Difficult Therapeutic Decisions in Gorham-Stout Disease–Case Report and Review of the Literature
Abstract
:1. Introduction
2. Case Description
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nozaki, T.; Nosaka, S.; Miyazaki, O.; Makido, A.; Yamamoto, A.; Niwa, T.; Tsutsumi, Y.; Aida, N.; Masaki, H.; Saide, Y. Syndromes associated with vascular tumors and malformations: A pictorial review. Radiographics 2013, 33, 175–195. [Google Scholar] [CrossRef]
- Bosco, F.; Giustra, F.; Faccenda, C.; Boffano, M.; Ratto, N.; Piana, R. Gorham-Stout disease: A rare bone disorder. J. Orthop. Rep. 2022, 1, 100028. [Google Scholar] [CrossRef]
- Liu, M.; Liu, W.; Qiao, C.; Han, B. Mandibular Gorham-Stout disease: A case report and literature review. Medicine 2017, 42, e8184. [Google Scholar] [CrossRef] [PubMed]
- Dupond, J.L.; Bermont, L.; Runge, M.; de Billy, M. Plasma VEGF determination in disseminated lymphangiomatosis-Gorham-Stout syndrome: A marker of activity? A case report with a 5-year follow-up. Bone 2010, 3, 873–876. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Buonuomo, P.S.; Battafarano, G.; Conforti, A.; Mariani, E.; Algeri, M.; Pelle, S.; D’Agostini, M.; Macchiaiolo, M.; De Vito, R.; et al. Dissecting the mechanisms of bone loss in Gorham-Stout disease. Bone 2020, 130, 115068. [Google Scholar] [CrossRef] [PubMed]
- Franco-Barrera, M.J.; Zavala-Cerna, M.G.; Aguilar-Portillo, G.; Sánchez-Gomez, D.B.; Torres-Bugarin, O.; Franco-Barrera, M.A.; Roa-Encarnacion, C.M. Gorham-Stout Disease: A Clinical Case Report and Immunological Mechanisms in Bone Erosion. Clin. Rev. Allergy Immunol. 2017, 1, 125–132. [Google Scholar] [CrossRef]
- Colucci, S.; Taraboletti, G.; Primo, L.; Viale, A.; Roca, C.; Valdembri, D.; Geuna, M.; Pagano, M.; Grano, M.; Pogrel, A.M.; et al. Gorham-Stout syndrome: A monocyte-mediated cytokine propelled disease. J. Bone Min. Res. 2006, 2, 207–218. [Google Scholar] [CrossRef]
- Mo, A.Z.; Trenor, C.C.; Hedequist, D.J. Sirolimus therapy as perioperative treatment of Gorham–Stout disease in the thoracic spine: A case report. JBJS Case Connect. 2018, 3, e70. [Google Scholar] [CrossRef]
- Hagendoorn, J.; Yock, T.I.; Borel Rinkes, I.H.; Padera, T.P.; Ebb, D.H. Novel molecular pathways in Gorham disease: Implications for treatment. Pediatr. Blood Cancer 2014, 3, 401–406. [Google Scholar] [CrossRef]
- Hammill, A.M.; Wentzel, M.; Gupta, A.; Nelson, S.; Lucky, A.; Elluru, R.; Dasagupta, R.; Azizkhon, R.; Adams, D.M. Sirolimus for the treatment of complicated vascular anomalies in children. Pediatr. Blood Cancer 2011, 57, 1018–1024. [Google Scholar] [CrossRef]
- Zhao, S.F.; Wang, Y.X.; Yang, X.D.; Tang, E.Y. Gorham disease of the mandible. J. Cranio-Fac. Surg. 2015, 2, e160–e162. [Google Scholar] [CrossRef]
- Zhu, X.; Gao, J.J.; Landao-Bassonga, E.; Pavlos, N.J.; Qin, A.; Steer, J.H.; Zheng, M.H.; Dong, Y.; Cheng, T.S. Thonzonium bromide inhibits RANKL-induced osteoclast formation and bone resorption in vitro and prevents LPS-induced bone loss in vivo. Biochem. Pharmacol. 2016, 104, 118–130. [Google Scholar] [CrossRef]
