Characterization and Mechanistic Study of Heavy Metal Adsorption by Facile Synthesized Magnetic Xanthate-Modified Chitosan/Polyacrylic Acid Hydrogels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MXCS/PAA
2.3. Analytic Methods
3. Results and Discussion
3.1. Preparation and Characterization
3.2. Evaluation of Adsorption and Desorption Performance
3.3. Desorption and Regeneration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Veloso, S.R.S.; Andrade, R.G.D.; Castanheira, E.M.S. Review on the advancements of magnetic gels: Towards multifunctional magnetic liposome-hydrogel composites for biomedical applications. Adv. Colloid Interface 2021, 288, 102351. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Huang, Q.; Du, J. Recent advances in magnetic hydrogels. Polym. Int. 2016, 65, 1365–1372. [Google Scholar] [CrossRef]
- Zhang, K.; Luo, X.; Yang, L.; Chang, Z.; Luo, S. Progress toward hydrogels in removing heavy metals from water: Problems and solutions—A review. ACS ES&T Water 2021, 1, 1098–1116. [Google Scholar]
- Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 2012, 211, 317–331. [Google Scholar] [CrossRef]
- Zhou, W.; Deng, J.; Qin, Z.; Huang, R.; Wang, Y.; Tong, S. Construction of MoS2 nanoarrays and MoO3 nanobelts: Two efficient adsorbents for removal of Pb(II), Au(III) and methylene Blue. J. Environ. Sci. 2022, 111, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Behbahani, E.S.; Dashtian, K.; Ghaedi, M. Fe3O4-FeMoS4: Promise magnetite LDH-based adsorbent for simultaneous removal of Pb (II), Cd (II), and Cu (II) heavy metal ions. J. Hazard. Mater. 2021, 410, 124560. [Google Scholar] [CrossRef]
- Liu, L.; Liu, S.; Zhao, L.; Su, G.; Liu, X.; Peng, H.; Xue, J.; Tang, A. Fabrication of novel magnetic core-shell chelating adsorbent for rapid and highly efficient adsorption of heavy metal ions from aqueous solution. J. Mol. Liq. 2020, 313, 113593. [Google Scholar] [CrossRef]
- Chen, L.; Wu, P.; Chen, M.; Lai, X.; Ahmed, Z.; Zhu, N.; Dang, Z.; Bi, Y.; Liu, T. Preparation and characterization of the eco-friendly chitosan/vermiculite biocomposite with excellent removal capacity for cadmium and lead. Appl. Clay Sci. 2018, 159, 74–82. [Google Scholar] [CrossRef]
- Abd El-Monaem, E.M.; Eltaweil, A.S.; Elshishini, H.M.; Hosny, M.; Abou Alsoaud, M.M.; Attia, N.F.; El-Subruiti, G.M.; Omer, A.M. Sustainable adsorptive removal of antibiotic residues by chitosan composites: An insight into current developments and future recommendations. Arab. J. Chem. 2022, 15, 103743. [Google Scholar] [CrossRef]
- Cho, D.W.; Jeon, B.H.; Chon, C.M.; Kim, Y.; Schwartz, F.W.; Lee, E.S.; Song, H. A novel chitosan/clay/magnetite composite for adsorption of Cu(II) and As(V). Chem. Eng. J. 2012, 200, 654–662. [Google Scholar] [CrossRef]
- Ahmadi, M.; Foladivanda, M.; Jaafarzadeh, N.; Ramezani, Z.; Ramavandi, B.; Jorfi, S.; Kakavandi, B. Synthesis of chitosan zero-valent iron nanoparticles-supported for cadmium removal: Characterization, optimization and modeling approach. J. Water Supply Res. Technol. 2017, 66, 116–130. [Google Scholar] [CrossRef]
