Emotion Recognition in a Health Continuum: Comparison of Healthy Adults of Advancing Age, Community Dwelling Adults Bearing Vascular Risk Factors and People Diagnosed with Mild Cognitive Impairment
Abstract
:1. Introduction
The Purpose and the Hypotheses of the Study
2. Methods
2.1. Participants
2.2. Procedure
3. Measure
4. Statistical Analysis
5. Results
6. Discussion
6.1. Conclusions
6.2. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aben, H.P.; Visser-Meily, J.M.; Biessels, G.J.; de Kort, P.L.; Spikman, J.M. High occurrence of impaired emotion recognition after ischemic stroke. Eur. Stroke J. 2020, 5, 262–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Kim, T.; Shin, S.A.; Kim, Y.K.; Sohn, B.K.; Park, H.-J.; Youn, J.-H.; Lee, J.-Y. Behavioral and Neuroimaging Evidence for Facial Emotion Recognition in Elderly Korean Adults with Mild Cognitive Impairment, Alzheimer’s Disease, and Frontotemporal Dementia. Front. Aging Neurosci. 2017, 9, 389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García, S.M.; Quintero, M.F.; Usall, J.; Ochoa, S.; Del Cacho, N.; Ramos, E.H. Reconocimiento facial de emociones en trastornos neurológicos: Una revisión narrativa. Rev. Neurol. 2019, 69, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Harvey, P.D.; Penn, D. Social cognition: The key factor predicting social outcome in people with schizophrenia? Psychiatry 2010, 7, 41–44. [Google Scholar]
- Strijkert, F.; Huitema, R.B.; Spikman, J.M. Measuring emotion recognition: Added value in diagnosing dementia of the Alzheimer’s disease type. J. Neuropsychol. 2021, 16, 263–282. [Google Scholar] [CrossRef]
- Khosdelazad, S.; Jorna, L.S.; McDonald, S.; Rakers, S.E.; Huitema, R.B.; Buunk, A.M.; Spikman, J.M. Comparing static and dynamic emotion recognition tests: Performance of healthy participants. PLoS ONE 2020, 15, e0241297. [Google Scholar] [CrossRef]
- Pietschnig, J.; Aigner-Wöber, R.; Reischenböck, N.; Kryspin-Exner, I.; Moser, D.; Klug, S.; Auff, E.; Dal-Bianco, P.; Pusswald, G.; Lehrner, J. Facial emotion recognition in patients with subjective cognitive decline and mild cognitive impairment. Int. Psychogeriatr. 2015, 28, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, H.; Dethier, M.; Kessels, R.P.C.; Frederick Westbrook, R.; McDonald, S. Emotion perception after moderate-severe traumatic brain injury: The valence effect and the role of working memory, processing speed, and nonverbal reasoning. Neuropsychology 2015, 29, 509–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adolphs, R.; Tranel, D.; Damasio, A.R. Dissociable neural systems for recognizing emotions. Brain Cogn. 2003, 52, 61–69. [Google Scholar] [CrossRef]
- Sarkheil, P.; Goebel, R.; Schneider, F.; Mathiak, K. Emotion unfolded by motion: A role for parietal lobe in decoding dynamic facial expressions. Soc Cogn Affect Neurosci. 2013, 8, 950–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonalds, S.; Saunders, J. Differential impairment in recognition of emotion across different media in people with severe traumatic brain injury. J. Int. Neuropsychol. Soc. 2005, 11, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Adolphs, R. Neural systems for recognizing emotion. Curr. Opin. Neurobiol. 2002, 12, 169–177. [Google Scholar] [CrossRef]
- Blair, R.J.R. Facial expressions, their communicatory functions and neuro–cognitive substrates. Philos. Trans. R. Soc. B Biol. Sci. 2003, 358, 561–572. [Google Scholar] [CrossRef] [Green Version]
