The Influence of Space Transformation of Land Use on Function Transformation and the Regional Differences in Shaanxi Province
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data Sources
2.3. Diagnosis of Land Use Space Transformation
2.4. Land Use Function Assessment
2.5. Functional Transformation Diagnosis of Land Use
3. Results
3.1. Characteristics and Regional Differences of Land Use Spatial Transformation
3.2. Function Transformation Characteristics of Land Use and Regional Differences
3.3. Study on the Driving Mechanism of Land Use Space Transformation on Function Transformation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y. Modern Human-Earth Relationship and Human-Earth System Science. Sci. Geogr. Sin. 2020, 40, 1221–1234. [Google Scholar]
- Eichelmann, E.; Hemes, K.S.; Knox, S.H.; Oikawa, P.Y.; Chamberlain, S.D.; Sturtevant, C.; Verfaillie, J.; Baldocchi, D.D. The effect of land cover type and structure on evapotranspiration from agricultural and wetland sites in the Sacramento-San Joaquin River Delta, California. Agric. For. Meteorol. 2018, 256, 179–195. [Google Scholar] [CrossRef]
- Bosso, L.; Scelza, R.; Testa, A.; Cristinzio, G.; Rao, M.A. Depletion of Pentachlorophenol Contamination in an Agricultural Soil Treated with Byssochlamys nivea, Scopulariopsis brumptii and Urban Waste Compost: A Laboratory Microcosm Study. Water Air Soil Pollut. 2015, 226, 183. [Google Scholar] [CrossRef]
- Baumann, M.; Kamp, J.; Poetzschner, F.; Bleyhl, B.; Dara, A.; Hankerson, B.; Prishchepov, A.V.; Schierhorn, F.; Mueller, D.; Hoelzel, N.; et al. Declining human pressure and opportunities for rewilding in the steppes of Eurasia. Divers. Distrib. 2020, 26, 1058–1070. [Google Scholar] [CrossRef]
- Long, H.; Tu, S. Land Use Transition and Rural Vitalization. China Land Sci. 2018, 32, 1–6. [Google Scholar]
- Long, H. Land Use Transition:A New Integrated Approach of Land Use/Cover Change Study. Geogr. Geo-Inf. Sci. 2003, 19, 87–90. [Google Scholar]
- Long, H.; Ma, L.; Zhang, Y.; Qu, L. Multifunctional rural development in China: Pattern, process and mechanism. Habitat Int. 2022, 121, 102530. [Google Scholar] [CrossRef]
- Song, X. Discussion on land use transition research framework. Acta Geogr. Sin. 2017, 72, 471–487. [Google Scholar]
- Tian, J.; Wang, B.; Wang, S. Land Use Transition in Northeast China:Features Measurement and Mechanism Exploration. Econ. Geogr. 2020, 40, 184–195. [Google Scholar]
- Yang, H.; Garousi, F.; Wang, J.; Cao, J.; Xu, X.; Zhu, T.; Mueller, C. Land use effects on gross soil nitrogen transformations in karst desertification area. Plant Soil 2022, 475, 61–77. [Google Scholar] [CrossRef]
- Westlund, H.; Nilsson, P. Agriculture’s transformation and land-use change in a post-urban world: A case study of the Stockholm region. J. Rural Stud. 2022, 93, 345–358. [Google Scholar] [CrossRef]
- Xiang, J.; Li, X.; Xiao, R.; Wang, Y. Effects of land use transition on ecological vulnerability in poverty-stricken mountainous areas of China: A complex network approach. J. Environ. Manag. 2021, 297, 113206. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Ma, J.; Yuan, Y.; Wei, H.; Pang, W.-T. Integrated Urban Land-Use Zoning and Associated Spatial Development: Case Study in Shenzhen, China. J. Urban Plan. Dev. 2015, 141, 05014025. [Google Scholar] [CrossRef]
