Distribution and Genesis of Organic Carbon Storage on the Northern Shelf of the South China Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Sampling
2.2. Test and Analysis
3. Test Results
3.1. Characteristics of Grain Size for Sediments
3.2. Distribution of Clay Minerals
3.3. Distribution and Storage Estimation of OC in Sediments
4. Discussion
4.1. OC Sources
4.2. Factor Analysis of Carbon Storage
4.2.1. The Effect of Sediment Particle Size on OC
4.2.2. Effects of Clay Minerals on OC
4.2.3. The Effect of the Deposition Rate on OC
5. Conclusions
- (1)
- The OC storage was accurately calculated to be 51 Tg in a sea area of approximately 8.63 × 104 km2 for the top 10 cm of sediments.
- (2)
- The source of OC in sediments in the study area was mainly input from the Pearl River. The content of OC in sediments is much higher in the Pearl River Estuary and the surrounding areas, and it is not strongly affected by sediment types. The sediment types in the western part of the study area have an important impact on the distribution of OC.
- (3)
- The correlation between smectite and OC decreased from the Pearl River Estuary to the offshore area, indicating that the OC from the land source on the smectite surface was exfoliated away easily.
- (4)
- The deposition rate is another important factor affecting the OC content in this area, for the higher OC content with a high deposition rate in the sea area.
- (5)
- Although the deposits of OC in the northern shelf of the SCS were obtained in this study, there are great discrepancies for the distribution and carbon storage mechanisms of OC in different areas, so the estimation of OC in a small area often results in large errors especially in the vast SCS; therefore, more accurate field investigations should be proposed to obtain the reserves of OC over larger areas.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schlesinger, W.; Bernhardt, E. Biogeochemistry: An Analysis of Global Change; Academic Press: Cambridge, MA, USA; Elsevier: Waltham, MA, USA, 2013; pp. 419–443. [Google Scholar]
- Laruelle, G.G.; Dürr, H.H.; Lauerwald, R.; Hartmann, J.; Slomp, C.P.; Goossens, N.; Regnier, P.A.G. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrol. Earth Syst. Sci. 2013, 17, 2029–2051. [Google Scholar] [CrossRef]
- Bauer, J.; Cai, W.J.; Raymond, P.; Bianchi, T.S.; Hopkinson, C.S.; Regnier, P.A.G. The Changing Carbon Cycle of the Coastal Ocean. Nature 2013, 504, 61–70. [Google Scholar] [CrossRef]
- Burdige, D.J. Preservation of Organic Matter in Marine Sediments: Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets? Chem. Rev. 2007, 107, 467–485. [Google Scholar] [CrossRef]
- Diesing, M.; Thorsnes, T.; Bjarnadóttir, L. Organic Carbon Densities and Accumulation Rates in Surface Sediments of the North Sea and Skagerrak. Biogeosciences 2021, 18, 2139–2160. [Google Scholar] [CrossRef]
- Lee, T.R.; Wood, W.T.; Phrampus, B.J. A Machine Learning (Knn) Approach to Predicting Global Seafloor Total Organic Carbon. Glob. Biogeochem. Cycles 2019, 33, 37–46. [Google Scholar] [CrossRef]
- Emerson, S.; Hedges, J.I. Processes Controlling the Organic Carbon Content of Open Ocean Sediments. Paleoceanography 1988, 3, 621–634. [Google Scholar] [CrossRef]
- Atwood, T.B.; Witt, A.; Mayorga, J.; Hammill, E.; Sala, E. Global Patterns in Marine Sediment Carbon Stocks. Front. Mar. Sci. 2020, 7, 165. [Google Scholar] [CrossRef]
- Avelar, S.; Voort, T.S.V.D.; Eglinton, T.I. Relevance of Carbon Stocks of Marine Sediments for National Greenhouse Gas Inventories of Maritime Nations. Carbon Balance Manag. 2017, 12, 10. [Google Scholar] [CrossRef]
