Artificial Intelligence in Spinal Imaging: Current Status and Future Directions
Abstract
:1. Introduction
2. Technical Aspects
3. Imaging Appropriateness and Protocoling
4. Image Acquisition and Reconstruction
4.1. Increase the Speed of Medical Imaging
4.2. Decreasing CT Radiation Doses
5. Image Presentation
5.1. The Intelligent Workflow of Spinal Imaging
5.2. The Quality Enhancement of Medical Images
5.2.1. CT Image Quality Enhancement
5.2.2. PET Image Quality Enhancement
5.2.3. MR Image Quality Enhancement
6. Image Interpretation
6.1. Lumbar Degenerative Disease
6.2. Scoliosis
6.3. Spinal Tumors
6.4. Spinal Cord Compression
6.5. Cervical Spondylosis
6.6. Osteoporosis
7. Quantitative Image Analysis
7.1. Localization and Labeling of Spinal Structures
7.2. Segmentation
7.3. Outcome Prediction
8. Future Applications
9. Discussion
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CNN | Convolutional Neural Network |
RNN | Recurrent Neural Network |
GAN | Generative Adversarial Networks |
CT | Computed Tomography |
AI | Artificial Intelligence |
DL | Deep Learning |
ML | Machine Learning |
MRI | Magnetic Resonance Imaging |
MR | Magnetic resonance |
CS | Compressed sensing |
PACS | Picture Archiving & Communication System |
MSL | Marginal space learning |
FAST | Fully assisting scanner technologies |
PSNR | Peak signal-to-noise ratio |
MTL | Multi-task learning |
References
- Harkey, P.; Duszak, R.J.; Gyftopoulos, S.; Rosenkrantz, A.B. Who refers musculoskeletal extremity imaging examinations to radiologists? AJR 2018, 2, 834–841. [Google Scholar] [CrossRef]
- Doshi, A.M.; Moore, W.H.; Kim, D.C.; Rosenkrantz, A.B.; Fefferman, N.R.; Ostrow, D.L.; Recht, M.P. Informatics solutions for driving an effective and efficient radiology practice. RadioGraphics 2018, 38, 1810–1822. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.H.; Kim, D.H.; Choi, B.K.; Han, I.H. Internet of Things, Digital Biomarker, and Artificial Intelligence in Spine: Current and Future Perspectives. Neurospine 2019, 16, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Ganbold, B.; Kim, K.G. Web-Based Spine Segmentation Using Deep Learning in Computed Tomography Images. Healthc. Inform. Res. 2020, 26, 61–70. [Google Scholar] [CrossRef]
- Rasouli, J.J.; Shao, J.; Neifert, S.; Gibbs, W.N.; Habboub, G.; Steinmetz, M.P.; Mroz, T.E. Artificial Intelligence and Robotics in Spine Surgery. Glob. Spine J. 2020, 21, 556–564. [Google Scholar] [CrossRef]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 510–518. [Google Scholar] [CrossRef]
- Galbusera, F.; Casaroli, G.; Bassani, T. Artificial intelligence and machine learning in spine research. JOR Spine 2019, 2, e1044. [Google Scholar] [CrossRef]
- Bertsimas, D.; Masiakos, P.T.; Mylonas, K.S.; Wiberg, H. Prediction of Cervical Spine Injury in Young Pediatric Patients: An Optimal Trees Artificial Intelligence Approach. J. Pediatric Surg. 2019, 54, 2353–2357. [Google Scholar] [CrossRef]
- Poole, D.L.; Mackworth, A.K.; Goebel, R. Computational intelligence and knowledge. In Computational Intelligence: A Logical Approach; Oxford University Press: New York, NY, USA, 1998; pp. 1–22. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Curran Associates: Red Hook, NY, USA, 2012; Volume 1, pp. 1097–1105. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yullie, A.L. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern. Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef] [Green Version]
- Batista-García-Ramó, K.; Fernández-Verdecia, C.I. What we know about the brain structure–function relationship. Behav. Sci. 2018, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Sun, T. Applying deep learning to audit procedures: An illustrative framework. Account. Horiz. 2019, 33, 89–109. [Google Scholar] [CrossRef]
- Jarrahi, M.H. Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Bus. Horiz. 2018, 61, 577–586. [Google Scholar] [CrossRef]