- Basheer, M.A.; Boelens, L.; van der Bijl, R. Bus Rapid Transit System: A Study of Sustainable Land-Use Transformation, Urban Density and Economic Impacts. Sustainability 2020, 12, 3376. [Google Scholar] [CrossRef]
- Amin, A.; Fazal, S.; Mujtaba, A.; Singh, S.K. Effects of Land Transformation on Water Quality of Dal Lake, Srinagar, India. J. Indian Soc. Remote Sens. 2014, 42, 119–128. [Google Scholar] [CrossRef]
- Ma, L.; Long, H.; Tu, S.; Zhang, Y.; Zheng, Y. Farmland transition in China and its policy implications. Land Use Policy 2020, 92, 104470. [Google Scholar] [CrossRef]
- Long, H.; Qu, Y. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Chen, R.; Ye, C.; Cai, Y.; Xing, X.; Chen, Q. The impact of rural out-migration on land use transition in China: Past, present and trend. Land Use Policy 2014, 40, 101–110. [Google Scholar] [CrossRef]
- Leal Pacheco, F.A.; Sanches Fernandes, L.F.; Valle Junior, R.F.; Valera, C.A.; Tarle Pissarra, T.C. Land degradation: Multiple environmental consequences and routes to neutrality. Curr. Opin. Environ. Sci. Health 2018, 5, 79–86. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Mahon, M.; McGrath, B.; Ó Laoire, L.; Collins, P. Artists as workers in the rural; precarious livelihoods, sustaining rural futures. J. Rural Stud. 2018, 63, 271–279. [Google Scholar] [CrossRef]
- Lu, L.; Zhou, S.; Zhou, B.; Dai, L.; Chang, T.; Bao, G.; Zhou, H.; Li, Z. Land Use Transformation and Its Eco-environmental Response in Process of the Regional Development: A Case Study of Jiangsu Province. Sci. Geogr. Sin. 2013, 33, 1442–1449. [Google Scholar]
- Hualou, L. Rural Housing Land Transition in China: Theory and Verification. Acta Geogr. Sin. 2006, 61, 1093–1100. [Google Scholar]
- Crawshaw, J.; Gkartzios, M. Getting to know the island: Artistic experiments in rural community development. J. Rural Stud. 2016, 43, 134–144. [Google Scholar] [CrossRef]
- Cui, X.Z.; Wang, Y.W. The Evolution of Urban land Use Structure in Harbin Based on Information Entropy. In Proceedings of the International Conference on Construction & Real Estate Management, Guangzhou, China, 19–20 November 2011; Guangzhou University: Guangzhou, China, 2011; pp. 837–840. [Google Scholar]
- Lyu, M.; Cao, X. The Spatial Characteristics of Rurality and Its Relationship with the Transportation Accessibility in the Loess Plateau. Sci. Geogr. Sin. 2020, 40, 248–260. [Google Scholar]
- Li, G.; Qi, W. Impacts of construction land expansion on landscape pattern evolution in China. Acta Geogr. Sin. 2019, 74, 2572–2591. [Google Scholar]
- Qiu, D.; Zhang, J. Urban Residential Land Suitability Index System and Its Comprehensive Evaluation—A Case Study of Wenzhou. Procedia Eng. 2011, 21, 439–445. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, Y.; Lin, C.; Wu, F. Analysis and comprehensive evaluation of sustainable land use in China: Based on sustainable development goals framework. J. Clean. Prod. 2021, 310, 127205. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y.; Yang, X.; Zhang, Z.; Gao, S.; Zhou, Q.; Zhuo, Y.; Wen, X.; Guo, Z. Evaluating urban ecological civilization and its obstacle factors based on integrated model of PSR-EVW-TOPSIS: A case study of 13 cities in Jiangsu Province, China. Ecol. Indic. 2021, 133, 108431. [Google Scholar] [CrossRef]
