Application of Phosphate Materials as Constructed Wetland Fillers for Efficient Removal of Heavy Metals from Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Batch Adsorption Experiments
2.3. Selective Adsorption Experiments
2.4. Desorption Experiments
3. Results and Discussion
3.1. Adsorption Performances of Copper on Different Materials
3.2. The Removal Efficiency and Adsorption Kinetics of HMs on Three Phosphates
3.3. Adsorption Selectivity of Phosphates in Mixed HM Ions Solution
3.4. Adsorption Stability of HM on Phosphates
3.5. Potential Applications of Phosphates and Design of a Constructed Wetland System for HMs Removal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ayaz, T.; Khan, S.; Khan, A.Z.; Lei, M.; Alam, M. Remediation of industrial wastewater using four hydrophyte species: A comparison of individual (pot experiments) and mix plants (constructed wetland). J. Environ. Manag. 2020, 255, 109833. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Huang, J.C.; He, S.; Zhou, W. Enhancement of a constructed wetland water treatment system for selenium removal. Sci. Total Environ. 2020, 714, 136741. [Google Scholar] [CrossRef] [PubMed]
- Scholz, M.; Hedmark, Å. Constructed Wetlands Treating Runoff Contaminated with Nutrients. Water Air Soil Pollut. 2009, 205, 323. [Google Scholar] [CrossRef]
- Lu, L.-L.; Tian, S.-K.; Yang, X.-E.; Peng, H.-Y.; Li, T.-Q. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: The impact of citric acid and tartaric acid. J. Zhejiang Univ. Sci. B 2013, 14, 106–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hejna, M.; Moscatelli, A.; Stroppa, N.; Onelli, E.; Pilu, S.; Baldi, A.; Rossi, L. Bioaccumulation of heavy metals from wastewater through a Typha latifolia and Thelypteris palustris phytoremediation system. Chemosphere 2020, 241, 125018. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S. Effects of Heavy metals on plants and resistance mechanisms. Environ. Sci. Pollut. Res. 2003, 10, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Szopinski, M.; Sitko, K.; Gieron, Z.; Rusinowski, S.; Corso, M.; Hermans, C.; Verbruggen, N.; Malkowski, E. Toxic Effects of Cd and Zn on the Photosynthetic Apparatus of the Arabidopsis halleri and Arabidopsis arenosa Pseudo-Metallophytes. Front. Plant. Sci. 2019, 10, 748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stolpe, C.; Giehren, F.; Kramer, U.; Muller, C. Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant. Phytochemistry 2017, 139, 109–117. [Google Scholar] [CrossRef]
- Dang, Y.; He, H.; Zhao, D.; Sunde, M.; Du, H. Quantifying the Relative Importance of Climate Change and Human Activities on Selected Wetland Ecosystems in China. Sustainability 2020, 12, 912. [Google Scholar] [CrossRef] [Green Version]
- Herlihy, A.T.; Paulsen, S.G.; Kentula, M.E.; Magee, T.K.; Nahlik, A.M.; Lomnicky, G.A. Assessing the relative and attributable risk of stressors to wetland condition across the conterminous United States. Environ. Monit. Assess. 2019, 191, 17. [Google Scholar] [CrossRef] [Green Version]
