhydachevskyy, Y.; Sapierzynski, R.; Gajewski, Z.; Godlewski, M.; et al. Transfer of orally administered ZnO:Eu nanoparticles through the blood–testis barrier: The effect on kinetic sperm parameters and apoptosis in mice testes. Nanotechnology 2019, 30, 455101. [Google Scholar] [CrossRef]
- Leclerc, L.; Klein, J.-P.; Forest, V.; Boudard, D.; Martini, M.; Pourchez, J.; Blanchin, M.-G.; Cottier, M. Testicular biodistribution of silica-gold nanoparticles after intramuscular injection in mice. Biomed. Microdevices 2015, 17, 66. [Google Scholar] [CrossRef]
- Miura, N.; Ohtani, K.; Hasegawa, T.; Yoshioka, H.; Hwang, G.-W. High sensitivity of testicular function to titanium nanoparticles. J. Toxicol. Sci. 2017, 42, 359–366. [Google Scholar] [CrossRef]
- Kim, J.S.; Yoon, T.-J.; Yu, K.N.; Kim, B.G.; Park, S.; Kim, H.W.; Lee, K.H.; Park, S.B.; Lee, J.-K.; Cho, M.H. Toxicity and Tissue Distribution of Magnetic Nanoparticles in Mice. Toxicol. Sci. 2006, 89, 338–347. [Google Scholar] [CrossRef]
- Ong, C.; Lee, Q.Y.; Cai, Y.; Liu, X.; Ding, J.; Yung, L.-Y.L.; Bay, B.-H.; Baeg, G.-H. Silver nanoparticles disrupt germline stem cell maintenance in the Drosophila testis. Sci. Rep. 2016, 6, 20632. [Google Scholar] [CrossRef] [Green Version]
- Lafuente, D.; Garcia, T.; Blanco, J.; Sánchez, D.; Sirvent, J.; Domingo, J.; Gómez, M. Effects of oral exposure to silver nanoparticles on the sperm of rats. Reprod. Toxicol. 2016, 60, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.; Zhao, X.; Chen, M.; Zhou, Y.; Ze, Y.; Wang, L.; Wang, Y.; Ge, Y.; Zhang, Q.; Ye, L. TiO2 nanoparticles-induced apoptosis of primary cultured Sertoli cells of mice. J. Biomed. Mater. Res. Part A 2016, 104, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-Q.; Wang, F.; Liu, Z.-M.; Wang, Y.-C.; Wang, J.; Sun, F. Gold Nanoparticles Elevate Plasma Testosterone Levels in Male Mice without Affecting Fertility. Small 2013, 9, 1708–1714. [Google Scholar] [CrossRef] [PubMed]
- Boisen, A.M.Z.; Shipley, T.; Jackson, P.; Wallin, H.; Nellemann, C.; Vogel, U.; Yauk, C.; Hougaard, K.S. In utero exposure to nanosized carbon black (Printex90) does not induce tandem repeat mutations in female murine germ cells. Reprod. Toxicol. 2013, 41, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.; Wang, Y.; Zhou, Y.; Zhang, Q.; Ge, Y.; Chen, M.; Hong, J.; Wang, L. Exposure to TiO2 Nanoparticles Induces Immunological Dysfunction in Mouse Testitis. J. Agric. Food Chem. 2015, 64, 346–355. [Google Scholar] [CrossRef]
- Hong, F.; Zhao, X.; Si, W.; Ze, Y.; Wang, L.; Zhou, Y.; Hong, J.; Yu, X.; Sheng, L.; Liu, D.; et al. Decreased spermatogenesis led to alterations of testis-specific gene expression in male mice following nano-TiO2 exposure. J. Hazard. Mater. 2015, 300, 718–728. [Google Scholar] [CrossRef]
- Hong, F.; Si, W.; Zhao, X.; Wang, L.; Zhou, Y.; Chen, M.; Ge, Y.; Zhang, Q.; Wang, Y.; Zhang, J. TiO2 Nanoparticle Exposure Decreases Spermatogenesis via Biochemical Dysfunctions in the Testis of Male Mice. J. Agric. Food Chem. 2015, 63, 7084–7092. [Google Scholar] [CrossRef]
- Takeda, K.; Suzuki, K.-I.; Ishihara, A.; Kubo-Irie, M.; Fujimoto, R.; Tabata, M.; Oshio, S.; Nihei, Y.; Ihara, T.; Sugamata, M. Nanoparticles Transferred from Pregnant Mice to Their Offspring Can Damage the Genital and Cranial Nerve Systems. J. Health Sci. 2009, 55, 95–102. [Google Scholar] [CrossRef]
- Yuan, B.; Gu, H.; Xu, B.; Tang, Q.; Wu, W.; Ji, X.; Xia, Y.; Hu, L.; Chen, D.; Wang, X. Effects of Gold Nanorods on Imprinted Genes Expression in TM-4 Sertoli Cells. Int. J. Environ. Res. Public Health 2016, 13, 271. [Google Scholar] [CrossRef]
- Yoisungnern, T.; Choi, Y.-J.; Han, J.W.; Kang, M.-H.; Das, J.; Gurunathan, S.; Kwon, D.-N.; Cho, S.-G.; Park, C.; Chang, W.K.; et al. Internalization of silver nanoparticles into mouse spermatozoa results in poor fertilization and compromised embryo development. Sci. Rep. 2015, 5, 11170. [Google Scholar] [CrossRef]
- Pinho, A.R.; Rebelo, S.; Pereira, M.D.L. The Impact of Zinc Oxide Nanoparticles on Male (In)Fertility. Materials 2020, 13, 849. [Google Scholar] [CrossRef] [PubMed]