- Kindeberg, T.; Ørberg, S.B.; Röhr, M.E.; Holmer, M.; Krause-Jensen, D. Sediment Stocks of Carbon, Nitrogen, and Phosphorus in Danish Eelgrass Meadows. Front. Mar. Sci. 2018, 5, 474. [Google Scholar] [CrossRef]
- Zhai, W.; Dai, M.; Cai, W.J.; Wang, Y.C.; Hong, H.S. The Partial Pressure of Carbon Dioxide and Air-Sea Fluxes in the Northern South China Sea in Spring, Summer and Autumn. Mar. Chem. 2005, 96, 87–97. [Google Scholar] [CrossRef]
- Zhai, W.D.; Dai, M.; Cai, W.J. Coupling of Surface pCO2 and Dissolved Oxygen in the Northern South China Sea: Impacts of Contrasting Coastal Processes. Biogeosciences 2009, 6, 2589–2598. [Google Scholar] [CrossRef]
- Dai, M.H.; Meng, F.F. Carbon cycle in the South China Sea: Flux, controls and global implications. Sci. Technol. Rev. 2020, 38, 30–34. [Google Scholar] [CrossRef]
- He, B.; Dai, M.; Zhai, W.; Wang, L.F.; Wang, K.J.; Chen, J.H.; Lin, J.R.; Han, A.Q.; Xu, Y.P. Distribution, Degradation and Dynamics of Dissolved Organic Carbon and Its Major Compound Classes in the Pearl River Estuary, China. Mar. Chem. 2010, 119, 52–64. [Google Scholar] [CrossRef]
- Cao, M. The Source and Preservation of Organic Matters in Sediments of Different Areas in the Northern South China Sea. Master’s Dissertation, East China Normal University, Shanghai, China, 2017. [Google Scholar]
- Hu, J.; Peng, P.; Jia, G.; Mai, B.; Zhang, G. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River estuary and adjacent shelf, Southern China. Mar. Chem. 2006, 98, 274–285. [Google Scholar] [CrossRef]
- Yang, T.; Zou, L.; Zhao, Y.; Song, X.; Quan, Y.; Jia, Y. Sedimentary characteristics of organic carbon in upper sediments of the Northeastern South China Sea. Chin. J. Mar. Environ. Sci. 2022, 41, 16–23. [Google Scholar] [CrossRef]
- Chen, Y. On features of density and ingredient as well as trend of the deposit and spread of the sediment from Pearl River into the sea. Acta Sci. Nat. Univ. Sunyatseni 1991, 30, 105–113. [Google Scholar] [CrossRef]
- Guo, X.; Cai, W.J.; Zhai, W.; Dai, M.H.; Wang, Y.C.; Chen, B.S. Seasonal Variations in the Inorganic Carbon System in the Pearl River (Zhujiang) Estuary. Cont. Shelf Res. 2008, 28, 1424–1434. [Google Scholar] [CrossRef]
- Wong, L.A.; Chen, J.C.; Dong, L.X. A Model of the Plume Front of the Pearl River Estuary, China and Adjacent Coastal Waters in the Winter Dry Season. Cont. Shelf Res. 2004, 24, 1779–1795. [Google Scholar] [CrossRef]
- Su, J. Overview of the South China Sea Circulation and Its Influence on the Coastal Physical Oceanography Outside the Pearl River Estuary. Cont. Shelf Res. 2004, 24, 1745–1760. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Li, T.; Xu, D. Geochemical characteristics and the source of major elements in the surface sediments from Pearl River Estuary to Hainan in South China Sea. Acta Sedimentol. Sin. 2013, 31, 130–138. [Google Scholar] [CrossRef]
- Wu, R.; Li, L. Summarization of study on upwelling system in the South China Sea. J. Oceanogr. Taiwan Strait 2003, 22, 269–277. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. Gradistat: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments. Earth Surf. Processes Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- GB 17378.5-2007; The Specification for Marine Monitoring-Part 5: Sediment Analysis. General Administration of Quality Supervision, Inspection and Quarantine of the PRC, Standardization Administration of the PRC: Beijing, China, 2007.