- Tussyadiah, I. A review of research into automation in tourism: Launching the Annals of Tourism Research Curated Collection on Artificial Intelligence and Robotics in Tourism. Ann. Tour. Res. 2020, 81, 102883. [Google Scholar] [CrossRef]
- Chuah SH, W.; Yu, J. The future of service: The power of emotion in human-robot interaction. J. Retail. Consum. Serv. 2021, 61, 102551. [Google Scholar] [CrossRef]
- Chai, X. Diagnosis method of thyroid disease combining knowledge graph and deep learning. IEEE Access 2020, 8, 149787–149795. [Google Scholar] [CrossRef]
- Tang, J.; Liu, G.; Pan, Q. A review on representative swarm intelligence algorithms for solving optimization problems: Applications and trends. IEEE/CAA J. Autom. Sin. 2021, 8, 1627–1643. [Google Scholar] [CrossRef]
- Gaeta, M.; Loia, F.; Sarno, D.; Carrubbo, L. Online social network viability: Misinformation management based on service and systems theories. Int. J. Bus. Manag. 2019, 1, 17–35. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Wang, T.; Sherratt, R.S.; Zhang, J. Big data service architecture: A survey. J. Internet Technol. 2020, 21, 393–405. [Google Scholar]
- Duan, M.; Li, K.; Liao, X.; Li, K. A parallel multiclassification algorithm for big data using an extreme learning machine. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 2337–2351. [Google Scholar] [CrossRef]
- Hoang, D.T.; Kang, H.J. Rolling element bearing fault diagnosis using convolutional neural network and vibration image. Cogn. Syst. Res. 2019, 53, 42–50. [Google Scholar] [CrossRef]
- Moshayedi, A.J.; Roy, A.S.; Kolahdooz, A.; Shuxin, Y. Deep learning application pros and cons over algorithm. EAI Endorsed Trans. AI Robot. 2022, 1, e7. [Google Scholar] [CrossRef]
- Luo, Y.; Tseng, H.H.; Cui, S.; Wei, L.; Ten Haken, R.K.; El Naqa, I. Balancing accuracy and interpretability of machine learning approaches for radiation treatment outcomes modeling. BJR Open 2019, 1, 20190021. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Shen, H.; Wu, J.; Hu, X.; Zhu, Z.; Lv, X.; Liu, Y.; Wang, Y. Spine Explorer: A deep learning based fully automated program for efficient and reliable quantifications of the vertebrae and discs on sagittal lumbar spine MR images. Spine J. 2020, 20, 590–599. [Google Scholar] [CrossRef]
- Pfirrmann, C.W.; Metzdorf, A.; Zanetti, M.; Hodler, J.; Boos, N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 2001, 26, 1873–1878. [Google Scholar] [CrossRef]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Teede, H.J.; Misso, M.L.; Boyle, J.A.; Garad, R.M.; McAllister, V.; Downes, L.; Woolcock, J. Translation and implementation of the Australian-led PCOS guideline: Clinical summary and translation resources from the International Evidence-based Guideline for the Assessment and management of polycystic ovary syndrome. Med. J. Aust. 2018, 209, S3–S8. [Google Scholar] [CrossRef]
- Lee, S.; Choe, E.K.; Kang, H.Y.; Yoon, J.W.; Kim, H.S. The exploration of feature extraction and machine learning for predicting bone density from simple spine X-ray images in a Korean population. Skelet. Radiol. 2020, 49, 613–618. [Google Scholar] [CrossRef]
- Fischler, M.A. Image Understanding Research and Its Application to Cartography and Computer-Based Analysis of Aerial Imagery; SRI International: Menlo Park, CA, USA, 1983. [Google Scholar]
- Lakhani, P.; Prater, A.B.; Hutson, R.K.; Andriole, K.P.; Dreyer, K.J.; Morey, J.; Hawkins, C.M. Machine learning in radiology: Applications beyond image interpretation. J. Am. Coll. Radiol. 2018, 15, 350–359. [Google Scholar] [CrossRef]
- Lee, Y.H. Efficiency improvement in a busy radiology practice: Determination of musculoskeletal magnetic resonance imaging protocol using deep-learning convolutional neural networks. J. Digit. Imaging 2018, 31, 604–610. [Google Scholar] [CrossRef]
- Trivedi, H.; Mesterhazy, J.; Laguna, B.; Vu, T.; Sohn, J.H. Automatic determination of the need for intravenous contrast in musculoskeletal MRI examinations using IBM Watson’s natural language processing algorithm. J. Digit. Imaging 2018, 31, 245–251. [Google Scholar] [CrossRef]