- Vassal, M.; Rebelo, S.; Pereira, M. Metal Oxide Nanoparticles: Evidence of Adverse Effects on the Male Reproductive System. Int. J. Mol. Sci. 2021, 22, 8061. [Google Scholar] [CrossRef] [PubMed]
- Sargazi, S.; Ahmadi, Z.; Barani, M.; Rahdar, A.; Amani, S.; Desimone, M.F.; Pandey, S.; Kyzas, G.Z. Can nanomaterials support the diagnosis and treatment of human infertility? A preliminary review. Life Sci. 2022, 299, 120539. [Google Scholar] [CrossRef] [PubMed]
- Hamam, E.T.; Awadalla, A.; Shokeir, A.A.; Aboul-Naga, A.M. Zinc oxide nanoparticles attenuate prepubertal exposure to cisplatin-induced testicular toxicity and spermatogenesis impairment in rats. Toxicology 2022, 468, 153102. [Google Scholar] [CrossRef]
- Kad, A.; Pundir, A.; Arya, S.K.; Puri, S.; Khatri, M. Meta-analysis of in-vitro cytotoxicity evaluation studies of zinc oxide nanoparticles: Paving way for safer innovations. Toxicol. In Vitro 2022, 83, 105418. [Google Scholar] [CrossRef]
- Al-Musawi, M.M.S.; Al-Shmgani, H.; Al-Bairuty, G.A. Histopathological and Biochemical Comparative Study of Copper Oxide Nanoparticles and Copper Sulphate Toxicity in Male Albino Mice Reproductive System. Int. J. Biomater. 2022, 2022, 4877637. [Google Scholar] [CrossRef]
- Halo, M., Jr.; Bułka, K.; Antos, P.A.; Greń, A.; Slanina, T.; Ondruška, Ľ.; Tokárová, K.; Massányi, M.; Formicki, G.; Halo, M.; et al. The effect of ZnO nanoparticles on rabbit spermatozoa motility and viability parameters in vitro. Saudi J. Biol. Sci. 2021, 28, 7450–7454. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, B.; Hong, W.; Chen, L.; Yao, L.; Zhao, Y.; Aguilar, Z.P.; Xu, H. ZnO Nanoparticles Induced Male Reproductive Toxicity Based on the Effects on the Endoplasmic Reticulum Stress Signaling Pathway. Int. J. Nanomed. 2019, 14, 9563–9576. [Google Scholar] [CrossRef]
- Mesallam, D.I.; Deraz, R.H.; Aal, S.M.A.; Ahmed, S.M. Toxicity of Subacute Oral Zinc Oxide Nanoparticles on Testes and Prostate of Adult Albino Rats and Role of Recovery. J. Histol. Histopathol. 2019, 6, 2. [Google Scholar] [CrossRef]
- Talebi, A.R.; Khorsandi, L.; Moridian, M. The effect of zinc oxide nanoparticles on mouse spermatogenesis. J. Assist. Reprod. Genet. 2013, 30, 1203–1209. [Google Scholar] [CrossRef] [Green Version]
- Barkhordari, A.; Hekmatimoghaddam, S.; Jebali, A.; Khalili, M.A.; Talebi, A.; Noorani, M. Effect of zinc oxide nanopar-ticles on viability of human spermatozoa. Iran J. Reprod. Med. 2013, 11, 767–771. [Google Scholar] [PubMed]
- Liu, Q.; Xu, C.; Ji, G.; Liu, H.; Mo, Y.; Tollerud, D.J.; Gu, A.; Zhang, Q. Sublethal effects of zinc oxide nanoparticles on male reproductive cells. Toxicol. In Vitro 2016, 35, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Tang, M.; Zhang, T.; Wang, D.; Hu, K.; Lu, W.; Wei, C.; Liang, G.; Pu, Y. Nickel Nanoparticles Exposure and Reproductive Toxicity in Healthy Adult Rats. Int. J. Mol. Sci. 2014, 15, 21253–21269. [Google Scholar] [CrossRef]
- Liu, L.; Lu, W.; Dong, J.; Wu, Y.; Tang, M.; Liang, G.; Kong, L. Study of the mechanism of mitochondrial division and mitochondrial autophagy in the male reproductive toxicity induced by nickel nanoparticles. Nanoscale 2022, 14, 1868–1884. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Dong, J.; Lu, W.; Wu, Y.; Liu, L.; Tang, M. Exposure effects of inhaled nickel nanoparticles on the male reproductive system via mitochondria damage. NanoImpact 2021, 23, 100350. [Google Scholar] [CrossRef]
- Sleiman, H.K.; Romano, R.M.; De Oliveira, C.A.; Romano, M.A. Effects of Prepubertal Exposure to Silver Nanoparticles on Reproductive Parameters in Adult Male Wistar Rats. J. Toxicol. Environ. Health Part A 2013, 76, 1023–1032. [Google Scholar] [CrossRef]
- Gromadzka-Ostrowska, J.; Dziendzikowska, K.; Lankoff, A.; Dobrzyńska, M.; Instanes, C.; Brunborg, G.; Gajowik, A.; Radzikowska, J.; Wojewódzka, M.; Kruszewski, M. Silver nanoparticles effects on epididymal sperm in rats. Toxicol. Lett. 2012, 214, 251–258. [Google Scholar] [CrossRef]
