External Exposure to BTEX, Internal Biomarker Response, and Health Risk Assessment of Nonoccupational Populations near a Coking Plant in Southwest China
Abstract
:1. Introduction
2. Methods
2.1. Research Area and Participants
2.2. Sampling and Instrumental Analysis
2.3. Risk Assessment
2.4. Derivation of Exposure Parameters
2.5. Statistical Analysis
3. Results and Discussion
3.1. Atmospheric BTEX Levels
3.2. Profiles of Urinary BTEX Metabolites
3.3. Sources Apportionment of BTEX
3.4. Health Risk of Population in Residential Area
3.4.1. Noncarcinogenic Risk
3.4.2. Carcinogenic Risk
3.5. Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.J.; Mu, Y.J.; Liu, J.F.; Mellouki, A. Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing, China. J. Environ. Sci. 2012, 24, 124–130. [Google Scholar] [CrossRef]
- Chen, R.N.; Li, T.Z.; Huang, C.T.; Yu, Y.J.; Zhou, L.; Hu, G.C.; Yang, F.M.; Zhang, L.Y. Characteristics and health risks of benzene series and halocarbons near a typical chemical industrial park. Environ. Pollut. 2021, 289, 117893. [Google Scholar] [CrossRef] [PubMed]
- Tong, R.P.; Yang, Y.Y.; Shao, G.H.; Zhang, Y.W.; Dou, S.; Jiang, W. Emission sources and probabilistic health risk of volatile organic compounds emitted from production areas in a petrochemical refinery in Hainan, China. Hum. Ecol. Risk Assess. 2020, 26, 1407–1427. [Google Scholar] [CrossRef]
- Garg, A.; Gupta, N.C. A comprehensive study on spatio-temporal distribution, health risk assessment and ozone formation potential of BTEX emissions in ambient air of Delhi, India. Sci. Total Environ. 2019, 659, 1090–1099. [Google Scholar] [CrossRef]
- Yulong, Y.; Lin, P.; Na, C.; Huiling, B.; Ling, M. Health risk assessment of toxic VOCs species for the coal fire well drillers. Environ. Sci. Pollut. Res. Int. 2015, 22, 19. [Google Scholar]
- Ran, J.; Qiu, H.; Sun, S.; Tian, L. Short-term effects of ambient benzene and TEX (toluene, ethylbenzene, and xylene combined) on cardiorespiratory mortality in Hong Kong. Environ. Int. 2018, 117, 91–98. [Google Scholar] [CrossRef]
- Schettgen, T.; Musiol, A.; Alt, A.; Kraus, T. Fast determination of urinary S-phenylmercapturic acid (S-PMA) and S-benzylmercapturic acid (S-BMA) by column-switching liquid chromatography-tandem mass spectrometry. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2008, 863, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Spycher, B.D.; Lupatsch, J.E.; Huss, A.; Rischewski, J.; Schindera, C.; Spoerri, A.; Vermeulen, R.; Kuehni, C.E.; Swiss Paediat Oncology Group; Swiss Natl Cohort Study Group. Parental occupational exposure to benzene and the risk of childhood cancer: A census-based cohort study. Environ. Int. 2017, 108, 84–91. [Google Scholar] [CrossRef]
- Caron-Beaudoin, E.; Valter, N.; Chevrier, J.; Ayotte, P.; Frohlich, K.; Verner, M.A. Gestational exposure to volatile organic compounds (VOCs) in Northeastern British Columbia, Canada: A pilot study. Environ. Int. 2018, 110, 131–138. [Google Scholar] [CrossRef]
- Hernberg, S.; Savilahti, M.; Ahlman, K.; Asp, S. Prognostic aspects of benzene poisoning. Br. J. Ind. Med. 1966, 203, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Rothman, N.; Li, G.L.; Dosemeci, M.; Bechtold, W.E.; Marti, G.E.; Wang, Y.Z.; Linet, M.; Xi, L.Q.; Lu, W.; Smith, M.T.; et al. Hematotoxicity among Chinese workers heavily exposed to benzene. Am. J. Ind. Med. 1996, 29, 3. [Google Scholar] [CrossRef]
- Masekameni, M.D.; Moolla, R.; Gulumian, M.; Brouwer, D. Risk Assessment of Benzene, Toluene, Ethyl Benzene, and Xylene Concentrations from the Combustion of Coal in a Controlled Laboratory Environment. Int. J. Environ. Res. Public Health 2019, 16, 95. [Google Scholar] [CrossRef] [Green Version]
- IARC. Benzene. In IARC Monographs on the Evaluations of Carcinogenic Risk to Humans; World Health Organization International Agency for Research on Cancer: Lyon, France, 1987; pp. 120–122. [Google Scholar]
- China National Bureau of Statistics. Chinese Statistical Yearbook; Chinese Statistics Press: Beijing, China, 2017.