- Stachura, P.; Kuligowska, K. Multi-criteria analysis of urban policy for sustainable development decision-making: A case study for Warsaw city, Poland. Procedia Comput. Sci. 2021, 192, 259–269. [Google Scholar] [CrossRef]
- Jürgenson, E. Land reform, land fragmentation and perspectives for future land consolidation in Estonia. Land Use Policy 2016, 57, 34–43. [Google Scholar] [CrossRef]
- Wu, C.; Wei, Y.D.; Huang, X.; Chen, B. Economic transition, spatial development and urban land use efficiency in the Yangtze River Delta, China. Habitat Int. 2017, 63, 67–78. [Google Scholar] [CrossRef]
- Chen, K.; Long, H. Impacts of land market on urban-rural integrated development in China. J. Nat. Resour. 2019, 34, 221–235. [Google Scholar] [CrossRef]
- Li, F.; Zhou, M.; Shao, J.; Qin, Z. Evolution forms of land systems based on ascendency and overhead: A case study of Shaanxi Province, China. Ecol. Model. 2020, 419, 108960. [Google Scholar] [CrossRef]
- Ulanowicz, R.E.; Goerner, S.J.; Lietaer, B.; Gomez, R. Quantifying sustainability: Resilience, efficiency and the return of information theory. Ecol. Complex. 2009, 6, 27–36. [Google Scholar] [CrossRef]
- Xie, G.; Lu, C.; Leng, Y.; Zheng, d.; Li, S. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Rapport, D.J.; Costanza, R.; McMichael, A.J. Assessing ecosystem health. Trends Ecol. Evol. 1998, 13, 397–402. [Google Scholar] [CrossRef]
- Yu, D.; Hu, S.; Tong, L.; Xia, C. Spatiotemporal Dynamics of Cultivated Land and Its Influences on Grain Production Potential in Hunan Province, China. Land 2020, 9, 510. [Google Scholar] [CrossRef]
- Qin, Z.; Liu, X.; Lu, X.; Li, M.; Li, F. Grain Production Space Reconstruction and Its Influencing Factors in the Loess Plateau. Int. J. Environ. Res. Public Health 2022, 19, 5876. [Google Scholar] [CrossRef]
- Fischer, G.; Shah, M.; Tubiello, F.N.; van Velhuizen, H. Socio-economic and climate change impacts on agriculture: An integrated assessment, 1990–2080. Philos. Trans. R. Soc. B-Biol. Sci. 2005, 360, 2067–2083. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Liu, L.; Xu, X. Spatial-temporal characteristics of soybean production potential change under the background of climate change over the past 50 years in China. Prog. Geogr. 2014, 33, 1414–1423. [Google Scholar]
- Liao, M.; Wei, F. Analysis of grain production and development potentiality in Central Asia based on GAEZ method. J. Nat. Resour. 2021, 36, 582–593. [Google Scholar] [CrossRef]
- Ge, Y.; Liu, L.; Xu, X.; Zhang, X.; Yuan, L.; Zhang, X. Temporal and Spatial Variations of Chinese Maize Production Potential on the Background of Climate Change during 1960–2010. J. Nat. Resour. 2015, 30, 784–795. [Google Scholar]
- Anselin, L. Under the hood-Issues in the specification and interpretation of spatial regression models. Agric. Econ. 2002, 27, 247–267. [Google Scholar] [CrossRef]
- Li, F.; Qin, Z.; Liu, X.; Chen, Z.; Wei, X.; Zhang, Q.; Lei, M. Grain production space reconstruction and land system function tradeoffs in China. Geogr. Sustain. 2021, 2, 22–30. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Wang, M.; Luo, G. The evolution of land use structure in karst valley area based on micro-space unit. J. Nat. Resour. 2020, 35, 908–924. [Google Scholar]