- Kohli, M.; Dreyer, K.J.; Geis, J.R. Rethinking radiology informatics. AJR 2015, 204, 716–720. [Google Scholar] [CrossRef] [PubMed]
- Mardani, M.; Gong, E.; Cheng, J.Y.; Vasanawala, S.S.; Zaharchuk, G.; Xing, L.; Pauly, J.M. Deep Generative Adversarial Neural Networks for Compressive Sensing MRI. IEEE Trans. Med. Imaging 2019, 38, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Schlemper, J.; Caballero, J.; Hajnal, J.V.; Price, A.; Rueckert, D. A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction. IEEE Trans. Med. Imaging 2018, 37, 491–503. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, Y.; Sun, A. Advantages of joint multi-echo MRI reconstruction via deep learning. In Proceedings of the ISMRM Workshop on Machine Learning Part II, Washington, DC, USA, 25–28 October 2018; Wiley Press: Hoboken, NJ, USA, 2018. [Google Scholar]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Rueckert, D. Attention u-net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Eo, T.; Jun, Y.; Kim, T.; Jang, J.; Lee, H.J.; Hwang, D. KIKI-net: Cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magn. Reson. Med. 2018, 80, 2188–2201. [Google Scholar] [CrossRef]
- Subhas, N.; Pursyko, C.P.; Polster, J.M.; Obuchowski, N.A.; Primak, A.N.; Dong, F.F.; Herts, B.R. Dose reduction with dedicated CT metal artifact reduction algorithm: CT phantom study. AJR 2018, 210, 593–600. [Google Scholar] [CrossRef]
- Subhas, N.; Polster, J.M.; Obuchowski, N.A.; Primak, A.N.; Dong, F.F.; Herts, B.R.; Iannotti, J.P. Imaging of arthroplasties: Improved image quality and lesion detection with iterative metal artifact reduction, a new CT metal artifact reduction technique. AJR 2016, 207, 378–385. [Google Scholar] [CrossRef]
- Wolterink, J.M.; Leiner, T.; Viergever, M.A.; Išgum, I. Generative Adversarial Networks for Noise Reduction in Low-Dose CT. IEEE Trans. Med. Imaging 2017, 36, 2536–2545. [Google Scholar] [CrossRef]
- Giordano, C.; Monica, I.; Quattrini, F.; Villaggi, E.; Gobbi, R.; Barbattini, L. Evaluation of the radiation dose to the hands of orthopaedic surgeons during fluoroscopy using stored images. Radiat. Prot. Dosim. 2020, 189, 157–162. [Google Scholar] [CrossRef]
- McDonald, R.J.; Schwartz, K.M.; Eckel, L.J.; Diehn, F.E.; Hunt, C.H.; Bartholmai, B.J.; Kallmes, D.F. The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Acad. Radiol. 2015, 22, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Iankoulski, A. Intelligent tools for a productive radiologist workflow: How machine learning enriches hanging protocols. GE Healthc. Website 2019, 35, 117–123. [Google Scholar]
- Kelm, B.M.; Wels, M.; Zhou, S.K.; Seifert, S.; Suehling, M.; Zheng, Y.; Comaniciu, D. Spine detection in CT and MR using iterated marginal space learning. Med. Image Anal. 2013, 17, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- Ghesu, F.C.; Georgescu, B.; Mansi, T.; Neumann, D.; Hornegger, J.; Comaniciu, D. An artificial agent for anatomical landmark detection in medical images. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016; Springer: Cham, Switzerland, 2016; pp. 229–237. [Google Scholar]
- Zhang, P.; Zheng, Y. Unsupervised Deep Representation Learning for Fine-grained Body Part Recognition. U.S. Patent No. 10,452,899, 22 October 2019. [Google Scholar]
- Chen, H.; Zhang, Y.; Kalra, M.K.; Lin, F.; Chen, Y.; Liao, P.; Wang, G. Low-Dose CT with a Residual Encoder-Decoder Convolutional Neural Network (RED-CNN). IEEE Trans. Med. Imaging 2017, 36, 2524–2535. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, S.; Huang, J.; Yu, L.; Jin, M. Investigation of low-dose CT image denoising using unpaired deep learning methods. IEEE Trans. Radiat. Plasma Med. Sci. 2020, 5, 224–234. [Google Scholar] [CrossRef]
- Han, Y.; Ye, J.C. Framing U-Net via Deep Convolutional Framelets: Application to Sparse-View CT. IEEE Trans. Med. Imaging 2018, 37, 1418–1429. [Google Scholar] [CrossRef]