- Arsalidou, M.; Morris, D.; Taylor, M.J. Converging Evidence for the Advantage of Dynamic Facial Expressions. Brain Topogr. 2011, 24, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Kiltsab, C.D.; Egana, G.; Gideon, D.A.; Ely, T.D.; Hoffmanbd, J.M. Dissociable Neural Pathways Are Involved in the Recognition of Emotion in Static and Dynamic Facial Expressions. NeuroImage 2003, 18, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Johnston, P.J.; Enticott, P.G.; Mayes, A.K.; Hoy, K.E.; Herring, S.E.; Fitzgerald, P.B. Symptom Correlates of Static and Dynamic Facial Affect Processing in Schizophrenia: Evidence of a Double Dissociation? Schizophr. Bull. 2008, 36, 680–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, W.; Kochiyama, T.; Yoshikawa, S.; Naito, E.; Matsumura, M. Enhanced neural activity in response to dynamic facial expressions of emotion: An fMRI study. Cogn. Brain Res. 2004, 20, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Feinstein, J.S.; Adolphs, R.; Damasio, A.; Tranel, D. The Human Amygdala and the Induction and Experience of Fear. Curr. Biol. 2011, 21, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Philippi, C.L.; Mehta, S.; Grabowski, T.; Adolphs, R.; Rudrauf, D. Damage to Association Fiber Tracts Impairs Recognition of the Facial Expression of Emotion. J. Neurosci. 2009, 29, 15089–15099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monte, O.D.; Krueger, F.; Solomon, J.M.; Schintu, S.; Knutson, K.M.; Strenziok, M.; Pardini, M.; Leopold, A.; Raymont, V.; Grafman, J.H. A voxel-based lesion study on facial emotion recognition after penetrating brain injury. Soc. Cogn. Affect. Neurosci. 2012, 8, 632–639. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhang, Y.; Li, Y.; Kong, X. Review on Emotion Recognition Based on Electroencephalography. Front. Comput. Neurosci. 2021, 15, 758212. [Google Scholar] [CrossRef]
- Liu, J.; Wu, G.; Luo, Y.; Qiu, S.; Yang, S.; Li, W.; Bi, Y. EEG-Based Emotion Classification Using a Deep Neural Network and Sparse Autoencoder. Front. Syst. Neurosci. 2020, 14. [Google Scholar] [CrossRef]
- Ramirez, P.M.; Desantis, D.; Opler, L.A. EEG biofeedback treatment of ADD. A viable alternative to traditional medical in-tervention? Ann. N. Y. Acad. 2010, 931, 342–358. [Google Scholar] [CrossRef]
- Hu, X.; Chen, J.; Wang, F.; Zhang, D. Ten challenges for EEG-based affective computing. Brain Sci. Adv. 2019, 5, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Fürbass, F.; Kural, M.A.; Gritsch, G.; Hartmann, M.; Kluge, T.; Beniczky, S. An artificial intelligence-based EEG algorithm for detection of epileptiform EEG discharges: Validation against the diagnostic gold standard. Clin. Neurophysiol. 2020, 131, 1174–1179. [Google Scholar] [CrossRef]
- Ostos, M.W.; Schenk, F.; Baenziger, T.; von Gunten, A. An Exploratory Study on Facial Emotion Recognition Capacity in Beginning Alzheimer’s Disease. Eur. Neurol. 2011, 65, 361–367. [Google Scholar] [CrossRef]
- Elferink, M.W.-O.; van Tilborg, I.; Kessels, R.P. Perception of emotions in mild cognitive impairment and Alzheimer’s dementia: Does intensity matter? Transl. Neurosci. 2015, 6, 139–149. [Google Scholar] [CrossRef]
- Dodich, A.; Funghi, G.; Meli, C.; Pennacchio, M.; Longo, C.; Malaguti, M.C.; Di Giacopo, R.; Zappini, F.; Turella, L.; Papagno, C. Deficits in Emotion Recognition and Theory of Mind in Parkinson’s Disease Patients With and Without Cognitive Impairments. Front. Psychol. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Chen, C.-H.; Tom, S.E.; Kuo, S.-H.; Initiative, F.T.A.D.N. Cerebellar Volume Is Associated with Cognitive Decline in Mild Cognitive Impairment: Results from ADNI. Cerebellum 2020, 19, 217–225. [Google Scholar] [CrossRef]
