The Significance of Nanomineral Particles during the Growth Process of Polymetallic Nodules in the Western Pacific Ocean
Abstract
:1. Introduction
2. Sampling Setting
3. Analytical Methods
3.1. Optical Microscopy
3.2. X-ray Diffraction Analysis
3.3. X-ray Fluorescence Spectroscopy
3.4. SEM and EDS
4. Results
4.1. Micromorphology and Microstructure
4.2. Mineralogy and Micromorphology
4.3. Geochemical Element Distribution Results
5. Discussion
5.1. Relationship between Nanomineral Particles and the Formation of Polymetallic Nodules
5.2. Growth Stage of Polymetallic Nodules
6. Conclusions
- (1)
- A large number of nanomineral particles, mainly composed of Fe, Mn and Cr, develop in the cores and shells of polymetallic nodules in the western Pacific Ocean. Some elements in the nanomineral particles have more obvious enrichment than others with large particle sizes and can affect the formation and growth of polymetallic nodules.
- (2)
- The agglomeration and adsorption of nanomineral particles play an important role in the growth process of nodules. The growth process of polymetallic nodules can be divided into three stages. In the first stage, terrigenous detritus nucleates and begins to adsorb nanomineral particles composed of Fe, Mn and other elements to form the first shell. In the second stage, a dense shell layer is formed under stable conditions, and the redox conditions of the nodules change and are modified by diagenesis in the third stage.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hein, J.R.; Mizell, K.; Koschinsky, A.; Conrad, T.A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geol. Rev. 2013, 51, 1–14. [Google Scholar] [CrossRef]
- Menendez, A.; James, R.; Shulga, N.; Connelly, D.; Roberts, S. Linkages between the Genesis and Resource Potential of Ferromanganese Deposits in the Atlantic, Pacific, and Arctic Oceans. Minerals 2018, 8, 197. [Google Scholar] [CrossRef] [Green Version]
- Verlaan, P.A.; Cronan, D.S. Origin and variability of resource-grade marine ferromanganese nodules and crusts in the Pacific Ocean: A review of biogeochemical and physical controls. Geochemistry 2022, 82, 125741. [Google Scholar] [CrossRef]
- Yao, H.Q.; Liu, Y.G.; Yang, Y.; Ma, J.F.; Zhang, H.D.; Ren, J.B.; Deng, X.G.; He, G.W. Assessment of acoustic backscatter intensity surveying on deep-sea ferromanganese crust: Constraints from Weijia Guyot, western Pacific Ocean. China Geol. 2021, 4, 288–298. [Google Scholar] [CrossRef]
- Calvert, S.E.; Piper, D.Z. Geochemistry of ferromanganese nodules from DOMES site a, Northern Equatorial Pacific: Multiple diagenetic metal sources in the deep sea. Geochim. Cosmochim. Acta 1984, 48, 1913–1928. [Google Scholar] [CrossRef]
- Deng, X.; He, G.; Xu, Y.; Liu, Y.; Wang, F.; Zhang, X. Oxic bottom water dominates polymetallic nodule formation around the Caiwei Guyot, northwestern Pacific Ocean. Ore Geol. Rev. 2022, 143, 104776. [Google Scholar] [CrossRef]
- Ren, J.; He, G.; Deng, X.; Deng, X.; Yang, Y.; Yao, H.; Yang, S. Metallogenesis of Co-rich ferromanganese nodules in the northwestern Pacific: Selective enrichment of metallic elements from seawater. Ore Geol. Rev. 2022, 143, 104778. [Google Scholar] [CrossRef]
- Guan, Y.; Sun, X.; Ren, Y.; Jiang, X. Mineralogy, geochemistry and genesis of the polymetallic crusts and nodules from the South China Sea. Ore Geol. Rev. 2017, 89, 206–227. [Google Scholar] [CrossRef]
- Reyss, J.L.; Marchig, V.; Ku, T.L. Rapid growth of a deep-sea manganese nodule. Nature 1982, 295, 401–403. [Google Scholar] [CrossRef]
- Burns, R.G.; Mee Burns, V. Mechanism for nucleation and growth of manganese nodules. Nature 1975, 255, 130–131. [Google Scholar] [CrossRef]
- Guan, Y.; Sun, X.; Shi, G.; Jiang, X.; Lu, H. Rare Earth Elements Composition and Constraint on the Genesis of the Polymetallic Crusts and Nodules in the South China Sea. Acta Geol. Sin.-Engl. Ed. 2017, 91, 1751–1766. [Google Scholar] [CrossRef]
- Hein, J.R.; Schulz, M.S.; Dunham, R.E.; Stern, R.J.; Bloomer, S.H. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific. J. Geophys. Res. Solid Earth 2008, 113, B8S14. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.; Lee, C. Growth of diagenetic ferromanganese nodules in an oxic deep-sea sedimentary environment, northeast equatorial Pacific. Mar. Geol. 1999, 157, 127–144. [Google Scholar] [CrossRef]
- Hochella, M.F. Nanoscience and technology: The next revolution in the Earth sciences. Earth Planet. Sci. Lett. 2002, 203, 593–605. [Google Scholar] [CrossRef]
- Banfield, J.F.; Zhang, H. Nanoparticles in the Environment. Rev. Mineral. Geochem. 2001, 44, 1–58. [Google Scholar] [CrossRef]