- Anirudh, R.; Kim, H.; Thiagarajan, J.J.; Mohan, K.A.; Champley, K.; Bremer, T. Lose the Views: Limited Angle CT Reconstruction via Implicit Sinogram Completion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 6343–6352. [Google Scholar]
- Xu, J.; Gong, E.; Pauly, J.; Zaharchuk, G. 200× low-dose PET reconstruction using deep learning. In Proceedings of the NIPS Workshop on Machine Learning for Health, Long Beach, CA, USA, 8 December 2017; MIT Press: Cambridge, UK, 2017. [Google Scholar]
- Han, L.; Ju, G.; Mei, L. Multitask DNN for liver imaging enhancement. In Proceedings of the ISMRM Workshop on Machine Learning Part II, Washington, DC, USA, 25–28 October 2018; Wiley Press: Hoboken, NJ, USA, 2018. [Google Scholar]
- Azimi, P.; Mohammadi, H.R.; Benzel, E.C.; Shahzadi, S.; Azhari, S. Use of artificial neural networks to decision making in patients with lumbar spinal canal stenosis. J. Neurosurg. Sci. 2017, 61, 603–611. [Google Scholar] [CrossRef]
- Han, Z.; Wei, B.; Leung, S.; Nachum, I.B.; Laidley, D.; Li, S. Automated pathogenesis-based diagnosis of lumbar neural foraminal stenosis via deep multiscale multitask learning. Neuroinformatics 2018, 16, 325–337. [Google Scholar] [CrossRef]
- Kim, J.S.; Merrill, R.K.; Arvind, V.; Kaji, D.; Pasik, S.D.; Nwachukwu, C.C.; Cho, S.K. Examining the ability of artificial neural networks machine learning models to accurately predict complications following posterior lumbar spine fusion. Spine 2018, 43, 853–860. [Google Scholar] [CrossRef]
- Staartjes, V.E.; Marlies, P.; Vandertop, W.P.; Schröder, M.L. Deep learning-based preoperative predictive analytics for patient-reported outcomes following lumbar discectomy: Feasibility of center specific modeling. Spine J. 2019, 19, 853–861. [Google Scholar] [CrossRef]
- Ramirez, L.; Durdle, N.G.; Raso, V.J.; Hill, D.L. A support vector machines classifier to assess the severity of idiopathic scoliosis from surface topography. IEEE Trans. Inf. Technol. Biomed. 2006, 10, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, C.; Cheriet, F.; Ronsky, J.; Zernicke, R.; Labelle, H. Prediction of anterior scoliotic spinal curve from trunk surface using support vector regression. Eng. Appl. Artif. Intel. 2005, 18, 973–983. [Google Scholar] [CrossRef]
- Lenke, L.G.; Edwards, C.C.; Bridwell, K.H. The Lenke classification of adolescent idiopathic scoliosis: How it organizes curve patterns as a template to perform selective fusions of the spine. Spine 2003, 28, S199–S207. [Google Scholar] [CrossRef] [PubMed]
- Seoud, L.; Adankon, M.M.; Labelle, H.; Dansereau, J.; Cheriet, F. Prediction of scoliosis curve type based on the analysis of trunk surface topography. In Proceedings of the 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Rotterdam, The Netherlands, 14–17 April 2010; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2010. [Google Scholar]
- Komeili, A.; Westover, L.; Parent, E.C.; El-Rich, M.; Adeeb, S. Monitoring for idiopathic scoliosis curve progression using surface topography asymmetry analysis of the torso in adolescents. Spine J. 2015, 15, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lou, E.; Le, L.H.; Hill, D.L.; Raso, J.V.; Wang, Y. Automatic Cobb measurement of scoliosis based on fuzzy Hough transform with vertebral shape prior. J. Digit. Imaging 2009, 22, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Galbusera, F.; Niemeyer, F.; Wilke, H.J.; Bassani, T.; Casaroli, G.; Anania, C.; Sconfienza, L.M. Fully automated radiological analysis of spinal disorders and deformities: A deep learning approach. Eur. Spine J. 2019, 28, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, H.; Lv, L.; Zhang, Y. Computer-aided cobb measurement based on automatic detection of vertebral slopes using deep neural network. Int. J. Biomed. Imaging 2017, 2017, 9083916. [Google Scholar] [CrossRef]
- Wu, H.; Bailey, C.; Rasoulinejad, P.; Li, S. Automated comprehensive Adolescent Idiopathic Scoliosis assessment using MVC-Net. Med. Image Anal. 2018, 48, 1–11. [Google Scholar] [CrossRef]