- Rosen, H.J.; Allison, S.C.; Schauer, G.F.; Gorno-Tempini, M.L.; Weiner, M.W.; Miller, B.L. Neuroanatomical correlates of behavioural disorders in dementia. Brain 2005, 128, 2612–2625. [Google Scholar] [CrossRef]
- Amlerova, J.; Laczó, J.; Nedelska, Z.; Laczó, M.; Vyhnálek, M.; Zhang, B.; Sheardova, K.; Angelucci, F.; Andel, R.; Hort, J. Emotional prosody recognition is impaired in Alzheimer’s disease. Alzheimer’s Res. Ther. 2022, 14, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ríos, M.; Redolat, R.; Serra, E.; González-Alcaide, G. A systematic review of facial emotion recognition in Alzhei-mer’s disease: A developmental and gender perspective. Anales de Psicología 2021, 37, 478–492. [Google Scholar]
- Weiss, A.; Bates, T.C.; Luciano, M. Happiness is a personal(ity) thing: The genetics of personality and well-being in a representative sample. Psychol. Sci. 2008, 19, 205–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertoux, M.; de Souza, L.; Sarazin, M.; Funkiewiez, A.; Dubois, B.; Hornberger, M. How Preserved is Emotion Recognition in Alzheimer Disease Compared With Behavioral Variant Frontotemporal Dementia? Alzheimer Dis. Assoc. Disord. 2015, 29, 154–157. [Google Scholar] [CrossRef] [Green Version]
- Sapey-Triomphe, L.-A.; Heckemann, R.A.; Boublay, N.; Dorey, J.-M.; Hénaff, M.-A.; Rouch, I.; Padovan, C.; Hammers, A.; Krolak-Salmon, P.; Initiative, A.D.N. Neuroanatomical Correlates of Recognizing Face Expressions in Mild Stages of Alzheimer’s Disease. PLoS ONE 2015, 10, e0143586. [Google Scholar] [CrossRef]
- Petersen, C.; Morris, C. Mild cognitive impairment as a clinical entity and treatment target. Arch. Neurol. 2005, 62, 1160–1163. [Google Scholar] [CrossRef]
- McCade, D.; Savage, G.; Guastella, A.; Lewis, S.J.G.; Naismith, S.L. Emotion Recognition in Mild Cognitive Impairment: Relationship to Psychosocial Disability and Caregiver Burden. J. Geriatr. Psychiatry Neurol. 2013, 26, 165–173. [Google Scholar] [CrossRef]
- Phillips, M.L.; Drevets, W.C.; Rauch, S.L.; Lane, R. Neurobiology of emotion perception I: The neural basis of normal emotion perception. Biol. Psychiatry 2003, 54, 504–514. [Google Scholar] [CrossRef]
- Karas, G.; Scheltens, P.; Rombouts, S.; Visser, P.; van Schijndel, R.; Fox, N.; Barkhof, F. Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease. NeuroImage 2004, 23, 708–716. [Google Scholar] [CrossRef]
- Spiro, A.; Brady, C. Integrating health into cognitive aging research and theory: Quo Vadis? In Handbook of Cognitive Aging: Interdisciplinary Perspectives; Hofer, S., Alwin, D., Eds.; SAGE Publications: Thousand Oaks, CA, USA, 2008; pp. 260–283. [Google Scholar]
- Okusaga, O.; Stewart, W.; Butcher, I.; Deary, I.; Fowkes, G.; Price, F. Smoking, hypercholesterolaemia and hypertension as risk factors for cognitive impairment in older adults. Age Ageing 2012, 42, 306–311. [Google Scholar] [CrossRef] [Green Version]
- Low, A.; Prats-Sedano, M.A.; Stefaniak, J.D.; McKiernan, E.F.; Carter, S.F.; Douvani, M.-E.; Mak, E.; Su, L.; Stupart, O.; Muniz, G.; et al. CAIDE dementia risk score relates to severity and progression of cerebral small vessel disease in healthy midlife adults: The PREVENT-Dementia study. J. Neurol. Neurosurg. Psychiatry 2022, 93, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Reuter-Lorenz, A.; Park, C. How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychol. Rev. 2014, 24, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015, 14, 388–405. [Google Scholar] [CrossRef] [Green Version]