- Olugbodi, J.O.; David, O.; Oketa, E.N.; Lawal, B.; Okoli, B.J.; Mtunzi, F. Silver Nanoparticles Stimulates Spermatogenesis Impairments and Hematological Alterations in Testis and Epididymis of Male Rats. Molecules 2020, 25, 1063. [Google Scholar] [CrossRef]
- Ahmed, S.M.; Abdelrahman, S.A.; Shalaby, S.M. Evaluating the effect of silver nanoparticles on testes of adult albino rats (histological, immunohistochemical and biochemical study). Histochem. J. 2017, 48, 9–27. [Google Scholar] [CrossRef]
- El-Azab, N.; Elmahalaway, A.M. A histological and immunohistochemical study on testicular changes induced by sliver nanoparticles in adult albino rats and the possible protective role of camel milk. Egypt. J. Histol. 2020, 42, 1044–1058. [Google Scholar] [CrossRef]
- Abu-Taweel, G.M.; Albetran, H.M.; Al-Mutary, M.G.; Ahmad, M.; Low, I.M. Alleviation of silver nanoparticle-induced sexual behavior and testicular parameters dysfunction in male mice by yttrium oxide nanoparticles. Toxicol. Rep. 2021, 8, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- Sundarraj, K.; Manickam, V.; Raghunath, A.; Periyasamy, M.; Viswanathan, M.P.; Perumal, E. Repeated exposure to iron oxide nanoparticles causes testicular toxicity in mice. Environ. Toxicol. 2017, 32, 594–608. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.H.M.; Ibrahim, I.A.; Shehata, M.A.; Mohammed, H.O. Histopathological and genetic study on the protective role of β-carotene on testicular tissue of adult male albino rats treated with titanium dioxide nanoparticles. Afr. J. Pharm. Pharmacol. 2020, 14, 9–19. [Google Scholar]
- Yousef, M.I. Reproductive toxicity of aluminum oxide nanoparticles and zinc oxide nanoparticles in male rats. Nanoparticle 2019, 1, 3. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Xiao, S.; Liu, X.; Chen, X.; Xia, Q.; Lei, S.; Li, H.; Zhong, Z.; Xiao, K. The Effects of Gold Nanoparticles on Leydig Cells and Male Reproductive Function in Mice. Int. J. Nanomed. 2020, 15, 9499–9514. [Google Scholar] [CrossRef]
- Nazari, M.; Talebi, A.R.; Hosseini-Sharifabad, M.; Abbasi, A.; Khoradmehr, A.; Danafar, A. Acute and chronic effects of gold nanoparticles on sperm parameters and chromatin structure in Mice. Int. J. Reprod. Biomed. 2016, 14, 637–642. [Google Scholar] [CrossRef]
- Yousefalizadegan, N.; Mousavi, Z.; Rastegar, T.; Razavi, Y.; Najafizadeh, P. Reproductive toxicity of manganese dioxide in forms of micro- and nanoparticles in male rats. Int. J. Reprod. Biomed. 2018, 17, 361–370. [Google Scholar] [CrossRef]
- Gupta, A.; Kumar, A.; Naqvi, S.; Flora, S.J.S. Chronic exposure to multi-metals on testicular toxicity in rats. Toxicol. Mech. Methods 2021, 31, 53–66. [Google Scholar] [CrossRef]
- Cox, A.; Vinciguerra, D.; Re, F.; Magro, R.D.; Mura, S.; Masserini, M.; Couvreur, P.; Nicolas, J. Protein-functionalized nanoparticles derived from end-functional polymers and polymer prodrugs for crossing the blood-brain barrier. Eur. J. Pharm. Biopharm. 2019, 142, 70–82. [Google Scholar] [CrossRef]
- Flieger, J.; Franus, W.; Panek, R.; Szymańska-Chargot, M.; Flieger, W.; Flieger, M.; Kołodziej, P. Green Synthesis of Silver Nanoparticles Using Natural Extracts with Proven Antioxidant Activity. Molecules 2021, 26, 4986. [Google Scholar] [CrossRef]
Specimen | n | Ca | Mg | Zn | Se | Fe | Cu | Other Metals | Ref. |
---|---|---|---|---|---|---|---|---|---|
Blood | 96 | 48.7–52.0 | 73.7–76.6 | 6.76–7.10 | 0.230–0.246 | 449–469 | 0.89–1.00 | Pb, Cd, Hg | [78] |
Serum | 33.5–36.0 | 22.0–24.2 | 1.21–1.38 | 0.064–0.068 | 3.00–3.40 | 0.62–0.68 | |||
SP | 59.0–62.3 | 71.7–75.4 | 138–152 | 0.034–0.035 | 269–283 | 148–165 | |||
SP | 482 | - | - | 0.117 | 0.026 | 0.121 | 0.063 | 18 metals | [79] |
SP | 19 | 240.49 ± 50.5 | 60.85 ± 10.89 | 140.08 ± 20.01 | - | - | - | Na, K | [80] |
SP | 47 | - | - | 1.24–1.53 | - | - | - | - | [81] |
Semen | 22 | - | - | - | 0.054 ± 0.023 | - | - | Cd, Pb | [82] |
SP | - | - | - | 0.040 ± 0.016 | - | - | |||
SP | 40 | - | 13.14 ± 3.65 | 141.7 ± 30.23 | 0.061 ± 0.018 | - | 165.56 ± 40.13 | - | [83] |
