Health Risk Assessment of Metals via Multi-Source Oral Exposure for Children Living in Areas with Intense Electronic Manufacturing Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Field Sampling and Analysis
2.2.1. Study Design and Population Recruitment
2.2.2. Sample Collection
2.2.3. Sample Pretreatment and Instrumental Analysis
2.2.4. Quality Control
2.3. Exposure Assessment and Risk Characterization
2.4. Uncertainty Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Metal(Loid)s in Environment Media
3.1.1. Duplicated Diet
3.1.2. Soil
3.1.3. Drinking Water
3.2. Daily Exposure Dose
3.3. Risk Characterization
3.4. Uncertainty Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bjorklund, G.; Chartrand, M.S.; Aaseth, J. Manganese exposure and neurotoxic effects in children. Environ. Res. 2017, 155, 380–384. [Google Scholar] [CrossRef]
- Godt, J.; Scheidig, F.; Grosse-Siestrup, C.; Esche, V.; Brandenburg, P.; Reich, A.; Groneberg, D.A. The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 2006, 1, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neal, S.L.; Zheng, W. Manganese Toxicity upon Overexposure: A Decade in Review. Curr. Environ. Health Rep. 2015, 2, 315–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.-J.; Rathinasabapathi, B.; Wu, B.; Luo, J.; Pu, L.-P.; Ma, L.Q. Arsenic and selenium toxicity and their interactive effects in humans. Environ. Int. 2014, 69, 148–158. [Google Scholar] [CrossRef]
- Nordberg, G.F.; Mahaffey, K.R.; Fowlert, B.A. Introduction and Summary. International Workshop on Lead in Bone: Implications for Dosimetry and Toxicology. Environ. Health Perspect. 1991, 91, 3–7. [Google Scholar] [CrossRef]
- Wang, B.; Duan, X.; Feng, W.; He, J.; Cao, S.; Liu, S.; Shi, D.; Wang, H.; Wu, F. Health risks to metals in multimedia via ingestion pathway for children in a typical urban area of China. Chemosphere 2019, 226, 381–387. [Google Scholar] [CrossRef]
- Izquierdo, M.; De Miguel, E.; Ortega, M.F.; Mingot, J. Bioaccessibility of metals and human health risk assessment in community urban gardens. Chemosphere 2015, 135, 312–318. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Wan, Y.; Ben, Y.; Fan, S.; Hu, J. Relative importance of different exposure routes of heavy metals for humans living near a municipal solid waste incinerator. Environ. Pollut. 2017, 226, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.K.; Kumar, B. Pathways of heavy metals contamination and associated human health risk in Ajay River basin, India. Chemosphere 2017, 174, 183–199. [Google Scholar] [CrossRef]
- Awasthi, A.K.; Zeng, X.; Li, J. Environmental pollution of electronic waste recycling in India: A critical review. Environ. Pollut. 2016, 211, 259–270. [Google Scholar] [CrossRef]
- Wu, W.; Wu, P.; Yang, F.; Sun, D.-l.; Zhang, D.-X.; Zhou, Y.-K. Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility. Sci. Total Environ. 2018, 630, 53–61. [Google Scholar] [CrossRef]
- Bempah, C.K.; Ewusi, A. Heavy metals contamination and human health risk assessment around Obuasi gold mine in Ghana. Environ. Monit. Assess. 2016, 188, 261. [Google Scholar] [CrossRef]
- Cai, L.-M.; Wang, Q.-S.; Luo, J.; Chen, L.-G.; Zhu, R.-L.; Wang, S.; Tang, C.-H. Heavy metal contamination and health risk assessment for children near a large Cu-smelter in central China. Sci. Total Environ. 2019, 650, 725–733. [Google Scholar] [CrossRef]
- Cao, S.; Duan, X.; Zhao, X.; Ma, J.; Dong, T.; Huang, N.; Sun, C.; He, B.; Wei, F. Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China. Sci. Total Environ. 2014, 472, 1001–1009. [Google Scholar] [CrossRef]