- Li, J.; Li, H.Y.; He, Q.S.; Guo, L.L.; Zhang, H.F.; Yang, G.S.; Wang, Y.H.; Chai, F.H. Characteristics, sources and regional inter-transport of ambient volatile organic compounds in a city located downwind of several large coke production bases in China. Atmos. Environ. 2020, 233, 117573. [Google Scholar] [CrossRef]
- Demirel, G.; Ozden, O.; Dogeroglu, T.; Gaga, E.O. Personal exposure of primary school children to BTEX, NO2 and ozone in Eskisehir, Turkey: Relationship with indoor/outdoor concentrations and risk assessment. Sci. Total Environ. 2014, 473, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Hoque, R.R.; Khillare, P.S.; Agarwal, T.; Shridhar, V.; Balachandran, S. Spatial and temporal variation of BTEX in the urban atmosphere of Delhi, India. Sci. Total Environ. 2008, 392, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; He, B.; Yuan, M.H.; Yu, S.J.; Yin, S.S.; Zhang, R.Q. Characteristics, sources and health risks assessment of VOCs in Zhengzhou, China during haze pollution season. J. Environ. Sci. 2021, 108, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Maestri, L.; Negri, S.; Ferrari, M.; Ghittori, S.; Imbriani, M. Determination of urinary S-phenylmercapturic acid, a specific metabolite of benzene, by liquid chromatography/single quadrupole mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 1139–1144. [Google Scholar] [CrossRef]
- Zhang, L.; Ye, F.L.; Chen, T.; Mei, Y.; Song, S.Z. Trans, Trans-Muconic Acid as a Biomarker of Occupational Exposure to High-Level Benzene in China. J. Occup. Environ. Med. 2011, 53, 1194–1198. [Google Scholar] [CrossRef]
- Fan, R.F.; Wang, D.L.; She, J.W. Method development for the simultaneous analysis of trans,trans-muconic acid, 1,2-dihydroxybenzene, S-phenylmercapturic acid and S-benzylmercapturic acid in human urine by liquid chromatography/tandem mass spectrometry. Anal. Methods 2015, 7, 573–580. [Google Scholar] [CrossRef]
- Mihajlovic, V.; Grba, N.; Sudi, J.; Eichert, D.; Krajinovic, S.; Gavrilov, M.B.; Markovic, S.B. Assessment of Occupational Exposure to BTEX in a Petrochemical Plant via Urinary Biomarkers. Sustainability 2021, 13, 7178. [Google Scholar] [CrossRef]
- Rafiee, A.; Delgado-Saborit, J.M.; Gordi, E.; Quemerais, B.; Moghadam, V.K.; Lu, W.J.; Hashemi, F.; Hoseini, M. Use of urinary biomarkers to characterize occupational exposure to BTEX in healthcare waste autoclave operators. Sci. Total Environ. 2018, 631–632, 857–865. [Google Scholar] [CrossRef]
- NAS/NRC. Report of the Oversight Committee. In Biologic Markers in Reproductive Toxicology; National Academy of Sciences, National Research Council, National Academy Press: Washington, DC, USA, 1989. [Google Scholar]
- Rappaport, S.M.; Kim, S.; Lan, Q.; Li, G.L.; Vermeulen, R.; Waidyanatha, S.; Zhang, L.P.; Yin, S.N.; Smith, M.T.; Rothman, N. Human benzene metabolism following occupational and environmental exposures. Chem. Biol. Interact. 2010, 184, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.Y.; Duan, X.L.; Qin, N.; Li, J.H.; Tian, J.; Zhong, Y.; Chen, L.G.; Fan, R.F.; Yu, Y.; Wu, G.P.; et al. Internal biomarkers and external estimation of exposure to polycyclic aromatic hydrocarbons and their relationships with cancer mortality in a high cancer incidence area. Sci. Total Environ. 2019, 688, 742–750. [Google Scholar] [CrossRef]