SP | - | - | - | 18–301 | 0.021–0.191 | 0.05–0.63 | 0.03–0.3 | Mn, I, Pb, Cd, Mo | [84] |
Semen | 97 | - | - | 7.626 ± 0.090 | - | - | - | - | [85] |
Serum 1 | 30 | 93.09 | 22.07 | 3.53 | 0.49 | 2.26 | 0.90 | Na, K | [86] |
SP 1 | 103.78 | 25.72 | 1.10 | 0.09 | 2.66 | 0.87 | |||
SP | 28 | - | - | - | 0.07 ± 0.020 | - | 0.195 ± 0.045 | Mn, Pb, As | [87] |
SP | 96 | - | 550.12 ± 282.51 | 188.42 ± 99.61 | - | 2.02 ± 0.74 | 1.29 ± 0.58 | - | [88] |
SP | 64 | - | - | 0.127 ± 0.075 | 0.012 ± 0.019 | - | 0.041 ± 0.041 | As, Sb, Hg, Al, Cd, Ni, Pb, V Mn, Ti, Cr, Mo, | [89] |
SpermDNA | - | - | 0.018 ± 0.042 | - | - | 0.00011 ± 0.0003 | - | ||
Blood | 30 | - | - | 0.213 ± 0.139 | - | - | 0.107 ± 0.084 | Pb, Cd | [90] |
SP | - | - | 0.131 ± 0.107 | - | - | 0.106 ± 0.094 |
Organ or System/Role | Action | Zn Deficiency |
---|---|---|
HPG axis/ hormone production | Inhibition of 5α reductase and affinity to LH receptor | Low serum T, testicular failure, changed sex steroid hormone receptor levels, damaged LH receptors, increase in circulating LH, decrease in T synthesis in Leydig cells |
Antioxidant defense system/ free-radical scavenging | Inhibition of DNases and activity of Cu/Zn SOD | Oxidative damages (lipids, proteins, DNA), increase in LPO, increased MDA in the serum and seminal plasma and reduced levels of SOD, damage to the Leydig cells, apoptosis |
cell physiology/ anti-apoptotic agent | Inhibition of caspases, Bcl-2/Bax ratio increase | DNA fragmentation, apoptosis, decreased population of the Leydig cells, germ cells, cell and tissue death |
Epigenetics/ gene regulation, DNA methylation | Zn expression Zn transport binding proteins, testis-GC specific genes | Reduced reproductive potential, delayed sperm maturation |
Testes/ testes development | participation in spermatogenesis (mitosis of spermatogonia and spermatocyte meiosis) | Retarded genital development, reduced testes weight, changes in the structure of Leydig cells, lower sperm concentration of the ejaculate, hyperviscosity of semen |
Spermatozoa physiology/ cell metabolism | lipid and protein metabolism, oxygen consumption, nucleic acid synthesis, epithelial membrane integrity, chromatin condensation | Abnormal morphology, count, viability, motility of sperm, head–tail attachment problem, inhibition of spermatid differentiation, dysfunction of the zinc finger motif Cys2/His2 of P2 protamines |
Fertilization/ embryonic formation | capacitation, the acrosome reaction | Change in pH, proteasomal activities, transfer of the amino peptidase from prostasomes, lower sperm membrane fluidity, improper fertilization |
Model | Exposure | Cell Lines | Accumulation | Observations |
---|---|---|---|---|
In vitro Sperm (boar, buffalo, bull, human, mouse, ram, pig) | 0.05–1000 µg/mL/very short (<24 h), short (24–72 h), and long time (>96 h). | Germ cells: LCs, TM-3, PTCs, SCs, ISP-1, SSCs, SCs-GCs, CPCs, SPTs, C18-4 | Plasma membrane, head, midpiece, the tail of sperm, cytoplasm, cytoskeleton, nucleus, mitochondria | Damage to membrane integrity, potential, ion permeability, signal transduction; abnormal morphology (absent acrosome, head, disrupted chromatin heads, curved midpieces, tails), LPO, mitochondria (reduction in oxygen consumption and ATP levels); damage to mtDNA, the polymorphic profile of DNA; morphological changes (cell shrinkage, chromatin condensation, disorganization of microtubule network, necrosis); down-regulation of genes involved in cell proliferation, meiosis, and differentiation; induction of autophagy and apoptosis; reduced motility in spermatozoa, defects in acrosomal reaction, the ability to penetrate the oocyte, and blastocyst formation |
Sertoli cells | Cytoplasm, nucleus | Loss of membrane integrity, membrane potential (dysfunction of BTB-related proteins), morphological changes (cellular and nuclear shrinkage, chromatin fragmentation, endoplasmic reticulum expansion, mitochondrial swelling, accumulation of autophagosomes, disordered microfilament networks), mitochondrial damage, DNA damage, decrease in cell viability, cell apoptosis | ||