- Thong, W.E.; Parent, S.; Wu, J.; Aubin, C.E.; Labelle, H.; Kadoury, S. Three-dimensional morphology study of surgical adolescent idiopathic scoliosis patient from encoded geometric models. Eur. Spine J. 2016, 15, 3104–3113. [Google Scholar] [CrossRef]
- Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Aerts, H.J. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J. Clin. 2019, 69, 127–157. [Google Scholar] [CrossRef]
- Wang, J.; Fang, Z.; Lang, N.; Yuan, H.; Su, M.Y.; Baldi, P. A multi-resolution approach for spinal metastasis detection using deep Siamese neural networks. Comput. Biol. Med. 2017, 84, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Lang, N.; Zhang, Y.; Zhang, E.; Zhang, J.; Chow, D.; Chang, P.; Su, M.Y. Differentiation of spinal metastases originated from lung and other cancers using radiomics and deep learning based on DCE-MRI. Magn. Reson. Imaging 2019, 30, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Karhade, A.V.; Thio, Q.C.; Ogink, P.T.; Shah, A.A.; Bono, C.M.; Oh, K.S.; Schwab, J.H. Development of machine learning algorithms for prediction of 30-day mortality after surgery for spinal metastasis. Neurosurgery 2019, 85, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Gros, C.; De Leener, B.; Dupont, S.M.; Martin, A.R.; Fehlings, M.G.; Bakshi, R.; Sdika, M. Automatic spinal cord localization, robust to MRI contrasts using global curve optimization. Med. Image Anal. 2018, 44, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Pham, B.; Gaonkar, B.; Whitehead, W.; Moran, S.; Dai, Q.; Macyszyn, L.; Edgerton, V.R. Cell counting and segmentation of immunohistochemical images in the spinal cord: Comparing deep learning and traditional approaches. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2018, 2018, 842–845. [Google Scholar]
- Wang, S.H.; Tang, C.; Sun, J.; Yang, J.; Huang, C.; Phillips, P.; Zhang, Y.D. Multiple sclerosis identifica-tion by 14-layer convolutional neural network with batch normalization, dropout, and stochastic pooling. Front. Neurosci. 2018, 12, 818–824. [Google Scholar] [CrossRef]
- Aoe, J.; Fukuma, R.; Yanagisawa, T.; Harada, T.; Tanaka, M.; Kobayashi, M.; Kishima, H. Automatic diagnosis of neurological diseases using MEG signals with a deep neural network. Sci. Rep. 2019, 9, 50–57. [Google Scholar] [CrossRef]
- Wang, S.; Hu, Y.; Shen, Y.; Li, H. Classification of diffusion tensor metrics for the diagnosis of a myelopathic cord using machine learning. Int. J. Neural Syst. 2018, 28, 175–181. [Google Scholar] [CrossRef]
- Al Arif, S.; Knapp, K.; Slabaugh, G. Fully automatic cervical vertebrae segmentation framework for X-ray images. Comput. Methods Programs Biomed. 2018, 157, 95–111. [Google Scholar] [CrossRef]
- Chang, T.K.; Hsu, C.C.; Chen, K.T. Optimal screw orientation for the fixation of cervical degenerative disc disease using nonlinear C3-T2 multi-level spinal models and neuro-genetic algorithms. Acta Bioeng. Biomech. 2015, 17, 59–66. [Google Scholar]
- Arvind, V.; Kim, J.S.; Oermann, E.K.; Kaji, D.; Cho, S.K. Predicting Surgical Complications in Adult Patients Undergoing Anterior Cervical Discectomy and Fusion Using Machine Learning. Neurospine 2018, 15, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Karhade, A.V.; Ogink, P.T.; Thio, Q.C.; Broekman, M.L.; Cha, T.D.; Hershman, S.H.; Schwab, J.H. Machine learning for prediction of sustained opioid prescription after anterior cervical discectomy and fusion. Spine J. 2019, 19, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Shioji, M.; Yamamoto, T.; Ibata, T.; Tsuda, T.; Adachi, K.; Yoshimura, N. Artificial neural networks to predict future bone mineral density and bone loss rate in Japanese postmenopausal women. BMC Res. Notes 2017, 10, 590–601. [Google Scholar] [CrossRef] [PubMed]