- Boogaard, P.J.; van Sittert, N.J. Biological monitoring of exposure to benzene: A comparison between S-phenylmercapturic acid, trans,trans-muconic acid, and phenol. Occup. Env. Med. 1995, 52, 611–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, Q.; Shore, R.; Li, G.; Su, L.; Jin, X.; Melikian, A.A.; Roy, N.; Chen, L.C.; Wirgin, I.; Cohen, B.; et al. Biomarkers of benzene: Urinary metabolites in relation to individual genotype and personal exposure. Chem. Biol. Interact. 2005, 153, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Pekari, K.; Vainiotalo, S.; Heikkila, P.; Palotie, A.; Luotamo, M.; Riihimäki, V. Biological monitoring of occupational exposure to low levels of benzene. Scand. J. Work Environ. Health 1992, 8, 317–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, M.H.; Chen, J.F.; Liu, G.Y.; Wang, H.M. Risk Assessment of Drought Based on IEAPP-IDM in Qujing, Yunnan Province, China. Adv. Meteorol. 2016, 2016, 1–10. [Google Scholar] [CrossRef]
- He, Q.S.; Yan, Y.L.; Li, H.Y.; Zhang, Y.Q.; Chen, L.G.; Wang, Y.H. Characteristics and reactivity of volatile organic compounds from non-coal emission sources in China. Atmos. Environ. 2015, 115, 153–162. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Li, C.L.; Wang, X.M.; Guo, H.; Feng, Y.L.; Chen, J.M. Rush-hour aromatic and chlorinated hydrocarbons in selected subway stations of Shanghai, China. J. Environ. Sci. 2012, 24, 131–141. [Google Scholar] [CrossRef]
- Mage, D.T.; Allen, R.H.; Kodali, A. Creatinine corrections for estimating children’s and adult’s pesticide intake doses in equilibrium with urinary pesticide and creatinine concentrations. J. Expo. Sci. Environ. Epidemiol. 2008, 18, 360–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.Q.; Su, G.J.; Li, C.Q.; Wang, M.J.; Tan, L.; Gao, L.R.; Wu, M.G.; Wang, Q.L. Emission profiles, ozone formation potential and health-risk assessment of volatile organic compounds in rubber footwear industries in China. J. Hazard. Mater. 2019, 375, 52–60. [Google Scholar] [CrossRef] [PubMed]
- USEPA Integrated Risk Information System (IRIS) Online Database. Available online: http://cfpubepagov/ncea/iris/indexcfm (accessed on 14 September 2021).
- Chen, S.-C.; Liao, C.-M. Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci. Total Environ. 2006, 366, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Chiang, K.C.; Chio, C.P.; Chiang, Y.H.; Liao, C.M. Assessing hazardous risks of human exposure to temple airborne polycyclic aromatic hydrocarbons. J. Hazard. Mater. 2009, 166, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.M.; Chio, C.P.; Chen, W.Y.; Ju, Y.R.; Li, W.H.; Cheng, Y.H.; Liao, V.H.C.; Chen, S.C.; Ling, M.P. Lung cancer risk in relation to traffic-related nano/ultrafine particle-bound PAHs exposure: A preliminary probabilistic assessment. J. Hazard. Mater. 2011, 190, 150–158. [Google Scholar] [CrossRef]
- IRIS Benzene. Integrated Risk Information System. Available online: https://iris.epa.gov/ChemicalLanding/&substance_nmbr=276 (accessed on 14 September 2021).
- IRIS Toluene. Integrated Risk Information System. Available online: https://iris.epa.gov/ChemicalLanding/&substance_nmbr=118 (accessed on 14 September 2021).
- IRIS Ethylbenzene. Integrated Risk Information System. Available online: https://iris.epa.gov/ChemicalLanding/&substance_nmbr=51 (accessed on 14 September 2021).
- IRIS Xylene. Integrated Risk Information System. Available online: https://iris.epa.gov/ChemicalLanding/&substance_nmbr=270 (accessed on 14 September 2021).