Leydig cells | Cytoplasm, nucleus | Steroidogenesis inhibition (testosterone production), morphological abnormalities, LPO, loss of membrane integrity, mitochondrial damage, DNA damage, reduced viability, autophagy, and apoptosis | ||
In vivo White rabbit, rat (albino, Fisher, Sprague Dawley), Wistar | (0.001 to 2000 mg/kg)/acute (1–14 days), subacute (repeated doses 14–28 days), subchronic (repeated doses 28–90 days), chronic (repeated doses 90 days) | Testes | Brain, organs of the reproductive system (testes, epididymis, prostate, seminal vesicle, the seminiferous tubules, interstitial Leydig cells, Sertoli cells, spermatogonia, spermatocytes, spermatids, sperm cells), other organs (liver, spleen, kidneys, lungs) | Fertility rate decrease; testicular weight reduction; sperm quantity/quality (increase in sperm DNA damage, morphological abnormalities, motility, mitochondrial activity, and acrosome integrity); histopathological changes (intracellular vacuolations; degeneration, atrophy, and necrosis of germ cells, Sertoli cells, and Leydig cells; irregularities in plasma membrane; nuclear chromatin loss; mitochondria swelling and cristae disappearance; dilated endoplasmic reticulum; and increase in lysosomes), morphometric alterations of germinal epithelium; decline in the number of spermatogonia, spermatids, Sertoli and Leydig cells; impairments in spermatogenesis (reductions in germ cell content, reductions in daily sperm production and sperm count in testes and epididymis); changes in the expression of apoptosis-related proteins; changes in testosterone levels (plasma/serum, intratesticular testosterone) |
HPG axis | Hormonal imbalance (GnRH, LH, FSH, prolactin, inhibin, DHT, estrogen, testosterone); changes of the transcript expression of genes involved in the regulation of the HPT axis (Gnrh, Esr1, Esr2, Ar, Inhbb) in hypothalamic, pituitary, and testicular tissues | |||
epididymis | Histopathological changes (hyperplasia of epithelial cells, the lining of the duct of epididymis, cell pyknosis, necrosis and abscission, vacuolar cytoplasm in the cauda of principal cells, increased fibrotic tissues, infiltration of connective tissues and inflammatory cells, and interstitial congestion with ducts presenting empty lumen lacking spermatozoa) Decrease in the mitochondrial activity of epididymal sperm (reduction in the number of sperm in the lumen of epididymal duct, change in epididymis weight) and changes in the epididymal sperm (reduced sperm concentration in the cauda, motility, and acrosome integrity, and increases in DNA damage) |
Model | Expose | Doses | Findings | Ref. |
---|---|---|---|---|
Copper oxide nanoparticles (CuO-NPs) | ||||
Male albino mice BALB/c | Oral intake | 25, 35 mg/kg BW | Reduced proliferative activity and differentiation in the potential of epithelial cells; reduction in the number of Leydig cells, the incidence of necrosis, damage in organs (testes, epididymis, and seminal vesicles); spermatogenesis: low number of sperm, distorted sperm leading to the formation of embryos with some abnormalities; MDA and caspase-3 increased; Ki67 protein decreased; CD68 protein increased; reduction in the seminal vesicle, increased prostate size | [274] |
Zinc oxide nanoparticles (ZnO-NPs) | ||||
New Zealand rabbit spermatozoa | Incubation | 6–391 mg/mL per 0, 1, 2, 3 h | Spermatozoa membrane integrity decrease, negative dose-dependent effect on spermatozoa motility and viability | [275] |
Male mice | Oral administration | 50, 150, 450 mg/kg for 14 days | Detachment, atrophy, and vacuolization of germ cells; vacuolization of Sertoli and Leydig cells; decrease in the number of sperm in the epididymis; decrease in the concentration of T in serum; up-regulated IRE1α, XBP1s, BIP, and CHOP genes; increase in the expression of caspase-3; reduced body weight; increased relative testicular weight and relative epididymis weight in a dose-dependent manner | [276] |