- Froelich, P.N. Analysis of organic carbon in marine sediments. Limnol. Oceanogr. 1980, 25, 564–572. [Google Scholar] [CrossRef]
- Zeng, L.; Wang, L.; Xu, H.; Jiao, Y.; Cui, S.; Han, H.; Zhang, B. Analysis Method for Clay Minerals and Ordinary Non-Clay Minerals in Sedimentary Rocks by the X-Ray Diffraction; SY/T 5163-2010; National Energy Administration of the PRC: Beijing, China, 2010. [Google Scholar]
- Wan, G.J. 210Pb dating for recent sedimentation. Quat. Sci. 1997, 3, 230–239. [Google Scholar]
- Hillel, D. Soil Physics, in Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: New York, NY, USA, 2003; pp. 77–97. [Google Scholar] [CrossRef]
- GB/T50123-2019; Ministry of Water Resources of the PRC. Standard for Geotechnical Testing Method. Ministry of Housing and Urban-Rural Development of the PRC, State Administration for Market Regulation of the PRC: Beijing, China, 2019.
- Hedges, J.I.; Keil, R.G. Sedimentary Organic Matter Preservation: An Assessment and Speculative Synthesis. Mar. Chem. 1995, 49, 81–115. [Google Scholar] [CrossRef]
- Hemingway, J.D.; Rothman, D.H.; Grant, K.E.; Rosengard, S.Z.; Eglinton, T.I.; Derry, L.A.; Galy, V.V. Mineral Protection Regulates Long-Term Global Preservation of Natural Organic Carbon. Nature 2019, 570, 228–231. [Google Scholar] [CrossRef]
- Duarte, C.; Middelburg, J.; Caraco, N. Major Role of Marine Vegetation on the Oceanic Carbon Cycle. Biogeosciences 2005, 2, 1–8. [Google Scholar] [CrossRef]
- Larowe, D.; Arndt, S.; Bradley, J.; Burwicz, E.; Dale, A.W.; Amend, J.P. Organic Carbon and Microbial Activity in Marine Sediments on a Global Scale Throughout the Quaternary. Geochim. Cosmochim. Acta 2020, 286, 227–247. [Google Scholar] [CrossRef]
- Liu, K.K.; Atkinson, L.; Quiñones, R.; Talaue-McManus, L. Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–153. [Google Scholar] [CrossRef]
- Raymond, P.; Bauer, J. Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: A review and synthesis. Org. Geochem. 2001, 32, 469–485. [Google Scholar] [CrossRef]
- Raymond, P.A.; Hopkinson, C.S. Ecosystem Modulation of Dissolved Carbon Age in a Temperate Marsh-Dominated Estuary. Ecosystems 2003, 6, 694–705. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, Y.; Wang, F.; Xu, D.; Liu, S.; Zhou, M. Hotspot of Organic Carbon Export Driven by Mesoscale Eddies in the Slope Region of the Northern South China Sea. Front. Mar. Sci. 2020, 7, 444. [Google Scholar] [CrossRef]
- Emerson, S. Organic Carbon Preservation in Marine Sediments. In The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present; Sundquist, E.T., Broecker, W.S., Eds.; Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 1985; Volume 32. [Google Scholar] [CrossRef]
- Chen, Z.; Nie, T.; Zhao, X.; Li, J.W.; Yang, B.; Cui, D.Y.; Li, X.X. Organic Carbon Remineralization Rate in Global Marine Sediments: A Review. Reg. Stud. Mar. Sci. 2022, 49, 102112. [Google Scholar] [CrossRef]