- Fu, B.; Liu, Y.; Lü, Y.; He, C.; Zeng, Y.; Wu, B. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol. Complex. 2011, 8, 284–293. [Google Scholar] [CrossRef]
- Yue, Y.; Xue, L. Study on the dynamics of land use and ecosystem services value in Shaanxi Province. J. China Agric. Univ. 2020, 25, 20–30. [Google Scholar]
- Qu, Y.; Jiang, G.-h.; Li, Z.; Tian, Y.; Wei, S. Understanding rural land use transition and regional consolidation implications in China. Land Use Policy 2019, 82, 742–753. [Google Scholar] [CrossRef]
- Peijun, S.H.I.; Jingai, W.; Wenli, F.; Tao, Y.E.; Yi, G.E.; Jing, C.; Jing, L.I.U. Responst of Eco-Environmental Security to Land Use/Cover Changes and Adjustment of Land Use Policy and Pattern in China. Adv. Earth Sci. 2006, 21, 111–119. [Google Scholar]
- He, W.; Yan, J.; Zhou, H.; Li, X. The Micro-mechanism of Forest Transition:A Case Study in the Mountainous Areas of Chongqing. J. Nat. Resour. 2016, 31, 102–113. [Google Scholar]
- Radel, C.; Jokisch, B.D.; Schmook, B.; Carte, L.; Aguilar-Stoen, M.; Hermans, K.; Zimmerer, K.; Aldrich, S. Migration as a feature of land system transitions. Curr. Opin. Environ. Sustain. 2019, 38, 103–110. [Google Scholar] [CrossRef]
- Hu, S.; Tong, L.; Long, H. Land use transition potential and its assessment framework. Geogr. Res. 2019, 38, 1367–1377. [Google Scholar]
- Barbier, E.B.; Burgess, J.C.; Grainger, A. The forest transition: Towards a more comprehensive theoretical framework. Land Use Policy 2010, 27, 98–107. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, P.; Jiang, G.; Zhang, R.; Gao, J. Rural land use transition of mountainous areas and policy implications for land consolidation in China. J. Geogr. Sci. 2019, 29, 1713–1730. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, X.; Fan, Y.; Liu, J.; Shan, W.; Zhou, Y. Spatial-temporal characteristics and coordination status of the land use function transition in Jiangsu province from 1995 to 2015. J. Nat. Resour. 2019, 34, 689–706. [Google Scholar] [CrossRef]
- Tian, J.; Wang, B.; Zhang, C.; Li, W.; Wang, S. Mechanism of regional land use transition in underdeveloped areas of China: A case study of northeast China. Land Use Policy 2020, 94, 104538. [Google Scholar] [CrossRef]
- Bicudo da Silva, R.F.; Batistella, M.; Moran, E.F. Socioeconomic changes and environmental policies as dimensions of regional land transitions in the Atlantic Forest, Brazil. Environ. Sci. Policy 2017, 74, 14–22. [Google Scholar] [CrossRef]
- Tian, J.; Wang, B.; Cheng, L.; Wang, S. The process and mechanism of regional land use transition guided by policy: A case study of Northeast China. Geogr. Res. 2020, 39, 805–821. [Google Scholar]
- Washbourne, C.-L.; Goddard, M.A.; Le Provost, G.; Manning, D.A.C.; Manning, P. Trade-offs and synergies in the ecosystem service demand of urban brownfield stakeholders. Ecosyst. Serv. 2020, 42, 101074. [Google Scholar] [CrossRef]
- Zhang, T.; Gao, Y.; Li, C.; Xie, Z.; Chang, Y.; Zhang, B. How Human Activity Has Changed the Regional Habitat Quality in an Eco-Economic Zone: Evidence from Poyang Lake Eco-Economic Zone, China. Int. J. Environ. Res. Public Health 2020, 17, 6253. [Google Scholar] [CrossRef] [PubMed]