- ACGIH. Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices; ACGIH: Cincinnati, OH, USA, 2009. [Google Scholar]
- Zhao, X.; Xiao, D. Exposure Factors Handbook of Chinese Population; Ministry of Environmental Protection of the People′s Republic of China: Beijing, China, 2014.
- Rad, H.D.; Babaei, A.A.; Goudarzi, G.; Angali, K.A.; Ramezani, Z.; Mohammadi, M.M. Levels and sources of BTEX in ambient air of Ahvaz metropolitan city. Air Qual. Atmos. Health 2014, 7, 515–524. [Google Scholar] [CrossRef]
- Carlsen, L.; Bruggemann, R.; Kenessov, B. Use of partial order in environmental pollution studies demonstrated by urban BTEX air pollution in 20 major cities worldwide. Sci. Total Environ. 2018, 610, 234–243. [Google Scholar] [CrossRef]
- Heibati, B.; Pollitt, K.J.G.; Charati, J.Y.; Ducatman, A.; Shokrzadeh, M.; Karimi, A.; Mohammadyan, M. Biomonitoring-based exposure assessment of benzene, toluene, ethylbenzene and xylene among workers at petroleum distribution facilities. Ecotoxicol. Environ. Saf. 2018, 149, 19–25. [Google Scholar] [CrossRef]
- Qu, Q.S.; Melikian, A.A.; Li, G.L.; Shore, R.; Chen, L.C.; Cohen, B.; Yin, S.N.; Kagan, M.R.; Li, H.Y.; Meng, M.; et al. Validation of biomarkers in humans exposed to benzene: Urine metabolites. Am. J. Ind. Med. 2000, 37, 522–531. [Google Scholar] [CrossRef]
- Boogaard, P.J.; van Sittert, N.J. Suitability of S-phenyl mercapturic acid and trans-trans-muconic acid as biomarkers for exposure to low concentrations of benzene. Environ. Health Perspect. 1996, 104, 1151–1157. [Google Scholar]
- Barbieri, A.; Sabatini, L.; Accorsi, A.; Roda, A.; Violante, F.S. Simultaneous determination of t,t-muconic, S-phenylmercapturic and S-benzylmercapturic acids in urine by a rapid and sensitive liquid chromatography/electrospray tandem mass spectrometry method. Rapid Commun. Mass Spectrom. 2004, 18, 1983–1988. [Google Scholar] [CrossRef] [PubMed]
- Cossec, B.; Cosnier, F.; Burgart, M.; Nunge, H.; Grossmann, S. Glutathione pathway in ethylbenzene metabolism Novel biomarkers of exposure in the rat. Chemosphere 2010, 81, 1334–1341. [Google Scholar] [CrossRef]
- Shan, X.Y.; Zhang, L.; Ye, H.P.; Shao, J.; Shi, Y.P.; Tan, S.W.; Zhang, L.; Su, K.W. Analytical techniques for monitoring of toluene and xylene exposure biomarkers hippuric acid and methylhippuric acid in human urine samples. Bioanalysis 2021, 13, 1569–1584. [Google Scholar] [CrossRef]
- Waikar, S.S.; Sabbisetti, V.S.; Bonventre, J.V. Normalization of urinary biomarkers to creatinine during changes in glomerular filtration rate. Kidney Int. 2010, 78, 486–494. [Google Scholar] [CrossRef] [Green Version]
- Fan, R.F.; Li, J.N.; Chen, L.G.; Xu, Z.C.; He, D.C.; Zhou, Y.X.; Zhu, Y.Y.; Wei, F.S.; Li, J.H. Biomass fuels and coke plants are important sources of human exposure to polycyclic aromatic hydrocarbons, benzene and toluene. Environ. Res. 2014, 135, 1–8. [Google Scholar] [CrossRef]