- Shao, S.; Liu, H.; Tai, X.; Zheng, F.; Li, J.; Li, Y. Speciation and migration of heavy metals in sediment cores of urban wetland: Bioavailability and risks. Environ. Sci. Pollut. Res. Int. 2020, 27, 23914–23925. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Lin, Q.; Bao, K.; Zhao, H.; Zhang, Z.; Xing, W.; Lu, X.; Wang, G. Historical variation and recent ecological risk of heavy metals in wetland sediments along Wusuli River, Northeast China. Environ. Earth Sci. 2014, 72, 4345–4355. [Google Scholar] [CrossRef]
- Jiao, W.; Ouyang, W.; Hao, F.; Wang, F.; Liu, B. Long-term cultivation impact on the heavy metal behavior in a reclaimed wetland, Northeast China. J. Soils Sediments 2013, 14, 567–576. [Google Scholar] [CrossRef]
- Xu, T.; Weng, B.; Yan, D.; Wang, K.; Li, X.; Bi, W.; Li, M.; Cheng, X.; Liu, Y. Wetlands of International Importance: Status, Threats, and Future Protection. Int. J. Environ. Res. Public Health 2019, 16, 1818. [Google Scholar] [CrossRef] [Green Version]
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Laghrib, F.; Saqrane, S.; Lahrich, S.; El Mhammedi, M.A. Best of advanced remediation process: Treatment of heavy metals in water using phosphate materials. Int. J. Environ. Anal. Chem. 2019, 101, 1–17. [Google Scholar] [CrossRef]
- Gautam, R.K.; Mudhoo, A.; Lofrano, G.; Chattopadhyaya, M.C. Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. J. Environ. Chem. Eng. 2014, 2, 239–259. [Google Scholar] [CrossRef]
- Thawornchaisit, U.; Polprasert, C. Evaluation of phosphate fertilizers for the stabilization of cadmium in highly contaminated soils. J. Hazard. Mater. 2009, 165, 1109–1113. [Google Scholar] [CrossRef]
- Miretzky, P.; Fernandez-Cirelli, A. Phosphates for Pb immobilization in soils: A review. Environ. Chem. Lett. 2008, 6, 121–133. [Google Scholar] [CrossRef]
- Iconaru, S.L.; Motelica-Heino, M.; Guegan, R.; Beuran, M.; Costescu, A.; Predoi, D. Adsorption of Pb (II) Ions onto Hydroxyapatite Nanopowders in Aqueous Solutions. Materials 2018, 11, 2204. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Su, X.; Rizwan, M.S.; Zhu, Y.; Hu, H. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate incontaminated soils. Environ. Sci. Pollut. Res. Int. 2016, 23, 16845–16856. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.D.; Wahbi, A.; Ma, L.; Li, B.; Yang, Y.L. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. J. Hazard. Mater. 2009, 164, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.L.; Xie, Z.M.; Chen, J.J.; Jiang, J.T.; Su, Q.F. Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage (Brassica chinensis L.) in a mining tailing contaminated soil. J. Environ. Sci. 2008, 20, 1109–1117. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, J.J.; Zheng, H.L.; Wu, X.D.; Wang, Y.P.; Liu, M.Z.; Xiang, S.Y.; Cao, L.P.; Ruan, R.; Liu, Y.H. Characterization of additional zinc ions on the growth, biochemical composition and photosynthetic performance from Spirulina platensis. Bioresour. Technol. 2018, 269, 285–291. [Google Scholar] [CrossRef]
- Chen, J.; Song, Y.; Shan, D.; Han, E.-H. Modifications of the hydrotalcite film on AZ31 Mg alloy by phytic acid: The effects on morphology, composition and corrosion resistance. Corros. Sci. 2013, 74, 130–138. [Google Scholar] [CrossRef]
- Cao, X.D.; Ma, L.Q.; Rhue, D.R.; Appel, C.S. Mechanisms of lead, copper, and zinc retention by phosphate rock. Environ. Pollut. 2004, 131, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.Q.; Zhao, D.Y. In situ immobilization of Cu(II) in soils using a new class of iron phosphate nanoparticles. Chemosphere 2007, 68, 1867–1876. [Google Scholar] [CrossRef]