- Bosso, L.; Ancillotto, L.; Smeraldo, S.; D’Arco, S.; Migliozzi, A.; Conti, P.; Russo, D. Loss of potential bat habitat following a severe wildfire: A model-based rapid assessment. Int. J. Wildland Fire 2018, 27, 756–769. [Google Scholar] [CrossRef] [Green Version]
Data Type | Key Indicators | Data Source and Processing |
---|---|---|
Land use data | Including 6 first-level land use types (Arable land, Forest land, Grassland, Water area, Construction land, and Unused land) | The three-phase land use data in 1980, 2000, and 2018 were obtained from the remote sensing monitoring data of the Resource and Environmental Science Data Center of the Chinese Academy of Sciences (http://www.resde.cn, accessed on 25 December 2021), with a resolution of 30 m. |
Terrain data | DEM | The digital elevation model (DEM) data were obtained from the Data Center of Resource and Environmental Sciences, Chinese Academy of Sciences, with a resolution of 90 m. |
Soil data | Soil type, structure, etc. | Sourced from the “China Soil Dataset (v1.1) based on the World Soil Database (HWSD)” (http://westdc.westgis.ac.cn, accessed on 10 January 2022) by the Cold and Arid Regions Science Data Center, with a resolution of 1km. |
Meteorological data | It includes daily and monthly data, such as precipitation, temperature, radiation, and evapotranspiration in 1990, 2000, and 2018. | From China Meteorological Science Data Sharing Network (http://cdc.cma.gov.cn, accessed on 10 January 2022), and it is interpolated by Anusplin. |
Socioeconomic data | Per capita GDP of the whole country and Shaanxi Province in 1980, 2000, and 2018, Engel coefficient of urban and rural areas, economic price of grain output, average price, etc. | Sourced from the National Bureau of Statistics of China and the Statistical Yearbook of Shaanxi Province. |
Relevance (μ) | Tradeoffs |
---|---|
[−1, −0.25) | trade-off |
[−0.25, 0) | partial trade-off |
(0, 0.32] | partial synergy |
(0.32, 1] | synergy |
Area | Period | 1980–2000 | 2000–2018 |
---|---|---|---|
Northern Shaanxi Plateau | α | 0.2366 | 0.4376 |
S | 0.7884 | 0.9980 | |
The spatial evolution form of the land system | Fluctuation | Optimization | |
Types of land use transitions | Not transformed | Sustainable transformation | |
Guanzhong Plain | α | 0.4890 | 0.2553 |
S | 0.9967 | 0.8237 | |
The spatial evolution form of the land system | Optimization | Optimization | |
Types of land use transitions | Sustainable transformation | Sustainable transformation | |
Qinba Mountain area | α | 0.2907 | 0.2242 |
S | 0.8809 | 0.7631 | |
The spatial evolution form of the land system | Optimization | Fluctuation | |
Types of land use transitions | Sustainable transformation | Not transformed |
1980–2000 | Area (10,000 Hectares) | 2000–2018 | Area (10,000 Hectares) | |
---|---|---|---|---|
Northern Shaanxi Plateau | Unutilized land → Grassland | 13.01 | Cultivated land → Grassland | 31.47 |
Guanzhong Plain | Cultivated land → Construction land | 3.35 | Cultivated land → Construction land | 11.36 |
Qinba Mountain aera | Grassland → Cultivated land | 1.38 | Cultivated land → Grassland | 4.81 |
Area | 1980–2000 | 2000–2018 | |
---|---|---|---|
Northern Shaanxi Plateau | Changes in Correlation | −0.115 | −0.342 |
Weighing Relationship Changes | synergy—partial synergy | partial synergy—partial trade-off | |
Type of Transformation | Unsustainable transformation | Unsustainable transformation | |