Adult albino rats | Oral subacute | 422 mg/kg/day for 4 weeks | Congestion in blood vessels; detached germinal epithelium from the basement membrane; absence of spermatozoa in seminiferous tubules; fragmentation of DNA in testicular and prostatic tissue; increase in the mean area percentage of iNOs immunoreactions; testicular and prostatic tissue inflammatory cytokines; elevation in serum level of MDA; reduction in GSH, CAT, and SOD activities | [277] |
Albino rats | Orally | 100 and 400 mg/kg/day for 12 weeks | Disorganization, vacuolation, and detachment of germ cells in testicular tissue; decrease in sperm cell count, sperm motility, live percentage of sperm and normal sperm; decrease in serum testosterone level and antioxidant enzymes activity (SOD and CAT) and the GSH-Px level; increase in LPO in the affected testes; decrease in 3β-HSD, 17β-HSD, and Nr5A1 transcripts; quercetin—beneficial for preventing or ameliorating ZnO-NP reproductive toxicities | [227] |
Male NMRI mice | Orally | 5, 50, 300 mg/kg/day for 35 days | Spermatogenetic factors: change in the number and motility of sperm, decrease in the diameter and height of the seminiferous tubules, blocking of the maturity of sperm cell lines, epithelial vacuolization, increase in sloughing of germ cells and their detachment, formation of multinucleated giant cells in germinal epithelium | [278] |
Semen from healthy persons | Incubation | 10–1000 µg/mL (37 °C) for 45–180 min. | Dose- and time-dependent cytotoxicity; maximum cell death percentage—20.8%, 21.2%, and 33.2% after 45, 90, and 180 min, respectively Highest concentration (1000 µg/mL) resulted in highest toxicity | [279] |
Sertoli (TM-4) and spermatocyte (GC2-spd) cell lines (in vitro models) | - | 8 μg/mL (sublethal dose) | Induced oxidative stress in both cells lines (decreased glutathione level and increased MDA level) Down-regulated expression of BTB proteins in Sertoli cells, increased TNF-α secretion, DNA damage in germ cells and GC2-spd cells, S phase arrest, lower expressions of BTB proteins (ZO-1, occludin, claudin-5, and connexin-43) | [280] |
Male rats | Intraperitoneal i.p. injected | 5 mg/kg once a week for 8 weeks | Group treated with Cis and ZnO-NPs: decrease in ROS BTB proteins restoration, enhanced architecture of the testes, and increased sperm DNA integrity | [272] |
Nickel nanoparticles (Ni-NPs) | ||||
Male Sprague Dawley rats | Orally | 5, 15, 45 mg/kg/day for 10 weeks | Increased FSH and LH, lowered estradiol (E2), serum levels decreased, the ratio of epididymis weight over body weight increased, motility of the sperm changed, diminished shedding of epithelial cells of the raw seminiferous tubules, disordered arrangement of cells in the tubes, cell apoptosis | [281] |
BALB/c mice (in vivo),GC-1 cells(in vitro) | Orally/incubation | 5, 15, and 45 mg/kg/day | In vivo: serum T, FSH, LH, and sperm count decreased; sperm abnormality; expression of Drp1, Pink1, and Parkin proteins increased; seminiferous tubules of the testes changed In vitro: MMP, ATP, and cell viability decreased; apoptosis; accumulation of ROS; expression of Drp1, Pink1, Parkin, Bax, caspase-9, and caspase-3 proteins; expression of Bcl-2; Bax/Bcl-2 ratio increased | [282] |
BALB/c mice | Intratracheal instillation | 0.1 mL/10 g once a week for 28 days | Changes in sperm deformity and serum reproductive hormones, apoptotic cells number increased; testicular spermatogenic cells damage; expressions of proteins (Drp1, Pink1, Parkin) increased | [283] |
Silver nanoparticles (Ag-NPs) | ||||
Wistar rats | Oral exposure | 15 and 50 µg/kg BW | Weight not changed, growth less diminished, sperm reserves in the epididymis and diminished sperm transit time, a reduction in sperm production, impairment in spermatogenesis, and lower sperm count | [284] |
Wistar rats | Intravenous administration | 5 and 10 mg/kg BW | Decrease in epididymal sperm count; increased level of DNA damage in germ cells; change in the testes’ seminiferous tubules morphometry, adipose tissue distribution, and the frequency of abnormal spermatozoa; no alteration in body and organ weight, 20 nm AgNP—more toxic than 200 nm ones | [285] |