- Huang, Y.; Hu, C.; An, Y.; Xiong, Z.; Hu, X.; Zhang, G.; Zheng, H. Magnetic phosphorylated chitosan composite as a novel adsorbent for highly effective and selective capture of lead from aqueous solution. J. Hazard. Mater. 2021, 405, 124195. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, Y.; Yang, A.; Zhu, Q.; Sun, H.; Sun, P.; Yao, B.; Zang, Y.; Du, X.; Dong, L. Xanthate-Modified Magnetic Fe3O4@SiO2-based polyvinyl alcohol/chitosan composite material for efficient removal of heavy metal ions from water. Polymers 2022, 14, 1107. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ouyang, X.K.; Yang, L.Y. Adsorption of Pb(II) from aqueous solutions using crosslinked carboxylated chitosan/carboxylated nanocellulose hydrogel beads. J. Mol. Liq. 2021, 322, 114523. [Google Scholar] [CrossRef]
- Gao, C.; Wang, X.L.; An, Q.D.; Xiao, Z.Y.; Zhai, S.R. Synergistic preparation of modified alginate aerogel with melamine/chitosan for efficiently selective adsorption of lead ions. Carbohydr. Polym. 2021, 256, 117564. [Google Scholar] [CrossRef]
- Sun, X.; Yang, L.; Xing, H.; Zhao, J.; Li, X.; Huang, Y.; Liu, H. Synthesis of polyethylenimine-functionalized poly(glycidylmethacrylate) magnetic microspheres and their excellent Cr(VI) ion removal properties. Chem. Eng. J. 2013, 234, 338–345. [Google Scholar] [CrossRef]
- Li, Q.; Liu, G.; Qi, L.; Wang, H.; Ye, Z.; Zhao, Q. Heavy metal-contained wastewater in China: Discharge, management and treatment. Sci Total Environ. 2022, 808, 152091. [Google Scholar] [CrossRef]
- Ngah, W.S.W.; Teong, L.C.; Hanafiah, M.A.K.M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydr. Polym. 2011, 83, 1446–1456. [Google Scholar] [CrossRef]
- Venkateswarlu, S.; Kumar, S.H.; Jyothi, N.V.V. Rapid removal of Ni (II) from aqueous solution using 3-Mercaptopropionic acid functionalized bio magnetite nanoparticles. Water Resour. Ind. 2015, 12, 1–7. [Google Scholar] [CrossRef]
- Ngah, W.; Fatinathan, S. Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan–GLA beads and chitosan–alginate beads. Chem. Eng. J. 2008, 143, 62–72. [Google Scholar] [CrossRef]
- Huang, X.; Yang, J.; Wang, J.; Bi, J.; Xie, C.; Hao, H. Design and synthesis of core–shell Fe3O4@ PTMT composite magnetic microspheres for adsorption of heavy metals from high salinity wastewater. Chemosphere 2018, 206, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Chen, N.; Feng, C.; Gao, Y.; Li, M. Xanthate-modified magnetic chitosan/poly (vinyl alcohol) adsorbent: Preparation, characterization, and performance of Pb(II) removal from aqueous solution. J. Taiwan Inst. Chem. Eng. 2017, 78, 485–492. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, H.; Hu, X.; Wu, Y.; Tang, X.; He, Q.; Peng, S. Enhanced selective adsorption of lead(II) from complex wastewater by DTPA functionalized chitosan-coated magnetic silica nanoparticles based on anion-synergism. J. Hazard. Mater. 2022, 422, 126856. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, X.; Hou, B.; Hao, C.; Li, X.; Wu, J. Construction of a lignosulfonate–lysine hydrogel for the adsorption of heavy metal ions. J. Agric. Food Chem. 2020, 68, 3050–3060. [Google Scholar] [CrossRef]
- Tang, W.W.; Zeng, G.M.; Gong, J.L.; Wang, X.Y.; Liu, Y.Y.; Liu, Z.F.; Chen, L.; Zhang, X.R.; Tu, D.Z. Simultaneous adsorption of atrazine and Cu (II) from wastewater by magnetic multi-walled carbon nanotube. Chem. Eng. J. 2012, 211, 470–478. [Google Scholar] [CrossRef]
- Zargoosh, K.; Abedini, H.; Abdolmaleki, A.; Molavian, M.R. Effective removal of heavy metal ions from industrial wastes using thiosalicylhydrazide-modified magnetic nanoparticles. Ind. Eng. Chem. Res. 2013, 52, 14944–14954. [Google Scholar] [CrossRef]