Guanzhong Plain | Changes in Correlation | −0.062 | 0.035 |
Weighing Relationship Changes | partial trade-off-partial trade-off | partial trade-off-partial trade-off | |
Type of Transformation | Untransformed | Untransformed | |
Qinba Mountain aera | Changes in Correlation | 0.057 | −0.021 |
Weighing Relationship Changes | trade-off—partial trade-off | partial trade-off—trade-off | |
Type of Transformation | sustainable transition | Unsustainable transformation |
Area | Period | Transition Type | Changes in Sustainability Index | Changes in Correlation | |
---|---|---|---|---|---|
Space Transformation | Function Transformation | ||||
Northern Shaanxi Plateau | 1980–2000 | Untransformed | Unsustainable transformation | 0.7884 | −0.115 |
2000–2018 | Sustainable transformation | Unsustainable transformation | 0.9980 | −0.342 | |
Guanzhong Plain | 1980–2000 | Sustainable transformation | Untransformed | 0.9967 | −0.062 |
2000–2018 | Sustainable transformation | Untransformed | 0.8237 | 0.035 | |
Qinba Mountain aera | 1980–2000 | Sustainable transformation | Sustainable transformation | 0.8809 | 0.057 |
2000–2018 | Untransformed | Unsustainable transformation | 0.7631 | −0.021 |
1980 | 2000 | ||||||
---|---|---|---|---|---|---|---|
Cultivated Land | Woodland | Grass Land | Waters | Construction Land | Unutilized Land | ||
Northern Shaanxi Plateau | Cultivated land | 0.00 | 9573.82 | 3323.94 | 4073.91 | −4441.86 | −2084.17 |
Woodland | −5090.26 | 0.00 | −16,097.70 | 136.28 | −397.23 | −429.91 | |
Grassland | −12,399.54 | 31,904.90 | 0.00 | 2178.00 | −795.91 | −6716.91 | |
Waters | −6065.71 | −113.56 | −5064.79 | 0.00 | −63.32 | −2270.98 | |
Construction Land | 2.76 | 1.09 | 2.04 | 1.12 | 0.00 | 0.02 | |
Unutilized Land | 2037.59 | 7700.94 | 105,689.94 | 115.82 | −30.81 | 0.00 | |
Guanzhong Plain | Cultivated land | 0.00 | 9612.44 | 263.99 | 17,069.63 | −20,887.76 | −81.27 |
Woodland | −376.27 | 0.00 | −656.61 | 438.01 | −3694.54 | −77.43 | |
Grassland | −2685.25 | 947.73 | 0.00 | 19,159.12 | −301.11 | −94.44 | |
Waters | −49,564.04 | −1708.56 | −10,424.44 | 0.00 | −423.64 | −885.72 | |
Construction Land | 360.89 | 3.78 | 201.94 | 1.11 | 0.00 | 0.00 | |
Unutilized Land | 156.23 | 6711.60 | 0.09 | 2396.02 | −2.08 | 0.00 | |
Qinba Mountain aera | Cultivated land | 0.00 | 2977.40 | 1187.50 | 2968.20 | −1233.11 | −0.06 |
Woodland | −5926.78 | 0.00 | −8625.80 | 176.99 | −703.25 | 0.00 | |
Grassland | −4104.29 | 5114.22 | 0.00 | 2317.42 | −2.70 | 0.00 | |
Waters | −6041.50 | −152.29 | −2003.73 | 0.00 | −182.71 | −0.01 | |
Construction Land | 3.29 | 0.25 | 2.83 | 1.00 | 0.00 | 0.00 | |
Unutilized Land | 0.03 | 0.00 | 0.14 | 0.00 | 0.00 | 0.00 |
2000 | 2018 | ||||||
---|---|---|---|---|---|---|---|
Cultivated Land | Woodland | Grass Land | Waters | Construction Land | Unutilized Land | ||
Northern Shaanxi Plateau | Cultivated land | 0.00 | 175,581.45 | 93,752.08 | 9259.85 | −29,559.98 | −1255.68 |
Woodland | −14,232.03 | 0.00 | −8031.08 | 655.26 | −10,744.65 | −7291.62 | |
Grassland | −26,854.73 | 63,102.36 | 0.00 | 7479.96 | −46,733.74 | −8947.32 | |
Waters | −14,804.36 | −209.99 | −9112.24 | 0.00 | −8392.93 | −875.01 | |
Construction Land | 778.96 | 128.90 | 475.27 | 2229.63 | 0.00 | 0.17 | |