- Hirayama, T.; Sabokbar, A.; Itonaga, I.; Watt-Smith, S.; Athanasou, N.A. Cellular and humoral mechanisms of osteoclast formation and bone resorption in Gorham-Stout disease. J. Pathol. 2001, 5, 624–630. [Google Scholar] [CrossRef]
- Devlin, R.D.; Bone, H.G.; Roodman, G.D. Interleukin-6: A potential mediator of the massive osteolysis in patients with Gorham-Stout disease. J. Clin. Endocrinol. Metab. 1996, 5, 1893–1897. [Google Scholar]
- De Keyser, C.E.; Saltzherr, M.S.; Bos, E.M.; Zillikens, M.C. A Large Skull Defect Due to Gorham-Stout Disease: Case Report and Literature Review on Pathogenesis, Diagnosis, and Treatment. Front. Endocrinol. 2020, 11, 37. [Google Scholar] [CrossRef] [PubMed]
- Tanoue, N.; Moedano, L.; Witte, M.; Montague, M.; Lukefahr, A.; Bernas, M. Primary versus trauma-induced Gorham-Stout disease. Lymphology 2018, 1, 18–27. [Google Scholar]
- Lala, S.; Mulliken, J.B.; Alomari, A.I.; Fishman, S.J.; Kozakewich, H.P.; Chaudry, G. Gorham-Stout disease and generalized lymphatic anomaly--clinical, radiologic, and histologic differentiation. Skelet. Radiol. 2013, 7, 917–924. [Google Scholar] [CrossRef]
- Dellinger, M.T.; Garg, N.; Olsen, B.R. Viewpoints on vessels and vanishing bones in Gorham-Stout disease. Bone 2014, 63, 47–52. [Google Scholar] [CrossRef]
- Wang, W.; Wang, H.; Zhou, X.; Li, X.; Sun, W.; Dellinger, M.; Boyce, B.F.; Xing, L. Lymphatic Endothelial Cells Produce M-CSF, Causing Massive Bone Loss in Mice. J. Bone Min. Res. 2017, 5, 939–950. [Google Scholar] [CrossRef]
- Chung, C.; Yu, J.S.; Resnick, D.; Vaughan, L.M.; Haghighi, P. Gorham syndrome of the thorax and cervical spine: CT and MRI findings. Skelet. Radiol. 1997, 1, 55–59. [Google Scholar] [CrossRef]
- Nikolaou, V.S.; Chytas, D.; Korres, D.; Efstathopoulos, N. Vanishing bone disease (Gorham-Stout syndrome): A review of a rare entity. World J. Orthop. 2014, 5, 694–698. [Google Scholar] [CrossRef] [PubMed]
- Iacobas, I.; Adams, D.M.; Pimpalwar, S.; Phung, T.; Blei, F.; Burrows, P.; Lopez-Gutierrez, J.C.; Levine, M.A.; Trenor, C.C. Multidisciplinary guidelines for initial evaluation of complicated lymphatic anomalies-expert opinion consensus. Pediatr. Blood Cancer 2020, 1, e28036. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Naito, M.; Hirose, J.; Nakada, I.; Morikawa, T.; Tanaka, S. Gorham-Stout syndrome of the shoulder girdle successfully controlled by antiresorptive agents: A report of 2 cases. JBJS Case Connect. 2019, 2, e0285. [Google Scholar] [CrossRef]
- Illeez, G.; Ozkan, K.; Ozkan, F.U.; Bostan, A.B.; Akpinar, F.; Bilgic, B.; Aktas, I. Zoledronic acid: Treatment option for Gorham-Stout disease. Orthopade 2018, 12, 1032–1035. [Google Scholar] [CrossRef] [PubMed]
- Cramer, S.L.; Wei, S.; Merrow, A.C.; Pressey, J.G. Gorham-Stout disease successfully treated with sirolimus and zoledronic acid therapy. J. Pediatr. Hematol. Oncol. 2016, 3, e129–e132. [Google Scholar] [CrossRef]
- Moriceau, G.; Ory, B.; Mitrofan, L.; Riganti, C.; Blanchard, F.; Brion, R.; Charrier, C.; Battaglia, S.; Pilet, P.; Denis, M.G.; et al. Zoledronic acid potentiates mTOR inhibition and abolishes the resistance of osteosarcoma cells to RAD001 (Everolimus): Pivotal role of the prenylation process. Cancer Res. 2010, 24, 10329–11039. [Google Scholar] [CrossRef]