- Cao, S.; Duan, X.; Zhao, X.; Wang, B.; Ma, J.; Fan, D.; Sun, C.; He, B.; Wei, F.; Jiang, G. Health risk assessment of various metal(loid)s via multiple exposure pathways on children living near a typical lead-acid battery plant, China. Environ. Pollut. 2015, 200, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Bermudez, G.M.A.; Jasan, R.; Pla, R.; Luisa Pignata, M. Heavy metal and trace element concentrations in wheat grains: Assessment of potential non-carcinogenic health hazard through their consumption. J. Hazard. Mater. 2011, 193, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Ji, K.; Kim, J.; Lee, M.; Park, S.; Kwon, H.-J.; Cheong, H.-K.; Jang, J.-Y.; Kim, D.-S.; Yu, S.; Kim, Y.-W.; et al. Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environ. Pollut. 2013, 178, 322–328. [Google Scholar] [CrossRef]
- Bradham, K.D.; Nelson, C.M.; Kelly, J.; Pomales, A.; Scruton, K.; Dignam, T.; Misenheimer, J.C.; Li, K.; Obenour, D.R.; Thomas, D.J. Relationship Between Total and Bioaccessible Lead on Children’s Blood Lead Levels in Urban Residential Philadelphia Soils. Environ. Sci. Technol. 2017, 51, 10005–10011. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Lou, J.; Sun, X.; Ma, L.Q.; Wang, J.; Li, M.; Sun, H.; Li, H.; Huang, L. Linking elevated blood lead level in urban school-aged children with bioaccessible lead in neighborhood soil. Environ. Pollut. 2020, 261, 114093. [Google Scholar] [CrossRef]
- Zhao, M.; Xu, J.; Li, A.; Mei, Y.; Ge, X.; Liu, X.; Wei, L.; Xu, Q. Multiple exposure pathways and urinary chromium in residents exposed to chromium. Environ. Int. 2020, 141, 105753. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, A.K.; Alamdar, A.; Katsoyiannis, I.; Shen, H.; Ali, N.; Ali, S.M.; Bokhari, H.; Schaefer, R.B.; Eqani, S.A.M.A.S. Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan. Sci. Total Environ. 2015, 538, 306–316. [Google Scholar] [CrossRef]
- Dong, W.W.; Zhang, Y.; Quan, X. Health risk assessment of heavy metals and pesticides: A case study in the main drinking water source in Dalian, China. Chemosphere 2020, 242, 125113. [Google Scholar] [CrossRef]
- Zhu, Y.; Duan, X.; Qin, N.; Lv, J.; Wu, G.; Wei, F. Health risk from dietary exposure to polycyclic aromatic hydrocarbons (PAHs) in a typical high cancer incidence area in southwest China. Sci. Total Environ. 2019, 649, 731–738. [Google Scholar] [CrossRef]
- Zhao, X.G.; Duan, X.L.; Wang, B.B.; Cao, S.Z. Environmental Exposure Related Activity Patterns Survey of Chinese Population (Children); Environmental Science Press: Beijing, China, 2016. [Google Scholar]
- Lin, C.; Wang, B.; Cui, X.; Xu, D.; Cheng, H.; Wang, Q.; Ma, J.; Chai, T.; Duan, X.; Liu, X.; et al. Estimates of Soil Ingestion in a Population of Chinese Children. Environ. Health Perspect. 2017, 125, 077002. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.L.; Xu, R.J.; Wu, G.P.; Wei, F.S. Determination of trace elements in soil in Xuanwei and Fuyuan by microwave digestion ICP-MS. Environ. Monit. China 2010, 26, 6–10. [Google Scholar]
- U.S. EPA (U.S. Environmental Protection Agency). Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (Part A); U.S. EPA: Washington, DC, USA, 1989.
- Karunanidhia, D.; Aravinthasamya, P.; Subramanib, T.; Kumarc, D.; Venkatesand, G. Chromium contamination in groundwater and Sobol sensitivity model based human health risk evaluation from leather tanning industrial region of South India. Environ. Res. 2021, 199, 111238. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, A.; Esmaeilbeigi, M.; Sahebi, Z.; Ansari, A. Health risk assessment of total chromium in the qanat as historical drinking water supplying system. Sci. Total Environ. 2021, 807, 150795. [Google Scholar] [CrossRef] [PubMed]