- Pusceddu, A.; Fiordelmondo, C.; Polymenakou, P.; Polychronaki, T.; Tselepides, A.; Danovaro, R. Effects of Bottom Trawling on the Quantity and Biochemical Composition of Organic Matter in Coastal Marine Sediments (Thermaikos Gulf, Northwestern Aegean Sea). Cont. Shelf Res. 2005, 25, 2491–2505. [Google Scholar] [CrossRef]
- Aller, R.C. Sedimentary Diagenesis, Depositional Environments, and Benthic Fluxes. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2014; pp. 293–334. [Google Scholar] [CrossRef]
- Meysman, F.J.R.; Middelburg, J.J.; Heip, C.H.R. Bioturbation: A fresh look at Darwin’s last idea. Trends Ecol. Evol. 2006, 21, 688–695. [Google Scholar] [CrossRef]
- Jørgensen, B.B. Mineralization of organic matter in the sea bed-the role of sulphate reduction. Nature 1982, 296, 643–645. [Google Scholar] [CrossRef]
- Bouldin, D.R. Models for Describing the Diffusion of Oxygen and Other Mobile Constituents Across the Mud-Water Interface. J. Ecol. 1968, 56, 77. [Google Scholar] [CrossRef]
- Middelburg, J.J. Reviews and Syntheses: To the Bottom of Carbon Processing at the Seafloor. Biogeosciences 2018, 15, 413–427. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kaplan, L.A.; Benner, R.; Hatcher, P.G. Hydrogen-Deficient Molecules in Natural Riverine Water Samples—Evidence for the Existence of Black Carbon in Dom. Mar. Chem. 2004, 92, 225–234. [Google Scholar] [CrossRef]
- Bridge, J.S. Hydraulic Interpretation of Grain-Size Distributions Using a Physical Model for Bedload Transport. J. Sediment. Res. 1981, 51, 1109–1124. [Google Scholar] [CrossRef]
- Mayer, L.M.; Schick, L.L.; Hardy, K.R.; Wagai, R.; McCarthy, J. Organic matter in small mesopores in sediments and soils. Geochim. Cosmochim. Acta 2004, 68, 3863–3872. [Google Scholar] [CrossRef]
- Rühlmann, J.; Körschens, M.; Graefe, J. A new approach to calculate the particle density of soils considering properties of the soil organic matter and the mineral matrix. Geoderma 2006, 130, 272–283. [Google Scholar] [CrossRef]
- Arnarson, T.S.; Keil, R.G. Mechanisms of Pore Water Organic Matter Adsorption to Montmorillonite. Mar. Chem. 2000, 71, 309–320. [Google Scholar] [CrossRef]
- Satterberg, J.; Arnarson, T.S.; Lessard, E.J.; Kei, R.G. Sorption of Organic Matter from Four Phytoplankton Species to Montmorillonite, Chlorite and Kaolinite in Seawater. Mar. Chem. 2003, 81, 11–18. [Google Scholar] [CrossRef]
- Blattmann, T.M.; Liu, Z.; Zhang, Y.; Zhao, Y.; Haghipour, N.; Montluçon, D.B.; Plötze, M.; Eglinton, T.I. Mineralogical Control on the Fate of Continentally Derived Organic Matter in the Ocean. Science 2019, 366, 742–745. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.T.; Allison, M.A.; Bianchi, T.S.; Cui, X.; Savage, C.; Schüller, S.E.; Smith, R.W.; Vetter, L. Modern deposition rates and patterns of organic carbon burial in Fiordland, New Zealand. Geophys. Res. Lett. 2016, 43, 11,768–11,776. [Google Scholar] [CrossRef]
- St-Onge, G.; Hillaire-Marcel, C. Isotopic constraints of sedimentary inputs and organic carbon burial rates in the Saguenay Fjord, Quebec. Mar. Geol. 2001, 176, 1–22. [Google Scholar] [CrossRef]