- Muehlematter, U.J.; Mannil, M.; Becker, A.S.; Vokinger, K.N.; Finkenstaedt, T.; Osterhoff, G.; Guggenberger, R. Vertebral body insufficiency fractures: Detection of vertebrae at risk on standard CT images using texture analysis and machine learning. Eur. Radiol. 2019, 29, 2207–2217. [Google Scholar] [CrossRef]
- Mehta, S.D.; Sebro, R. Random forest classifiers aid in the detection of incidental osteoblastic osseous metastases in DEXA studies. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 903–909. [Google Scholar] [CrossRef]
- Schwarzenberg, R.; Freisleben, B.; Nimsky, C.; Egger, J. Cube-cut: Vertebral body segmentation in MRI-data through cubic-shaped divergences. PLoS ONE 2014, 9, e93389. [Google Scholar]
- Alomari, R.S.; Corso, J.J.; Chaudhary, V. Labeling of Lumbar Discs Using Both Pixel- and Object-Level Features with a Two-Level Probabilistic Model. IEEE Trans. Med. Imaging 2011, 30, 1–10. [Google Scholar] [CrossRef]
- Glocker, B.; Feulner, J.; Criminisi, A.; Haynor, D.R.; Konukoglu, E. Automatic Localization and Identification of Vertebrae in Arbitrary Field-of-View CT Scans. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2012; Springer: Berlin/Heidelberg, Germany, 2012; Volume 75, pp. 590–598. [Google Scholar]
- Chen, C.; Belavy, D.; Yu, W.; Chu, C.; Armbrecht, G.; Bansmann, M.; Zheng, G. Localization and segmentation of 3D intervertebral discs in MR images by data driven estimation. IEEE Trans. Med. Imaging 2015, 34, 1719–1729. [Google Scholar] [CrossRef]
- Chen, H.; Shen, C.; Qin, J.; Ni, D.; Shi, L.; Cheng, J.C.; Heng, P.A. Automatic Localization and Identification of Vertebrae in Spine CT via a Joint Learning Model with Deep Neural Networks. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Springer: Berlin/Heidelberg, Germany, 2015; Volume 93, pp. 515–522. [Google Scholar]
- Ma, J.; Lu, L. Hierarchical segmentation and identification of thoracic vertebra using learning based edge detection and coarse-to-fine deformable model. Comput. Vis. Image Underst. 2013, 117, 1072–1083. [Google Scholar] [CrossRef]
- Li, C.; Xu, C.; Gui, C. Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 2010, 19, 3243–3254. [Google Scholar] [CrossRef]
- Lim, P.H.; Bagci, U.; Bai, L. Introducing Wilmore flow into level set segmentation of spinal vertebrae. IEEE Trans. Biomed. Eng. 2013, 60, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Lessmann, N.; van Ginneken, B.; Išgum, I. Iterative convolutional neural networks for automatic vertebra identification and segmentation in CT images. arXiv 2018, 18, 43–51. [Google Scholar]
- Haq, R.; Aras, R.; Besachio, D.A.; Borgie, R.C.; Audette, M.A. 3D lumbar spine intervertebral disc segmentation and compression simulation from MRI using shape-aware models. Int. J. Comput. Assist. Radiol. Surg. 2015, 10, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Neubert, A.; Fripp, J.; Engstrom, C.; Schwarz, R.; Lauer, L.; Salvado, O.; Crozier, S. Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models. Phys. Med. Biol. 2012, 57, 8357–8376. [Google Scholar] [CrossRef]
- Forsberg, D.; Sjoblom, E.; Sunshine, J.L. Detection and labeling of vertebrae in MR images using deep learning with clinical annotations as training data. J. Digit. Imaging 2017, 30, 406–412. [Google Scholar] [CrossRef]
- Belharbi, S.; Chatelain, C.; Hérault, R.; Adam, S.; Thureau, S.; Chastan, M.; Modzelewski, R. Spotting L3 slice in CT scans using deep convolutional network and transfer learning. Comput. Biol. Med. 2017, 87, 95–103. [Google Scholar] [CrossRef]
- Galbusera, F.; Bassani, T.; Casaroli, G.; Gitto, S.; Zanchetta, E.; Costa, F.; Sconfienza, L.M. Generative models: An upcoming innovation in musculoskeletal radiology? A pre-liminary test in spine imaging. Eur. Radiol. Exp. 2018, 2, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Gaweł, D.; Główka, P.; Kotwicki, T.; Nowak, M. Automatic spine tissue segmentation from mri data based on cascade of boosted classifiers and active appearance model. Biomed. Res. Int. 2018, 79, 29–36. [Google Scholar] [CrossRef]