Male rats | Sub-dermal | 50 mg/kg BW for 28 or 7 days | Reduction in BW, decrease in the relative weight of the testes and epididymis with the same dose exposure for 7 days, Ag-NP triggered hormonal imbalance and induced oxidative stress in the testes and epididymis, negatively affecting sperm parameters | [286] |
Wistar albino rats | Intraperitoneal injection | 100 mg/kg/day for 7 days 1000 mg/kg/day for 7 or 28 days | Congestion of blood vessels, detachment of the germinal epithelium and distortion in seminiferous tubules, reduction in the germinal epithelium, absence of spermatozoa in shrunk seminiferous tubules, tissue damage increased with increased dose and duration of exposure | [287] |
Male rats | Intraperitoneally injected | 2 or 4 mg/kg BW | Damaging changes of the seminiferous tubules, vacuolation in the seminiferous tubules with a reduced number of spermatogenic cell lines (at a low NPs dose), increased reduction in spermatogenic cell lines with vacuolation in germinal epithelial cells and basement membrane damage, detachment from the surrounding tubules, severe congestion in blood vessels, and few Leydig cells in the interstitial tissue (at high NPs doses), protective role of camel milk for the testes damaged by AgNPs | [288] |
Male mice | Intraperitoneally injection | 0.2 mL once a week at a dose of 40 mg/kg of BW | Sexual behavior, oxidative defense parameters, sperm count, and motility of the sperm, the apoptotic cells in testicular cross-sections, and TBARS level increased; YO-NPs with protective effects, lowering of Ag-NPs toxicity, no difference in RW | [289] |
Spermatozoa (BDF1) mice | Addition | 0.1, 1, 10, or 50 μg/mL incubated at 37 °C for 3 h | Sperm viability and the acrosome reaction inhibition in a dose-dependent manner, increased sperm mitochondrial copy numbers, morphological abnormalities, mortality decreased, decrease in the rate of oocyte fertilization and blastocyst formation, lower expression of trophectoderm-associated and pluripotent marker genes in blastocysts | [268] |
Iron oxide nanoparticles (Fe2O3-NPs) | ||||
Male mice | Intraperitoneal exposure | 25 and 50 mg/kg once a week for 4 weeks | Sloughing and detachment of germ cells and vacuolization in seminiferous tubules of the testicular tissues; accumulation of NPs; increased ROS species, LPO, protein carbonyl content, GPx activity, and NO levels; decrease in SOD, CAT, glutathione, and vitamin C levels; increased serum T levels, expression of Bax, cleaved-caspase-3, and cleaved-PARP; cell apoptosis; damage to the seminiferous tubules; decrease in the number of spermatogonia, primary spermatocytes, spermatids | [290] |
Titanium dioxide nanoparticles (TiO2-NPs) | ||||
Male albino rats | Intraperitoneal injection | 300 mg/kg for 14 days | Increases in the thickness of interstitial space, congestion of blood vessels, and detachment of the germinal epithelium from the basement membrane in the seminiferous tubules, beneficial effects of beta carotene administration | [291] |
Sertoli cell culture | Incubation | 5, 15, or 30 lg/mL for 24 h | Reduction in cell viability, lactate dehydrogenase release, and induction of apoptosis or death of Sertoli cells; elevation in ROS species; reductions in SOD, CAT, and GSH-Px activities; decreases in DWm, release of cytochrome c into the cytosol; upregulation of cytochrome c, Bax, caspase-3, glucose-regulated protein 78, and C/EBP homologous protein and caspase-12 protein expression; and downregulation of bcl-2 protein expression | [260] |
Aluminum oxide nanoparticles (Al2O3-NPs) | ||||
Male rats | Oral | 70 mg/kg BW | Distortion in seminiferous tubules; wide spaces among interstitial cells (Al2O3-NPs); irregularity in the seminiferous tubules’ shape, empty lumina; and reduced thickness of the epithelium lining (ZnO-NPs; 100 mg/kg BW); co-administration of Al2O3-NPs, ZnO-NPs caused severe damage to the seminiferous tubules and basement membrane | [292] |
Gold nanoparticles (Au-NPs) | ||||