- Deng, S.; Zhong, H.; Wang, M.; Yun, F. On relation between upwelling off Qionghai and fishery. J. Oceanogr. Taiwan Strait 1995, 14, 51–56. [Google Scholar]
- Borges, A.V.; Frankignoulle, M. Distribution of Surface Carbon Dioxide and Air-Sea Exchange in the Upwelling System Off the Galician Coast. Glob. Biogeochem. Cycles 2002, 16, 13-11–13-13. [Google Scholar] [CrossRef] [Green Version]
- Walsh, J.J. Circulation. In On the Nature of Continental Shelves; Walsh, J.J., Ed.; Academic Press: New York, USA, 1988; pp. 56–111. [Google Scholar] [CrossRef]
- Aller, R.C.; Blair, N.E. Early Diagenetic Remineralization of Sedimentary Organic C in the Gulf of Papua Deltaic Complex (Papua New Guinea): Net Loss of Terrestrial C and Diagenetic Fractionation of C Isotopes. Geochim. Cosmochim. Acta 2004, 68, 1815–1825. [Google Scholar] [CrossRef]
NO. | Area/ km2 | OC /% | BD /g·cm−3 | Depth/cm | Clay Content/% | Illite /% | Kaolinite /% | Chlorite /% | Smectite /% | Deposit Rate /cm·Years−1 | C Stock /Tg |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 8221.18 | 0–0.2 | 1.03 | 10 | 5.74 | 1.76 | 1.18 | 1.00 | 0.90 | / | 0.85 |
2 | 24882.45 | 0.2–0.4 | 1.03 | 10 | 12.19 | 4.42 | 2.36 | 2.52 | 0.44 | 0.17 | 7.69 |
3 | 15318.94 | 0.4–0.6 | 1.03 | 10 | 14.52 | 4.90 | 3.13 | 2.95 | 1.35 | / | 7.89 |
4 | 14382.27 | 0.6–0.8 | 1.03 | 10 | 15.69 | 5.91 | 3.53 | 2.99 | 1.80 | 0.37 | 10.37 |
5 | 16105.90 | 0.8–1.0 | 1.03 | 10 | 17.41 | 7.25 | 3.94 | 3.26 | 2.27 | 1.06 | 14.93 |
6 | 4592.51 | 1.0–1.2 | 1.03 | 10 | 21.38 | 9.43 | 6.01 | 4.15 | 1.37 | 0.47 | 5.20 |
7 | 2390.49 | 1.2–1.4 | 1.03 | 10 | 26.03 | 11.77 | 8.33 | 4.84 | 0.63 | 1.81 | 3.20 |
8 | 360.48 | 1.4–1.6 | 1.03 | 10 | 30.64 | 13.16 | 10.42 | 5.87 | 1.20 | 4.38 | 0.56 |
9 | 121.20 | >1.6 | 1.03 | 10 | 22.55 | 7.29 | 8.38 | 4.27 | 2.61 | / | 0.21 |
SUM | 50.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Yin, Z.; Tang, M.; Li, T.; Xu, D. Distribution and Genesis of Organic Carbon Storage on the Northern Shelf of the South China Sea. Int. J. Environ. Res. Public Health 2022, 19, 11367. https://doi.org/10.3390/ijerph191811367
Chen L, Yin Z, Tang M, Li T, Xu D. Distribution and Genesis of Organic Carbon Storage on the Northern Shelf of the South China Sea. International Journal of Environmental Research and Public Health. 2022; 19(18):11367. https://doi.org/10.3390/ijerph191811367
Chicago/Turabian StyleChen, Liang, Zhengxin Yin, Meng Tang, Tuanjie Li, and Dong Xu. 2022. "Distribution and Genesis of Organic Carbon Storage on the Northern Shelf of the South China Sea" International Journal of Environmental Research and Public Health 19, no. 18: 11367. https://doi.org/10.3390/ijerph191811367
APA StyleChen, L., Yin, Z., Tang, M., Li, T., & Xu, D. (2022). Distribution and Genesis of Organic Carbon Storage on the Northern Shelf of the South China Sea. International Journal of Environmental Research and Public Health, 19(18), 11367. https://doi.org/10.3390/ijerph191811367