- Karami, H. Heavy metal removal from water by magnetite nanorods. Chem. Eng. J. 2013, 219, 209–216. [Google Scholar] [CrossRef]
- Gao, H.; Lv, S.; Dou, J.; Kong, M.; Dai, D.; Si, C.; Liu, G. The efficient adsorption removal of Cr (vi) by using Fe3O4 nanoparticles hybridized with carbonaceous materials. RSC Adv. 2015, 5, 60033–60040. [Google Scholar] [CrossRef]
- Cao, Y.; Huang, J.; Peng, X.; Cao, D.; Galaska, A.; Qiu, S.; Liu, J.; Khan, M.A.; Young, D.P.; Ryu, J.E.; et al. Poly (vinylidene fluoride) derived fluorine-doped magnetic carbon nanoadsorbents for enhanced chromium removal. Carbon 2017, 115, 503–514. [Google Scholar] [CrossRef]
- Lasheen, M.R.; El-Sherif, I.Y.; El-Wakeel, S.T.; Sabry, D.Y.; El-Shahat, M.F. Heavy metals removal from aqueous solution using magnetite Dowex 50WX4 resin nanocomposite. JMES 2017, 8, 503–511. [Google Scholar]
- Shekari, H.; Sayadi, M.H.; Rezaei, M.R.; Allahresani, A. Synthesis of nickel ferrite/titanium oxide magnetic nanocomposite and its use to remove hexavalent chromium from aqueous solutions. Surf. Interfaces 2017, 8, 199–205. [Google Scholar] [CrossRef]
- Al Nafiey, A.; Addad, A.; Sieber, B.; Chastanet, G.; Barras, A.; Szunerits, S.; Boukherroub, R. Reduced graphene oxide decorated with Co3O4 nanoparticles (rgo-Co3O4) nanocomposite: A reusable catalyst for highly efficient reduction of 4-nitrophenol, and Cr (VI) and dye removal from aqueous solutions. Chem. Eng. J. 2017, 322, 375–384. [Google Scholar] [CrossRef]
- Gong, Y.; Gai, L.; Tang, J.; Fu, J.; Wang, Q.; Zeng, E.Y. Reduction of Cr (VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles. Sci. Total Environ. 2017, 595, 743–751. [Google Scholar] [CrossRef]
- Srivastava, S.; Agrawal, S.B.; Mondal, M.K. Synthesis, characterization and application of Lagerstroemia speciosa embedded magnetic nanoparticle for Cr (VI) adsorption from aqueous solution. J. Environ. Sci. 2017, 55, 283–293. [Google Scholar] [CrossRef]
- Shakerian, K.F.; Esmaeili, H. Synthesis of cao/Fe3O4 magnetic composite for the removal of Pb (II) and Co (II) from synthetic wastewater. J. Serb. Chem. Soc. 2018, 83, 237–249. [Google Scholar] [CrossRef]
- Fan, C.; Li, K.; He, Y.; Wang, Y.; Qian, X.; Jia, J. Evaluation of magnetic chitosan beads for adsorption of heavy metal ions. Sci. Total Environ. 2018, 627, 1396–1403. [Google Scholar] [CrossRef]
- Liu, X.; Liu, M.; Zhang, L. Co-adsorption and sequential adsorption of the co-existence four heavy metal ions and three fluoroquinolones on the functionalized ferromagnetic 3D NiFe2O4 porous hollow microsphere. J. Colloid Interface Sci. 2018, 511, 135–144. [Google Scholar] [CrossRef]
- Yi, X.; He, J.; Guo, Y.; Han, Z.; Yang, M.; Jin, J.; Gu, J.; Ou, M.; Xu, X. Encapsulating Fe3O4 into calcium alginate coated chitosan hydrochloride hydrogel beads for removal of Cu (II) and U (VI) from aqueous solutions. Ecotoxicol. Environ. Saf. 2018, 147, 699–707. [Google Scholar] [CrossRef]