Male mice BABL/c (in vivo), TM3 cells (in vitro) | Intravenously injected | 0.17 or 0.50 mg/kg/day 0 for 14 days | Accumulation of NPs in the testes; reduced plasma T; increased rate of epididymal sperm malformation; induced autophagosome formation; enhanced ROS production; disrupted cell cycle, DNA damage, and cytotoxicity in TM3 Leydig cells; inhibition of the synthesis of T in TM3 cells; reduced expression of 17α-hydroxylase | [293] |
Male bulb-c mice | Intraperitoneal injection | 40 and 200 µg/kg/day for 7 and 35 days | Sperm motility and morphology decrease, increase in abnormal spermatozoa (TB, AB, and CMA3), increase in instability of chromatin and the rate of sperm DNA damage | [294] |
TM-4 Sertoli cells | Addition of gold nanorods | 0 and 10 nM for 24 h | Decreased glycine synthesis, membrane permeability, mitochondrial membrane potential, and disruption of BTB factors in TM-4 Sertoli cells; aberrant expression of imprinted genes in TM-4 Sertoli cells. | [267] |
Zinc nanoparticles (Zn-NPs) | ||||
Holstein bull semen (in vitro, in vivo) | Incubation | 10−6–10−2 M | Plasma membrane integrity improved in the semen, proportions of live spermatozoa with active mitochondria increased, level of MDA lowered, Sperm—total and progressive motility, sperm viability increased DNA fragmentation, pregnancy rate—not changed, blastocyst rate increased, embryo development rate (in vitro)—no change | [248] |
Manganese Dioxide nanoparticles (MnO2-NPs) | ||||
Albino Wistar rats | Sub-chronic injection | 100 mg/kg/day for 4 weeks | Decrease in the number of sperm, spermatogonia, spermatocytes, the diameter of seminiferous tubules, motility of the sperm; no difference in the weight of prostate, epididymis, left testicle, estradiol, and T levels | [295] |
Selenium nanoparticles (Se-NPs) | ||||
Taihang black goats | Oral | 0.3 mg/kg | Increase in final BW, total blood, serum and tissue Se concentration, serum GSH-Px, SOD, CAT, MDA | [249] |
Male Boer goats | Oral | 0.3 mg/kg for 12 weeks | Testicular Se level, semen GPx, and ATPase activity increased; semen volume, density, motility, and pH—not affected; membrane system integrity improved; positive effects of nano-Se diet supplementation on sperm abnormality, abnormal spermatozoal mitochondria, membrane system integrity | [250] |
Cerium oxide nanoparticles (CeO2 NPs) | ||||
The ejaculates of Sarda rams | Incubation | 0.44 and 220 μg/mL | A beneficial effect on motility parameters, the velocity of sperm cells enhanced, beneficial effects on the integrity of plasma membranes of spermatozoa, no change in production of ROS after 96 h of incubation—at 4 °C, the integrity of DNA was constant | [240] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciejewski, R.; Radzikowska-Büchner, E.; Flieger, W.; Kulczycka, K.; Baj, J.; Forma, A.; Flieger, J. An Overview of Essential Microelements and Common Metallic Nanoparticles and Their Effects on Male Fertility. Int. J. Environ. Res. Public Health 2022, 19, 11066. https://doi.org/10.3390/ijerph191711066
Maciejewski R, Radzikowska-Büchner E, Flieger W, Kulczycka K, Baj J, Forma A, Flieger J. An Overview of Essential Microelements and Common Metallic Nanoparticles and Their Effects on Male Fertility. International Journal of Environmental Research and Public Health. 2022; 19(17):11066. https://doi.org/10.3390/ijerph191711066
Chicago/Turabian StyleMaciejewski, Ryszard, Elżbieta Radzikowska-Büchner, Wojciech Flieger, Kinga Kulczycka, Jacek Baj, Alicja Forma, and Jolanta Flieger. 2022. "An Overview of Essential Microelements and Common Metallic Nanoparticles and Their Effects on Male Fertility" International Journal of Environmental Research and Public Health 19, no. 17: 11066. https://doi.org/10.3390/ijerph191711066
APA StyleMaciejewski, R., Radzikowska-Büchner, E., Flieger, W., Kulczycka, K., Baj, J., Forma, A., & Flieger, J. (2022). An Overview of Essential Microelements and Common Metallic Nanoparticles and Their Effects on Male Fertility. International Journal of Environmental Research and Public Health, 19(17), 11066. https://doi.org/10.3390/ijerph191711066