- Lessmann, N.; Van Ginneken, B.; De Jong, P.A.; Išgum, I. Iterative fully convolutional neural networks for automatic vertebra segmentation and identification. Med. Image Anal. 2019, 53, 142–155. [Google Scholar] [CrossRef]
- McGirt, M.J.; Sivaganesan, A.; Asher, A.L.; Devin, C.J. Prediction model for outcome after low-back surgery: Individualized likelihood of complication, hospital readmission, return to work, and 12-month improvement in functional disability. Neurosurg Focus. 2015, 39, E13. [Google Scholar] [CrossRef]
- Fairbank, J.C.; Couper, J.; Davies, J.B.; O’Brien, J.P. The Oswestry low back pain disability questionnaire. Physiotherapy 1980, 66, 271–273. [Google Scholar] [PubMed]
- Lee, M.J.; Cizik, A.M.; Hamilton, D.; Chapman, J.R. Predicting surgical site infection after spine surgery: A validated model using a prospective surgical registry. Spine J. 2014, 14, 2112–2117. [Google Scholar] [CrossRef] [PubMed]
- Janssen, D.M.; van Kuijk, S.M.; d’Aumerie, B.B.; Willems, P.C. External validation of a prediction model for surgical site infection after thoracolumbar spine surgery in a Western European cohort. J. Orthop. Surg. Res. 2018, 13, 114. [Google Scholar] [CrossRef] [PubMed]
- Scheer, J.K.; Smith, J.S.; Schwab, F.; Lafage, V.; Shaffrey, C.I.; Bess, S.; Ames, C.P. Development of a preoperative predictive model for major complications following adult spinal deformity surgery. J. Neurosurg. Spine 2017, 26, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Durand, W.M.; DePasse, J.M.; Daniels, A.H. Predictive modeling for blood transfusion after adult spinal deformity surgery: A tree-based machine learning approach. Spine 2018, 43, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- Fukuchi, R.K.; Eskofier, B.M.; Duarte, M.; Ferber, R. Support vector machines for detecting age-related changes in running kinematics. J. Biomech. 2011, 44, 540–542. [Google Scholar] [CrossRef]
- Leardini, A.; Biagi, F.; Merlo, A.; Belvedere, C.; Benedetti, M.G. Multi-segment trunk kinematics during locomotion and elementary exercises. Clin. Biomech. 2011, 26, 562–571. [Google Scholar] [CrossRef]
- Zhang, J.; Lockhart, T.E.; Soangra, R. Classifying lower extremity muscle fatigue during walking using machine learning and inertial sensors. Ann. Biomed. Eng. 2014, 42, 600–612. [Google Scholar] [CrossRef]
- Zadpoor, A.A.; Campoli, G.; Weinans, H. Neural network prediction of load from the morphology of trabecular bone. App. Math. Model. 2013, 37, 5260–5276. [Google Scholar] [CrossRef]
- Lu, Y.; Pulasani, P.R.; Derakhshani, R.; Guess, T.M. Application of neural networks for the prediction of cartilage stress in a musculoskeletal system. Biomed. Signal. Process. Control. 2013, 8, 475–482. [Google Scholar] [CrossRef]
- Sun, X.; Xv, H.; Dong, J.; Zhou, H.; Chen, C.; Li, Q. Few-shot learning for domain-specific fine-grained image classification. IEEE Trans. Ind. Electron. 2020, 68, 3588–3598. [Google Scholar] [CrossRef]
- Goldman, M.J.; Craft, B.; Hastie, M.; Repečka, K.; McDade, F.; Kamath, A.; Haussler, D. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 2020, 38, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhang, C.; Liu, F.; Qiu, Z.; He, Y. Application of deep learning in food: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1793–1811. [Google Scholar] [CrossRef]
- Sharma, K.; Giannakos, M. Multimodal data capabilities for learning: What can multimodal data tell us about learning. Br. J. Educ. Technol. 2020, 51, 1450–1484. [Google Scholar] [CrossRef]
- Ruan, T.; Lei, L.; Zhou, Y.; Zhai, J.; Zhang, L.; He, P.; Gao, J. Representation learning for clinical time series prediction tasks in electronic health records. BMC Med. Inform. Decis. Mak. 2019, 19, 259. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, M. Against interpretability: A critical examination of the interpretability problem in machine learning. Philos. Technol. 2020, 33, 487–502. [Google Scholar] [CrossRef]