- Wang, F.; Lu, X.; Li, X. Selective removals of heavy metals (Pb2+, Cu2+, and Cd2+) from wastewater by gelation with alginate for effective metal recovery. J. Hazard. Mater. 2016, 308, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.; Hu, T.; Cang, L.; Zhou, D. Remediation of copper contaminated soil by using different particle sizes of apatite: A field experiment. Springerplus 2016, 5, 1182. [Google Scholar] [CrossRef] [Green Version]
- Elouear, Z.; Bouzid, J.; Boujelben, N.; Feki, M.; Jamoussi, F.; Montiel, A. Heavy metal removal from aqueous solutions by activated phosphate rock. J. Hazard. Mater. 2008, 156, 412–420. [Google Scholar] [CrossRef]
- Keleş, E.; Özer, A.K.; Yörük, S. Removal of Pb2+ from aqueous solutions by rock phosphate (low-grade). Desalination 2010, 253, 124–128. [Google Scholar] [CrossRef]
- Ivanets, A.I.; Kitikova, N.V.; Shashkova, I.L.; Oleksiienko, O.V.; Levchuk, I.; Sillanpää, M. Using of phosphatized dolomite for treatment of real mine water from metal ions. J. Water Process. Eng. 2016, 9, 246–253. [Google Scholar] [CrossRef]
- Saavedra-Mella, F.; Liu, Y.; Southam, G.; Huang, L. Phosphate treatment alleviated acute phytotoxicity of heavy metals in sulfidic Pb-Zn mine tailings. Environ. Pollut 2019, 250, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Mignardi, S.; Corami, A.; Ferrini, V. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn. Chemosphere 2012, 86, 354–360. [Google Scholar] [CrossRef]
- Lv, B.; Xing, M.; Yang, J. Speciation and transformation of heavy metals during vermicomposting of animal manure. Bioresour. Technol. 2016, 209, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zheng, G.; Chen, T.; Shi, X.; Wang, Y.; Nie, E.; Liu, J. Effect of phosphate amendments on improving the fertilizer efficiency and reducing the mobility of heavy metals during sewage sludge composting. J. Environ. Manag. 2019, 235, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Wang, X.; Chen, T.; Yang, J.; Yang, J.; Liu, J.; Shi, X. Passivation of lead and cadmium and increase of the nutrient content during sewage sludge composting by phosphate amendments. Environ. Res. 2020, 185, 109431. [Google Scholar] [CrossRef]
- Bolan, N.S.; Adriano, D.C.; Duraisamy, P.; Mani, A.; Arulmozhiselvan, K. Immobilization and phytoavailability of cadmium in variable charge soils. I. Effect of phosphate addition. Plant. Soil 2003, 250, 83–94. [Google Scholar] [CrossRef]
- Zwonitzer, J.C.; Pierzynski, G.M.; Hettiarachchi, G.M. Effects of Phosphorus Additions on Lead, Cadmium, and Zinc Bioavailabilities in a Metal-Contaminated Soil. Water Air Soil Pollut. 2003, 143, 193–209. [Google Scholar] [CrossRef]
- Seshadri, B.; Bolan, N.S.; Choppala, G.; Kunhikrishnan, A.; Sanderson, P.; Wang, H.; Currie, L.D.; Tsang, D.C.W.; Ok, Y.S.; Kim, G. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil. Chemosphere 2017, 184, 197–206. [Google Scholar] [CrossRef]