- Ozeki, M.; Nozawa, A.; Yasue, S.; Endo, S.; Asada, R.; Hashimoto, H.; Fukao, T. The impact of sirolimus therapy on lesion size, clinical symptoms, and quality of life of patients with lymphatic anomalies. Orphanet. J. Rare Dis. 2019, 1, 141. [Google Scholar] [CrossRef]
- Guillot, A.; Joly, C.; Barthélémy, P.; Meriaux, E.; Negrier, S.; Pouessel, D.; Chevreau, C.; Mahammedi, H.; Houede, N.; Roubaud, G.; et al. Denosumab toxicity when combined with anti-angiogenic therapies on patients with metastatic renal cell carcinoma: A getug study. Clin. Genitourin. Cancer 2019, 1, e38–e43. [Google Scholar] [CrossRef]
- Duczkowski, M.; Palczewski, P.; Wagrodzki, M.; Duczkowska, A.; Klepacka, T.; Szymborska, A.; Raciborska, A.; Czubak, J.; Bekiesińska-Figatowska, M. Gorham-Stout disease involving ipsilateral clavicle and scapula in a child—A case report focusing on imaging and histopathological features of this extremely rare condition. Pol. J. Pathol. 2021, 72, 174–179. [Google Scholar]
Parameters | Reference Range | |
---|---|---|
Total calcium [mmol/L] | 2.46 | 2.1–2.55 |
Ionized calcium [mmol/L] | 1.30 | 1.2–1.32 |
Inorganic phosphates [mmol/L] | 0.86 | 0.81–1.45 |
Magnesium [mmol/L] | 0.73 | 0.7–1.0 |
Inorganic phosphates in 24-h urine collection [mmol/24 h] | 6.60 | 12.9–42 |
Calcium in 24-h urine collection [mmol/24 h] | 7.100 | 2.5–7.5 |
Creatinine in 24-h urine collection [mg/kg/24 h] | 12.1 | 11–20 |
Alkaline phosphatase [U/L] | 64 | 38–126 |
Vitamin D 25-OH [ng/mL] | 39.2 | >30 |
Parathyroid hormone PTH [pg/mL] | 48.8 | 15–65 |
B-Cross Laps [pg/mL] | 408.8 | <1008 |
Osteocalcin [ng/mL] | 21.7 | 15–46 |
BMD (g/cm2) | Date of Examination | |||
---|---|---|---|---|
4 April 2021 | 16 September 2021 | 13 December 2021 | 29 March 2022 | |
Spine | 0.782 | 0.769 | 0.762 | 0.789 |
Neck | 0.728 | – | 0.677 | 0.697 |
Total Body | 0.981 | – | 0.968 | 0.989 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojciechowska-Durczynska, K.; Zygmunt, A.; Mikulak, M.; Ludwisiak, M.; Lewinski, A. Difficult Therapeutic Decisions in Gorham-Stout Disease–Case Report and Review of the Literature. Int. J. Environ. Res. Public Health 2022, 19, 11692. https://doi.org/10.3390/ijerph191811692
Wojciechowska-Durczynska K, Zygmunt A, Mikulak M, Ludwisiak M, Lewinski A. Difficult Therapeutic Decisions in Gorham-Stout Disease–Case Report and Review of the Literature. International Journal of Environmental Research and Public Health. 2022; 19(18):11692. https://doi.org/10.3390/ijerph191811692
Chicago/Turabian StyleWojciechowska-Durczynska, Katarzyna, Arkadiusz Zygmunt, Marta Mikulak, Marta Ludwisiak, and Andrzej Lewinski. 2022. "Difficult Therapeutic Decisions in Gorham-Stout Disease–Case Report and Review of the Literature" International Journal of Environmental Research and Public Health 19, no. 18: 11692. https://doi.org/10.3390/ijerph191811692
APA StyleWojciechowska-Durczynska, K., Zygmunt, A., Mikulak, M., Ludwisiak, M., & Lewinski, A. (2022). Difficult Therapeutic Decisions in Gorham-Stout Disease–Case Report and Review of the Literature. International Journal of Environmental Research and Public Health, 19(18), 11692. https://doi.org/10.3390/ijerph191811692