- Jalai, A.; Ramezani, Z.; Ebrahim, K. Urinary Trans, Trans-Muconic Acid is Not a Reliable Biomarker for Low-level Environmental and Occupational Benzene Exposures. Saf. Health Work 2017, 8, 220–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.H.; Xu, X.Y.; He, B.S.; Guo, J.H.; Zhao, B.X.; Zhang, Y.P.; Zhou, Z.; Zhou, X.; Zhang, R.P.; Abliz, Z. The impact of chronic environmental metal and benzene exposure on human urinary metabolome among Chinese children and the elderly population. Ecotoxicol. Environ. Saf. 2019, 169, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Carbonari, D.; Proietto, A.; Fioretti, M.; Tranfo, G.; Paci, E.; Papacchini, M.; Mansi, A. Influence of genetic polymorphism on t,t-MA/S-PMA ratio in 301 benzene exposed subjects. Toxicol. Lett. 2014, 231, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.S.; Langard, S.; Lin, Y.-S. A critique of benzene exposure in the general population. Sci. Total Environ. 2007, 374, 183–198. [Google Scholar] [CrossRef]
- Khoder, M.I. Ambient levels of volatile organic compounds in the atmosphere of Greater Cairo. Atmos. Environ. 2007, 41, 554–566. [Google Scholar] [CrossRef]
- Guo, H.; So, K.L.; Simpson, I.J.; Barletta, B.; Meinardi, S.; Blake, D.R. C-1–C-8 volatile organic compounds in the atmosphere of Hong Kong: Overview of atmospheric processing and source apportionment. Atmos. Environ. 2007, 41, 1456–1472. [Google Scholar] [CrossRef] [Green Version]
- Kerbachi, R.; Boughedaoui, M.; Bounoua, L.; Keddam, M. Ambient air pollution by aromatic hydrocarbons in Algiers. Atmos. Environ. 2006, 40, 3995–4003. [Google Scholar] [CrossRef]
- Monod, A.; Sive, B.C.; Avino, P.; Chen, T.; Blake, D.R.; Rowland, F.S. Monoaromatic compounds in ambient air of various cities: A focus on correlations between the xylenes and ethylbenzene. Atmos. Environ. 2001, 35, 1. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, Y.L.; Wang, X.M.; Lu, S.J.; Huang, Z.H.; Huang, X.Y.; Yang, W.Q.; Wang, Y.S.; Zhang, Q. Spatiotemporal patterns and source implications of aromatic hydrocarbons at six rural sites across China’s developed coastal regions. J. Geophys. Res.-Atmos. 2016, 121, 6669–6687. [Google Scholar] [CrossRef]
- Hardin, B.D.; Bond, G.P.; Sikov, M.R.; Andrew, F.D.; Beliles, R.P.; Niemeier, R.W. Testing of selected workplace chemicals for teratogenic potential. Scand. J. Work Environ. Health 1981, 4, 66–75. [Google Scholar]
- Mumford, J.L.; Li, X.; Hu, F.; Lu, X.B.; Chuang, J.C. Human exposure and dosimetry of polycyclic aromatic hydrocarbons in urine from Xuan Wei, China with high lung cancer mortality associated with exposure to unvented coal smoke. Carcinogenesis 1995, 16, 3031–3036. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, J.; He, J.; Lu, H.; Zhang, Y.; Liu, S.; Wu, G.; Wei, F. Retrospective survey of population death in a coking industrial area (in Chinese). J. Environ. Health 2014, 31, 424–429. [Google Scholar]
Category | R1 | R2 | R3 | R4 |
---|---|---|---|---|
Distance to the coking plant | 1.3 km | 3.0 km | 7.5 km | 25.0 km |
Function division | Coke industry, residential area, hospital, school and commercial area | Residential area, farmland, reservoir and wetland | Residential area and farmland | Residential area and farmland |
Number of residents | 5598 | 1525 | 3115 | 2453 |
Sample size | 50 | 49 | 50 | 25 |
Male | 25 | 25 | 24 | 11 |
Female | 25 | 24 | 26 | 14 |
Age structure | ||||
20–30 | 13 | 11 | 15 | 4 |
31–40 | 17 | 13 | 10 | 7 |
41–50 | 8 | 14 | 13 | 4 |
51–60 | 9 | 9 | 7 | 8 |
61–70 | 3 | 2 | 4 | 2 |
Smokers (male) | 68.0% | 72.0% | 62.5% | 81.8% |