- Arnich, N.; Sirot, V.; Riviere, G.; Jean, J.; Noel, L.; Guerin, T.; Leblan, J.C. Dietary exposure to trace elements and health risk assessment in the 2nd French Total Diet Study. Food Chem. Toxicol. 2012, 50, 2432–2449. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, N.; Calderon, J.; Rubies, A.; Timoner, I.; Castell, V.; Domingo, J.L.; Nadal, M. Dietary intake of arsenic, cadmium, mercury and lead by the population of Catalonia, Spain: Analysis of the temporal trend. Food Chem. Toxicol. 2019, 132, 110721. [Google Scholar] [CrossRef]
- Gupta, N.; Yadav, K.K.; Kumar, V.; Krishnan, S.; Kumar, S.; Nejad, Z.D.; Khan, M.A.M.; Alam, J. Evaluating heavy metals contamination in soil and vegetables in the region of North India: Levels, transfer and potential human health risk analysis. Environ. Toxicol. Pharmacol. 2021, 82, 103563. [Google Scholar] [CrossRef]
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512, 143–153. [Google Scholar] [CrossRef]
- Kraetschmer, K.; Schaechtele, A.; Vetter, W. Short- and medium-chain chlorinated paraffin exposure in South Germany: A total diet, meal and market basket study. Environ. Pollut. 2021, 272, 116019. [Google Scholar] [CrossRef]
- Wei, J.; Gao, J.; Cen, K. Levels of eight heavy metals and health risk assessment considering food consumption by China’s residents based on the 5th China total diet study. Sci. Total Environ. 2019, 689, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Bi, C.; Zhou, Y.; Chen, Z.; Jia, J.; Bao, X. Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China. Sci. Total Environ. 2018, 619, 1349–1357. [Google Scholar] [CrossRef]
- Liu, X.; Gu, S.; Yang, S.; Deng, J.; Xu, J. Heavy metals in soil-vegetable system around E-waste site and the health risk assessment. Sci. Total Environ. 2021, 779, 146438. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Mao, Z.; Huang, K.; Wang, X.; Cheng, L.; Zeng, L.; Zhou, Y.; Jing, T. Multiple exposure pathways and health risk assessment of heavy metal(loid)s for children living in fourth-tier cities in Hubei Province. Environ. Int. 2019, 129, 517–524. [Google Scholar] [CrossRef]
- CEMC (China Environmental Monitoring Center). The Background Values of Chinese Soils; Environmental Science Press of China: Beijing, China, 1990. (In Chinese) [Google Scholar]
- Nezat, C.A.; Hatch, S.A.; Uecker, T. Heavy metal content in urban residential and park soils: A case study in Spokane, Washington, USA. Appl. Geochem. 2017, 78, 186–193. [Google Scholar] [CrossRef]
- Ngo, H.T.T.; Watchalayann, P.; Nguyen, D.B.; Doan, H.N.; Liang, L. Environmental health risk assessment of heavy metal exposure among children living in an informal e-waste processing village in Viet Nam. Sci. Total Environ. 2021, 763, 142982. [Google Scholar] [CrossRef] [PubMed]
- Lincoln, J.D.; Ogunseitan, O.A.; Shapiro, A.A.; Saphores, J.-D.M. Leaching assessments of hazardous materials in cellular telephones. Environ. Sci. Technol. 2007, 41, 2572–2578. [Google Scholar] [CrossRef] [PubMed]
- Terazono, A.; Murakami, S.; Abe, N.; Inanc, B.; Moriguchi, Y.; Sakai, S.-i.; Kojima, M.; Yoshida, A.; Li, J.; Yang, J.; et al. Current status and research on E-waste issues in Asia. J. Mater. Cycles Waste Manag. 2006, 8, 1–12. [Google Scholar] [CrossRef]
- Zhang, C. Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environ. Pollut. 2006, 142, 501–511. [Google Scholar] [CrossRef]
- Hou, S.; Zheng, N.; Tang, L.; Ji, X.; Li, Y.; Hua, X. Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018. Environ. Int. 2019, 128, 430–437. [Google Scholar] [CrossRef]
Exposure Parameters | Average | 3–6 Years | 7–12 Years | Reference | |||