- Sun, R.-J.; Chen, J.-H.; Fan, T.-T.; Zhou, D.-M.; Wang, Y.-J. Effect of nanoparticle hydroxyapatite on the immobilization of Cu and Zn in polluted soil. Environ. Sci. Pollut. Res. 2018, 25, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Usman, A.R.A.; Al-Faraj, A.S.; Ahmad, M.; Sallam, A.; Al-Wabel, M.I. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants. Chemosphere 2018, 194, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cai, Z.; Sheng, S.; Pan, F.; Chen, F.; Fu, J. Comprehensive evaluation of substrate materials for contaminants removal in constructed wetlands. Sci. Total Environ. 2020, 701, 134736. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tang, S.; He, F.; Liu, Y.; Mao, W.; Guan, Y. Highly efficient and selective capture of heavy metals by poly(acrylic acid) grafted chitosan and biochar composite for wastewater treatment. Chem. Eng. J. 2019, 378, 122215. [Google Scholar] [CrossRef]
- Joseph, L.; Jun, B.M.; Flora, J.R.V.; Park, C.M.; Yoon, Y. Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere 2019, 229, 142–159. [Google Scholar] [CrossRef] [PubMed]
Phosphate Source | Abbreviation | Chemical Composition | Molecular Weight | Purity | Purity Level | Phosphorus Content |
---|---|---|---|---|---|---|
Hydroxyapatite | HAP | Ca5(PO4)3OH | 502.31 | ≥96% | AR | 17.77% |
Bone Meal | BM | Ca3(PO4)2 | 310.18 | ≥20% | - | 4.00% |
Calcium Phosphate | CP | Ca3(PO4)2 | 310.18 | ≥96% | AR | 19.18% |
Calcium Phosphate monobasic Monohydrate | CPM | Ca(H2PO4)2·H2O | 252.06 | ≥85% | AR | 20.91% |
Calcium Phosphate Hydrate | CPH | Ca(H2PO4)2·XH2O | 234.05 (as anhydrous) | ≥92% | AR | 24.37% |
Phytic Acid Sodium | PAS | C6H18O24P6·xNa + yH2O | 660.04 (anhydrous free acid basis) | ≥99% | AR | 27.89% |
HMs | Materials | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|---|
qe (mg/g) | k1 (h−1) | R2 | qe (mg/g) | k2 (g/mg/h−1) | R2 | ||
Cu (II) | HAP | 38.40 | 0.090 | 0.981 | 45.45 | 0.0023 | 0.998 |
CP | 34.14 | 0.111 | 0.985 | 39.22 | 0.0035 | 1.000 | |
PAS | 73.50 | 0.754 | 1.000 | 74.07 | 0.0870 | 1.000 | |
Zn (II) | HAP | 33.81 | 0.078 | 0.995 | 41.49 | 0.0016 | 0.994 |
CP | 27.00 | 0.074 | 0.983 | 33.11 | 0.0000 | 0.979 | |
PAS | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Hong, N.; Cen, Q.; Lu, J.; Wan, H.; Liu, W.; Zheng, H.; Ruan, R.; Cobb, K.; Liu, Y. Application of Phosphate Materials as Constructed Wetland Fillers for Efficient Removal of Heavy Metals from Wastewater. Int. J. Environ. Res. Public Health 2022, 19, 5344. https://doi.org/10.3390/ijerph19095344
Wu X, Hong N, Cen Q, Lu J, Wan H, Liu W, Zheng H, Ruan R, Cobb K, Liu Y. Application of Phosphate Materials as Constructed Wetland Fillers for Efficient Removal of Heavy Metals from Wastewater. International Journal of Environmental Research and Public Health. 2022; 19(9):5344. https://doi.org/10.3390/ijerph19095344
Chicago/Turabian StyleWu, Xiaodan, Ni Hong, Qingjing Cen, Jiaxin Lu, Hui Wan, Wei Liu, Hongli Zheng, Roger Ruan, Kirk Cobb, and Yuhuan Liu. 2022. "Application of Phosphate Materials as Constructed Wetland Fillers for Efficient Removal of Heavy Metals from Wastewater" International Journal of Environmental Research and Public Health 19, no. 9: 5344. https://doi.org/10.3390/ijerph19095344
APA StyleWu, X., Hong, N., Cen, Q., Lu, J., Wan, H., Liu, W., Zheng, H., Ruan, R., Cobb, K., & Liu, Y. (2022). Application of Phosphate Materials as Constructed Wetland Fillers for Efficient Removal of Heavy Metals from Wastewater. International Journal of Environmental Research and Public Health, 19(9), 5344. https://doi.org/10.3390/ijerph19095344