Unutilized Land | 9513.84 | 1490.66 | 11,787.84 | 2878.59 | −2135.74 | 0.00 | |
Guanzhong Plain | Cultivated land | 0.00 | 7634.29 | 4276.24 | 34,293.42 | −70,901.73 | −866.04 |
Woodland | −3486.75 | 0.00 | −497.75 | 916.48 | −10,419.88 | −1494.06 | |
Grassland | −5526.27 | 2533.08 | 0.00 | 5842.02 | −3751.46 | −413.38 | |
Waters | −34,506.23 | −1137.01 | −8826.32 | 0.00 | −6561.21 | −17,690.59 | |
Construction Land | 4027.19 | 412.65 | 322.27 | 459.69 | 0.00 | 41.83 | |
Unutilized Land | 422.30 | 897.01 | 792.36 | 627.44 | −2.25 | 0.00 | |
Qinba Mountain aera | Cultivated land | 0.00 | 26,139.82 | 14,324.13 | 17,622.82 | −9995.59 | −161.93 |
Woodland | −13,663.72 | 0.00 | −14,325.97 | 188.34 | −1198.07 | −578.30 | |
Grassland | −9853.47 | 21,149.56 | 0.00 | 4726.57 | −1514.25 | −294.43 | |
Waters | −4219.44 | −45.15 | −681.38 | 0.00 | −214.38 | −0.78 | |
Construction Land | 298.58 | 4360.97 | 530.50 | 233.54 | 0.00 | 0.31 | |
Unutilized Land | 0.85 | 24.16 | 6.76 | 1.25 | 0.00 | 0.00 |
Types of Land Use Transfer | 1980–2000 | 2000–2018 | ||||
---|---|---|---|---|---|---|
Northern Shaanxi Plateau | Guanzhong Plain | Qinba Mountain Aera | Northern Shaanxi Plateau | Guanzhong Plain | Qinba Mountain Aera | |
Cultivated land→Woodland | −50.93 | −1519.76 | −59.69 | −934.08 | −1207.01 | −524.08 |
Cultivated land→Grassland | −28.41 | −254.38 | −27.25 | −801.18 | −4120.54 | −328.64 |
Cultivated land→Waters | −343.89 | −1468.13 | −7.84 | −781.64 | −2949.52 | −46.54 |
Cultivated land→Construction Land | −168.22 | −512.32 | −275.58 | −1119.48 | −1739.03 | −2233.83 |
Cultivated land→Unutilized Land | −684.29 | −67.21 | −0.01 | −412.28 | −716.22 | −28.91 |
Woodland→Cultivated land | 77.73 | 1.15 | 250.33 | 217.32 | 10.65 | 577.11 |
Grassland→Cultivated land | 295.25 | 923.02 | 34.13 | 639.44 | 1899.58 | 81.93 |
Waters→Cultivated land | 441.14 | 765.09 | 138.63 | 1076.68 | 532.65 | 96.82 |
Construction Land→Cultivated land | 0.21 | 28.91 | 10.22 | 59.28 | 322.63 | 927.39 |
Unutilized Land→Cultivated land | 264.82 | 8.44 | 1.74 | 1236.51 | 22.80 | 59.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, F.; Li, K.; Sun, L.; Yang, H. The Influence of Space Transformation of Land Use on Function Transformation and the Regional Differences in Shaanxi Province. Int. J. Environ. Res. Public Health 2022, 19, 11793. https://doi.org/10.3390/ijerph191811793
Zhang Y, Li F, Li K, Sun L, Yang H. The Influence of Space Transformation of Land Use on Function Transformation and the Regional Differences in Shaanxi Province. International Journal of Environmental Research and Public Health. 2022; 19(18):11793. https://doi.org/10.3390/ijerph191811793
Chicago/Turabian StyleZhang, Yaodan, Fei Li, Kai Li, Laiding Sun, and Haijuan Yang. 2022. "The Influence of Space Transformation of Land Use on Function Transformation and the Regional Differences in Shaanxi Province" International Journal of Environmental Research and Public Health 19, no. 18: 11793. https://doi.org/10.3390/ijerph191811793
APA StyleZhang, Y., Li, F., Li, K., Sun, L., & Yang, H. (2022). The Influence of Space Transformation of Land Use on Function Transformation and the Regional Differences in Shaanxi Province. International Journal of Environmental Research and Public Health, 19(18), 11793. https://doi.org/10.3390/ijerph191811793