---|---|---|---|---|---|---|---|
Median | Mean | Median | Mean | Median | Mean | ||
Body weight (kg) | 25 | 27 | 17 | 19 | 32 | 30 | Measured |
Food ingestion rate (g·day−1) | 548 | 545 | 513 | 494 | 612 | 595 | Measured |
Soil ingestion rate (mg·day−1) | 41 | 51 | 40 | 36 | 66 | 62 | [24] |
Water intake rate (mL·day−1) | 1104 | 1083 | 953 | 937 | 1238 | 1254 | Measured |
Environmental Media | Sample Size | Value | Mn | Pb | Cr | Cd | As |
---|---|---|---|---|---|---|---|
Soil (mg/kg) | 60 | median | 344.19 | 72.58 | 73.65 | 0.25 | 7.82 |
P25 | 299.02 | 56.77 | 46.21 | 0.19 | 4.83 | ||
P75 | 450.69 | 81.48 | 96.04 | 0.40 | 12.31 | ||
Duplicate diet (mg/kg) | 60 | median | 0.47 | 0.10 | 0.13 | 0.007 | 0.018 |
P25 | 0.35 | 0.04 | 0.08 | 0.001 | 0.014 | ||
P75 | 0.65 | 0.25 | 0.18 | 0.013 | 0.030 | ||
Water (ng/mL) | 70 | median | 0.59 | 0.13 | 0.94 | 0.01 | 1.41 |
P25 | 0.33 | 0.07 | 0.44 | 0.01 | 0.89 | ||
P75 | 1.03 | 0.22 | 2.21 | 0.01 | 1.78 |
Mn | Pb | Cr | Cd | As | Reference |
---|---|---|---|---|---|
344.19 | 72.58 | 73.65 | 0.25 | 7.82 | This study |
279.0 | 36.0 | 50.5 | 0.056 | 8.9 | [37] |
- | 48.0 | 21.7 | 0.3 | 7.9 | [38] |
593.1 | 24.1 | 81.5 | 0.3 | 51.5 | [13] |
- | 460.4 | 57.5 | 8.2 | 8.7 | [39] |
5% | Median | 95% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Food | Water | Soil | Sum | Food | Water | Soil | Sum | Food | Water | Soil | Sum | |
Mn | 3.1 × 10−2 | 2.1 × 10−4 | 3.0 × 10−4 | 3.1 × 10−2 | 8.1 × 10−2 | 3.4 × 10−4 | 4.9 × 10−3 | 8.6 × 10−2 | 1.7 × 10−1 | 4.6 × 10−4 | 1.5 × 10−2 | 1.8 × 10−1 |
Pb | 9.5 × 10−3 | 5.0 × 10−3 | 2.0 × 10−2 | 3.4 × 10−2 | 1.2 | 8.2 × 10−3 | 9.9 × 10−2 | 1.3 | 2.9 | 1.1 × 10−2 | 2.6 × 10−1 | 3.2 |
Cr | 7.2 × 10−4 | 1.6 × 10−5 | 8.8 × 10−6 | 7.5 × 10−4 | 2.1 × 10−3 | 2.7 × 10−5 | 7.8 × 10−5 | 2.2 × 10−3 | 5.9 × 10−3 | 3.6 × 10−5 | 2.6 × 10−4 | 6.2 × 10−3 |
Cd | 5.4 × 10−5 | 6.1 × 10−3 | 6.0 × 10−5 | 6.3 × 10−3 | 5.1 × 10−2 | 1.0 × 10−2 | 4.7 × 10−4 | 6.2 × 10−2 | 2.2 × 10−1 | 1.4 × 10−2 | 2.4 × 10−3 | 2.4 × 10−1 |
As | 0 | 1.8 × 10−1 | 3.0 × 10−3 | 1.8 × 10−1 | 5.8 × 10−2 | 2.9 × 10−1 | 3.0 × 10−2 | 3.8 × 10−1 | 5.3 × 10−1 | 4.0 × 10−1 | 1.5 × 10−1 | 1.1 |
Total | 7.0 × 10−2 | 1.9 × 10−1 | 2.3 × 10−2 | 2.8 × 10−1 | 1.5 | 3.1 × 10−1 | 1.3 × 10−1 | 1.9 | 3.9 | 4.2 × 10−1 | 4.3 × 10−1 | 4.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Lin, C.; Cheng, H.; Duan, X.; Wang, Q.; Xu, D. Health Risk Assessment of Metals via Multi-Source Oral Exposure for Children Living in Areas with Intense Electronic Manufacturing Activities. Int. J. Environ. Res. Public Health 2021, 18, 11409. https://doi.org/10.3390/ijerph182111409
Wang B, Lin C, Cheng H, Duan X, Wang Q, Xu D. Health Risk Assessment of Metals via Multi-Source Oral Exposure for Children Living in Areas with Intense Electronic Manufacturing Activities. International Journal of Environmental Research and Public Health. 2021; 18(21):11409. https://doi.org/10.3390/ijerph182111409
Chicago/Turabian StyleWang, Beibei, Chunye Lin, Hongguang Cheng, Xiaoli Duan, Qin Wang, and Dongqun Xu. 2021. "Health Risk Assessment of Metals via Multi-Source Oral Exposure for Children Living in Areas with Intense Electronic Manufacturing Activities" International Journal of Environmental Research and Public Health 18, no. 21: 11409. https://doi.org/10.3390/ijerph182111409
APA StyleWang, B., Lin, C., Cheng, H., Duan, X., Wang, Q., & Xu, D. (2021). Health Risk Assessment of Metals via Multi-Source Oral Exposure for Children Living in Areas with Intense Electronic Manufacturing Activities. International Journal of Environmental Research and Public Health, 18(21), 11409. https://doi.org/10.3390/ijerph182111409