- Cui, Y.; Shen, H.; Chen, Y.; Zhang, W.; Zhu, J.; Duan, Z.; Weiqiang, L. Study on the process of intervertebral disc disease by the theory of continuum damage mechanics. Clin. Biomech. 2022, 105738. [Google Scholar] [CrossRef]
- Cui, Y.; Xiang, D.; Shu, L.; Duan, Z.; Liao, Z.; Wang, S.; Liu, W. Incremental element deletion-based finite element analysis of the effects of impact speeds, fall postures, and cortical thicknesses on femur fracture. Materials 2022, 15, 2878. [Google Scholar] [CrossRef]
- Ji, M.; Gall, J.; Zheng, H.; Liu, Y.; Fang, L. Surfacenet: An end-to-end 3d neural network for multiview stereopsis. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2307–2315. [Google Scholar]
- Bebeshko, B.; Khorolska, K.; Kotenko, N.; Desiatko, A.; Sauanova, K.; Sagyndykova, S.; Tyshchenko, D. 3D modelling by means of artificial intelligence. J. Theor. Appl. Inf. Technol. 2021, 99, 1296–1308. [Google Scholar]
- Grace, K.; Salvatier, J.; Dafoe, A.; Zhang, B.; Evans, O. When will AI exceed human performance? Evidence from AI experts. J. Artif. Intell. Res. 2018, 62, 729–754. [Google Scholar] [CrossRef]
- Kuang, L.; He LI, U.; Yili RE, N.; Kai LU, O.; Mingyu SH, I.; Jian, S.U.; Xin, L.I. Application and development trend of artificial intelligence in petroleum exploration and development. Pet. Explor. Dev. 2021, 48, 1–14. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, H.; Zhu, J.; Peng, L.; Duan, Z.; Liu, T.; Zuo, J.; Xing, L.; Liao, Z.; Wang, S.; et al. Unstimulated Parotid Saliva Is a Better Method for Blood Glucose Prediction. Appl. Sci. 2021, 11, 11367. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, H.; Wang, S.; Lu, J.; He, J.; Liu, L.; Liu, W. Stimulated Parotid Saliva Is a Better Method for Depression Prediction. Biomedicines 2022, 10, 2220. [Google Scholar] [CrossRef]
- Yadan, Z.; Jian, W.; Yifu, L.; Haiying, L.; Jie, L.; Hairui, L. Solving the inverse problem based on UPEMD for electrocardiographic imaging. Biomed. Signal. Process. Control. 2022, 76, 103665. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, H.; Zhu, J.; Liao, Z.; Wang, S.; Liu, W. Correlations of Salivary and Blood Glucose Levels among Six Saliva Collection Methods. Int. J. Environ. Res. Public Health 2022, 19, 4122. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Wang, Z.; Yang, M.; Luo, Z.; Wang, Y.; Li, G. An electronic nose-based assistive diagnostic prototype for lung cancer detection with conformal prediction. Measurement 2020, 158, 107588. [Google Scholar] [CrossRef]
- Lu, C.; Lemay, A.; Chang, K.; Höbel, K.; Kalpathy-Cramer, J. Fair conformal predictors for applications in medical imaging. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 22 February–1 March 2022; Volume 36, pp. 12008–12016. [Google Scholar]
- Cui, J.; Zhu, H.; Deng, H.; Chen, Z.; Liu, D. FeARH: Federated machine learning with anonymous random hybridization on electronic medical records. J. Biomed. Inform. 2021, 117, 103735. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Zhu, J.; Duan, Z.; Liao, Z.; Wang, S.; Liu, W. Artificial Intelligence in Spinal Imaging: Current Status and Future Directions. Int. J. Environ. Res. Public Health 2022, 19, 11708. https://doi.org/10.3390/ijerph191811708
Cui Y, Zhu J, Duan Z, Liao Z, Wang S, Liu W. Artificial Intelligence in Spinal Imaging: Current Status and Future Directions. International Journal of Environmental Research and Public Health. 2022; 19(18):11708. https://doi.org/10.3390/ijerph191811708
Chicago/Turabian StyleCui, Yangyang, Jia Zhu, Zhili Duan, Zhenhua Liao, Song Wang, and Weiqiang Liu. 2022. "Artificial Intelligence in Spinal Imaging: Current Status and Future Directions" International Journal of Environmental Research and Public Health 19, no. 18: 11708. https://doi.org/10.3390/ijerph191811708
APA StyleCui, Y., Zhu, J., Duan, Z., Liao, Z., Wang, S., & Liu, W. (2022). Artificial Intelligence in Spinal Imaging: Current Status and Future Directions. International Journal of Environmental Research and Public Health, 19(18), 11708. https://doi.org/10.3390/ijerph191811708