- Lin, Y.J.; Chen, J.J.; Cao, W.Z.; Person, K.M.; Ouyang, T.; Zhang, L.; Xie, X.; Liu, F.; Li, J.; Chang, C.T. Novel materials for Cr (VI) adsorption by magnetic titanium nanotubes coated phosphorene. J. Mol. Liq. 2019, 287, 110826. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, X.; Li, J.; Huang, R.; Guo, L.; Zhang, X.; Fan, Y.; Xie, X.; Zeng, G. Enhanced removal of As (III) and As (V) from aqueous solution using ionic liquid-modified magnetic graphene oxide. Chemosphere 2019, 234, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.; Yan, L.; Li, J.; Yang, Y.; Shan, L.; Meng, X.; Li, X.; Zhao, Y. Adsorption performance and mechanistic study of heavy metals by facile synthesized magnetic layered double oxide/carbon composite from spent adsorbent. Chem. Eng. J. 2020, 384, 123331. [Google Scholar] [CrossRef]
- Farooq, M.U.; Jalees, M.I. Application of magnetic graphene oxide for water purification: Heavy metals removal and disinfection. J. Water Process Eng. 2020, 33, 101044. [Google Scholar]
- Tao, H.C.; Li, S.; Zhang, L.J.; Chen, Y.Z.; Deng, L.P. Magnetic chitosan/sodium alginate gel bead as a novel composite adsorbent for Cu(II) removal from aqueous solution. Environ. Geochem. Health 2019, 41, 297–308. [Google Scholar] [CrossRef]
- Ren, Y.; Abbood, H.A.; He, F.; Peng, H.; Huang, K. Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: Preparation, characterization, and application in heavy metal adsorption. Chem. Eng. J. 2013, 226, 300–311. [Google Scholar] [CrossRef]
- Zhou, L.; Shang, C.; Liu, Z.; Huang, G.; Adesina, A.A. Selective adsorption of uranium(VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins. J. Colloids Interface Sci. 2012, 366, 165–172. [Google Scholar] [CrossRef]
- Xu, P.; Zheng, M.; Chen, N.; Wu, Z.; Xu, N.; Tang, J.; Teng, Z. Uniform magnetic chitosan microspheres with radially oriented channels by electrostatic droplets method for efficient removal of Acid Blue. J. Taiwan Inst. Chem. Eng. 2019, 104, 210–218. [Google Scholar] [CrossRef]
- Shao, Z.; Lu, J.; Ding, J.; Fan, F.; Sun, X.; Li, P.; Fang, Y.; Hu, Q. Novel green chitosan-pectin gel beads for the removal of Cu(II), Cd(II), Hg(II) and Pb(II) from aqueous solution. Int. J. Biol. Macromol. 2021, 176, 217–225. [Google Scholar] [CrossRef]
Adsorbent | Qm (mg/g) | Conditions | Ref. | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cu2+ | Pb2+ | Cd2+ | Zn2+ | Co2+ | Fe2+ | Ni2+ | Cr6+ | Ag2+ | Hg2+ | Cr3+ | As3+ | As5+ | pH | T (°C) | ||
MMWCNT | 38.9 | - | - | - | - | - | - | - | - | - | - | - | - | 9.0 | 25 | [26] |
MNPs | 76.9 | 188.7 | 107.5 | 51.3 | 27.7 | - | - | - | - | - | - | - | - | 6.0 | 25 | [27] |
MNR | 79.1 | 112.9 | 88.4 | 107.3 | - | 127.0 | 95.4 | - | - | - | - | - | - | 5.5 | 25 | [28] |
Fe3O4/G | - | - | - | - | - | - | - | 78.5 | - | - | - | - | - | - | 25 | [29] |
3 MPA@Fe3O4 MNP | - | - | - | - | - | - | 42.0 | - | - | - | - | - | - | 6.0 | 30 | [20] |
F-MC | - | - | - | - | - | - | - | 1423 | - | - | - | - | - | 1.0 | 25 | [30] |
Magnetite–Dowex 50WX4 | 416 | 380 | 398 | - | - | - | 384 | 400 | - | - | - | - | - | 5.5–7.0 | 25 | [31] |
FeNi3/TiO2 | - | - | - | - | - | - | - | 398 | - | - | - | - | - | 3.0 | 25 | [32] |
Magnetic reduced graphene oxide-cobalt oxide | - | - | - | - | - | - | - | 384 | - | - | - | - | - | 3.0 | 25 | [33] |
FeS-coated iron | - | - | - | - | - | - | - | 69.7 | - | - | - | - | - | 5.0 | 25 | [34] |
MNPLB | - | - | - | - | - | - | - | 434.8 | - | - | - | - | - | 2.1 | 35 | [35] |
CaO/Fe3O4 | - | 227.3 | - | - | 217.4 | - | - | - | - | - | - | - | - | 6.0 | 25 | [36] |
MCB | 122 | - | - | - | - | - | - | 81 | 107 | 306 | 63 | - | - | 4.0 | 30 | [37] |
Functionalized magnetic microsphere NiFe2O4 | 20.2 | - | 16.6 | 15.6 | - | - | - | - | - | - | 16.8 | - | - | 5.0 | 25 | [38] |