Parameters | Unit | Threshold Values | Distribution | Parameter a | Parameter b | Reference |
---|---|---|---|---|---|---|
Benzene | μg·m−3 | 30 [39] | Log-normal | 0.321 | 0.426 | Measured |
Toluene | μg·m−3 | 5000 [40] | Log-normal | 0.188 | 0.586 | |
Ethyl-benzene | μg·m−3 | 1000 [41] | Log-normal | −0.655 | 0.428 | |
(m+p+o)-xylene | μg·m−3 | 100 [42] | Log-normal | −0.238 | 0.506 | |
T,T-MA | μg·(g·crt)−1 | 500 [43] | Log-normal | 2.102 | 0.392 | |
S-PMA | μg·(g·crt)−1 | 25 [43] | Log-normal | 0.441 | 0.298 | |
BW-male | kg | Normal | 61.04 | 12.26 | Exposure Factors Handbook of Chinese Population [44] | |
BW-female | kg | Normal | 53.72 | 11.08 | ||
IR-male | m3·day−1 | Normal | 17.02 | 2.96 | ||
IR-female | m3·day−1 | Normal | 14.02 | 1.57 |
R1 (N = 50) | R2 (N = 49) | R3 (N = 50) | R4 (N = 25) | Kruskal–Wallis Test | |
---|---|---|---|---|---|
T,T-MA | 213 ± 434 | 128 ± 197 | 83 ± 164 | 98.1 ± 75.8 | p < 0.01 |
1,2-DB | 91.4 ± 73.4 | 58 ± 121 | 62.8 ± 65.9 | 43 ± 120 | p< 0.01 |
S-PMA | 4.23 ± 7.68 | 2.35 ± 1.29 | 2.30 ± 1.49 | 2.06 ± 0.76 | p < 0.01 |
S-BMA | 7.98 ± 7.88 | 4.7 ± 10.9 | 6.90 ± 4.80 | 7.6 ± 13.9 | p < 0.05 |
Chemicals | Benzene | Toluene | Ethylbenzene | Xylene | T,T-MA | S-PMA | |
---|---|---|---|---|---|---|---|
Residential area | R1 | 0.171 | 0.002 | 0.001 | 0.039 | 0.43 | 0.17 |
R2 | 0.147 | 0.000 | 0.000 | 0.005 | 0.26 | 0.09 | |
R3 | 0.094 | 0.001 | 0.000 | 0.008 | 0.17 | 0.09 | |
R4 | 0.030 | 0.000 | 0.000 | 0.003 | 0.20 | 0.09 | |
Factory area | F1 | 0.595 | 0.001 | 0.000 | 0.014 | ||
F2 | 0.063 | 0.001 | 0.000 | 0.005 | |||
F3 | 12.431 | 0.034 | 0.004 | 0.321 | |||
F4 | 11.730 | 0.042 | 0.008 | 0.460 | |||
F5 | 56.963 | 0.040 | 0.020 | 0.628 | |||
F6 | 22.411 | 0.012 | 0.008 | 0.185 | |||
F7 | 3.263 | 0.004 | 0.010 | 0.216 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, N.; Zhu, Y.; Zhong, Y.; Tian, J.; Li, J.; Chen, L.; Fan, R.; Wei, F. External Exposure to BTEX, Internal Biomarker Response, and Health Risk Assessment of Nonoccupational Populations near a Coking Plant in Southwest China. Int. J. Environ. Res. Public Health 2022, 19, 847. https://doi.org/10.3390/ijerph19020847
Qin N, Zhu Y, Zhong Y, Tian J, Li J, Chen L, Fan R, Wei F. External Exposure to BTEX, Internal Biomarker Response, and Health Risk Assessment of Nonoccupational Populations near a Coking Plant in Southwest China. International Journal of Environmental Research and Public Health. 2022; 19(2):847. https://doi.org/10.3390/ijerph19020847
Chicago/Turabian StyleQin, Ning, Yuanyuan Zhu, Yan Zhong, Jing Tian, Jihua Li, Laiguo Chen, Ruifang Fan, and Fusheng Wei. 2022. "External Exposure to BTEX, Internal Biomarker Response, and Health Risk Assessment of Nonoccupational Populations near a Coking Plant in Southwest China" International Journal of Environmental Research and Public Health 19, no. 2: 847. https://doi.org/10.3390/ijerph19020847
APA StyleQin, N., Zhu, Y., Zhong, Y., Tian, J., Li, J., Chen, L., Fan, R., & Wei, F. (2022). External Exposure to BTEX, Internal Biomarker Response, and Health Risk Assessment of Nonoccupational Populations near a Coking Plant in Southwest China. International Journal of Environmental Research and Public Health, 19(2), 847. https://doi.org/10.3390/ijerph19020847