- De Yoreo, J.J.; Gilbert, P.U.P.A.; Sommerdijk, N.A.J.M.; Penn, R.L.; Whitelam, S.; Joester, D.; Zhang, H.; Rimer, J.D.; Navrotsky, A.; Banfield, J.F.; et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 2015, 349, 6247. [Google Scholar] [CrossRef] [PubMed]
- Hotze, E.M.; Phenrat, T.; Lowry, G.V. Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment. J. Environ. Qual. 2010, 39, 1909–1924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.; Boily, J.; Shchukarev, A.; Drake, H.; Song, Z.; Hogmalm, K.J.; Åström, M.E. A cryogenic XPS study of Ce fixation on nanosized manganite and vernadite: Interfacial reactions and effects of fulvic acid complexation. Chem. Geol. 2018, 483, 304–311. [Google Scholar] [CrossRef]
- Liu, J.; Aruguete, D.M.; Murayama, M.; Hochella, M.F. Influence of Size and Aggregation on the Reactivity of an Environmentally and Industrially Relevant Nanomaterial (PbS). Environ. Sci. Technol. 2009, 43, 8178–8183. [Google Scholar] [CrossRef] [PubMed]
- Hochella, M.F.; Lower, S.K.; Maurice, P.A.; Penn, R.L.; Sahai, N.; Sparks, D.L.; Twining, B.S. Nanominerals, Mineral Nanoparticles, and Earth Systems. Science 2008, 319, 1631–1635. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.H.; Zhu, M.; Ginder-Vogel, M.; Ni, C.; Parikh, S.J.; Sparks, D.L. Formation of nano-crystalline todorokite from biogenic Mn oxides. Geochim. Cosmochim. Acta 2010, 74, 3232–3245. [Google Scholar] [CrossRef]
- Jiang, X.; Sun, X.; Guan, Y. Biogenic mineralization in the ferromanganese nodules and crusts from the South China Sea. J. Asian Earth Sci. 2019, 171, 46–59. [Google Scholar] [CrossRef]
- Liu, J.; Aruguete, D.M.; Jinschek, J.R.; Donald Rimstidt, J.; Hochella, M.F. The non-oxidative dissolution of galena nanocrystals: Insights into mineral dissolution rates as a function of grain size, shape, and aggregation state. Geochim. Cosmochim. Acta 2008, 72, 5984–5996. [Google Scholar] [CrossRef]
- Koppers, A.A.P.; Staudigel, H.; Pringle, M.S.; Wijbrans, J.R. Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism? Geochem. Geophys. Geosystems 2003, 4, 1–49. [Google Scholar] [CrossRef]
- Reagan, M.K.; McClelland, W.C.; Girard, G.; Goff, K.R.; Peate, D.W.; Ohara, Y.; Stern, R.J. The geology of the southern Mariana fore-arc crust: Implications for the scale of Eocene volcanism in the western Pacific. Earth Planet. Sci. Lett. 2013, 380, 41–51. [Google Scholar] [CrossRef]
- Hai, J.; Liu, L.; Tan, W.; Hao, R.; Qiu, G. Catalytic oxidation and adsorption of Cr(III) on iron-manganese nodules under oxic conditions. J. Hazard Mater. 2020, 390, 122166. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.L.; Elimelech, M. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. J. Colloid Interf. Sci. 2007, 309, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Manceau, A.; Lanson, M.; Takahashi, Y. Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule. Am. Mineral. 2014, 99, 2068–2083. [Google Scholar] [CrossRef]
- Wu, Z.; Peacock, C.L.; Lanson, B.; Yin, H.; Zheng, L.; Chen, Z.; Tan, W.; Qiu, G.; Liu, F.; Feng, X. Transformation of Co-containing birnessite to todorokite: Effect of Co on the transformation and implications for Co mobility. Geochim. Cosmochim. Acta 2019, 246, 21–40. [Google Scholar] [CrossRef]
Regions | Mg | Al | Si | K | Ca | Ti | Cr | Mn | Fe | Pd | Au |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2.90 | 8.21 | 37.84 | 7.66 | 0.82 | 0.64 | 1.12 | 1.51 | 35.24 | 1.63 | 2.41 |
2 | 2.16 | 6.16 | 30.63 | 5.90 | 0.60 | 0.88 | 12.99 | 3.75 | 32.67 | 1.60 | 2.66 |
3 | 2.54 | 3.31 | 5.86 | 1.0 | 3.58 | 1.11 | 18.23 | 61.43 | 0.96 | 2.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; He, B.; Cai, Z.; Huang, Q. The Significance of Nanomineral Particles during the Growth Process of Polymetallic Nodules in the Western Pacific Ocean. Int. J. Environ. Res. Public Health 2022, 19, 13972. https://doi.org/10.3390/ijerph192113972
Huang Q, He B, Cai Z, Huang Q. The Significance of Nanomineral Particles during the Growth Process of Polymetallic Nodules in the Western Pacific Ocean. International Journal of Environmental Research and Public Health. 2022; 19(21):13972. https://doi.org/10.3390/ijerph192113972
Chicago/Turabian StyleHuang, Qiangtai, Bo He, Zhourong Cai, and Qianru Huang. 2022. "The Significance of Nanomineral Particles during the Growth Process of Polymetallic Nodules in the Western Pacific Ocean" International Journal of Environmental Research and Public Health 19, no. 21: 13972. https://doi.org/10.3390/ijerph192113972
APA StyleHuang, Q., He, B., Cai, Z., & Huang, Q. (2022). The Significance of Nanomineral Particles during the Growth Process of Polymetallic Nodules in the Western Pacific Ocean. International Journal of Environmental Research and Public Health, 19(21), 13972. https://doi.org/10.3390/ijerph192113972