MNP-PTMT | - | 533.2 | 216.6 | - | - | - | - | - | - | 603.2 | - | - | - | 7.0 | 25 | [22] |
CCM | 143.3 | - | - | - | - | - | - | - | - | - | - | - | - | 6.0 | 25 | [39] |
MNP-PN-TN | - | - | - | - | - | - | - | 35.0 | - | - | - | - | - | 7.0 | 45 | [40] |
MGO-IL | - | - | - | - | - | - | - | - | - | - | - | 160.7 | 104.1 | 2.0 | 45 | [41] |
Magnetic layered double oxide/carbon | 192.7 | 359.7 | 386.1 | - | - | - | - | - | - | - | - | - | - | 6.0 | 25 | [42] |
MGO | 62.9 | 200.0 | - | 63.7 | - | - | 51.0 | - | - | - | 24.3 | - | - | 6.0–8.0 | 25 | [43] |
Fe3O4@SiO2@CS-P | 212.8 | - | - | - | - | - | - | - | - | - | - | - | - | 6.0 | 25 | [13] |
XMPC | 100 | 67 | 307 | - | - | - | - | - | - | - | - | - | - | 5.5 | 30 | [14] |
MCSB | 124.5 | - | - | - | - | - | - | - | - | - | - | - | - | 5.0 | 25 | [44] |
MXCS/PAA | 206 | 168 | 178 | 140 | 5.5 | 30 | This work |
Metal Ions | Pseudo-First Order | Pseudo-Second Order | Intra-Particle Diffusion | |||
---|---|---|---|---|---|---|
K1 (min−1) | R2 | K2 (mg/g min) | R2 | Ki (mg/g min1/2) | R2 | |
Cu(II) | 0.00804 | 0.96107 | 0.016520 | 0.98769 | 0.0653 | 0.97051 |
Cd(II) | 0.00878 | 0.97324 | 0.066478 | 0.99924 | 0.029 | 0.88909 |
Co(II) | 0.00496 | 0.89497 | 0.121432 | 0.99783 | 0.0205 | 0.77431 |
Pb(II) | 0.00756 | 0.92239 | 0.027117 | 0.99623 | 0.03539 | 0.75937 |
T (K) | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
Qm (mg/g) | KL (L/mg) | R2 | KF (mg/g) | bF | R2 | |
283 | 232.8045 | 0.000938 | 0.9988 | 0.3594 | 0.8669 | 0.9981 |
293 | 241.2348 | 0.000799 | 0.9998 | 0.2980 | 0.8833 | 0.9979 |
303 | 238.5657 | 0.000828 | 0.9990 | 0.3341 | 0.8648 | 0.9976 |
T (K) | K0 | ΔG (KJ·mol−1) | ΔH (KJ·mol−1) | ΔS (J·mol−1·k−1) |
---|---|---|---|---|
283 | 6.3789 | −4.5139 | ||
293 | 5.8974 | −4.3227 | 1.2221 | 19.4635 |
303 | 6.6160 | −4.6028 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, L.; Shan, C.; Liu, Y.; Sun, H.; Yao, B.; Gong, G.; Jin, X.; Wang, S. Characterization and Mechanistic Study of Heavy Metal Adsorption by Facile Synthesized Magnetic Xanthate-Modified Chitosan/Polyacrylic Acid Hydrogels. Int. J. Environ. Res. Public Health 2022, 19, 11123. https://doi.org/10.3390/ijerph191711123
Dong L, Shan C, Liu Y, Sun H, Yao B, Gong G, Jin X, Wang S. Characterization and Mechanistic Study of Heavy Metal Adsorption by Facile Synthesized Magnetic Xanthate-Modified Chitosan/Polyacrylic Acid Hydrogels. International Journal of Environmental Research and Public Health. 2022; 19(17):11123. https://doi.org/10.3390/ijerph191711123
Chicago/Turabian StyleDong, Liming, Chengyang Shan, Yuan Liu, Hua Sun, Bing Yao, Guizhen Gong, Xiaodong Jin, and Shifan Wang. 2022. "Characterization and Mechanistic Study of Heavy Metal Adsorption by Facile Synthesized Magnetic Xanthate-Modified Chitosan/Polyacrylic Acid Hydrogels" International Journal of Environmental Research and Public Health 19, no. 17: 11123. https://doi.org/10.3390/ijerph191711123
APA StyleDong, L., Shan, C., Liu, Y., Sun, H., Yao, B., Gong, G., Jin, X., & Wang, S. (2022). Characterization and Mechanistic Study of Heavy Metal Adsorption by Facile Synthesized Magnetic Xanthate-Modified Chitosan/Polyacrylic Acid Hydrogels. International Journal of Environmental Research and Public Health, 19(17), 11123. https://doi.org/10.3390/ijerph191711123