- Attems, J.; Jellinger, K.A. The overlap between vascular disease and Alzheimer’s disease - lessons from pathology. BMC Med. 2014, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Torres, B.; Santos, R.L.; De Sousa, M.F.B.; Neto, J.P.S.; Nogueira, M.M.L.; Belfort, T.T.; Dias, R.; Dourado, M.C.N. Facial expression recognition in Alzheimer’s disease: A longitudinal study. Arq. de Neuro-Psiquiatria 2015, 73, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Smith-Spijkerboer, W.; Meeske, K.; van der Palen, J.A.; Hertog, H.M.D.; Smeets-Schouten, A.S.; van Hout, M.; Dorresteijn, L.D. Impaired Visual Emotion Recognition After Minor Ischemic Stroke. Arch. Phys. Med. Rehabilitation 2021, 103, 958–963. [Google Scholar] [CrossRef]
- Yim, J.; Babbage, D.R.; Zupan, B.; Neumann, D.; Willer, B. The relationship between facial affect recognition and cognitive functioning after traumatic brain injury. Brain Inj. 2013, 27, 1155–1161. [Google Scholar] [CrossRef]
- Virtanen, M.; Singh-Manoux, A.; Batty, G.; Ebmeier, K.; Jokela, M.; Harmer, C.; Kivimaki, M. The level of cognitive function and recognition of emotions in older adults. PLoS ONE 2017, 12, e0185513. [Google Scholar] [CrossRef] [Green Version]
- Shimokawa, A.; Yatomi, N.; Anamizu, S.; Torii, S.; Isono, H.; Sugai, Y. Recognition of Facial Expressions and Emotional Situations in Patients with Dementia of the Alzheimer and Vascular Types. Dement. Geriatr. Cogn. Disord. 2003, 15, 163–168. [Google Scholar] [CrossRef]
- Ebner, N.C.; Johnson, M.K.; Fischer, H. Neural Mechanisms of Reading Facial Emotions in Young and Older Adults. Front. Psychol. 2012, 3, 223. [Google Scholar] [CrossRef] [Green Version]
- Yesavage, J.A.; Brink, T.L.; Rose, T.L.; Lum, O.; Huang, V.; Adey, M.; Leirer, V.O. Development and validation of a geriatric depression screening scale: A preliminary report. J. Psychiatr. Res. 1983, 17, 37–49. [Google Scholar] [CrossRef]
- Fountoulakis, K.N.; Tsolaki, M.; Iacovides, A.; Yesavage, J.; O’Hara, R.; Kazis, A.; Ierodiakonou, C. The validation of the short form of the Geriatric Depression Scale (GDS) in Greece. Aging Clin. Exp. Res. 1999, 11, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Goodglass, H.; Kaplan, E. The Assessment of Aphasia and Related Disorders; Lea and Febiger: Philadelphia, PA, USA, 1983. [Google Scholar]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Poptsi, E.; Moraitou, D.; Eleftheriou, M.; Kounti-Zafeiropoulou, F.; Papasozomenou, C.; Agogiatou, C.; Bakoglidou, E.; Batsila, G.; Liapi, D.; Markou, N.; et al. Normative data for the Montreal Cognitive Assessment in Greek older adults with subjective cognitive decline, mild cognitive impairment and dementia. J. Geriatr. Psychiatry Neurol. 2019, 32, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Tsolaki, M.; Gkioka, M.; Verykouki, E.; Galoutzi, N.; Kavalou, E.; Pattakou-Parasyri, V. Prevalence of Dementia, Depression, and Mild Cognitive Impairment in a Rural Area of the Island of Crete, Greece. Am. J. Alzheimer’s Dis. Other Dementiasr 2017, 32, 252–264. [Google Scholar] [CrossRef]
- McDonald, S.; Bornhofen, C.; Shum, D.H.K.; Long, E.; Saunders, C.; Neulinger, K. Reliability and validity of The Awareness of Social Inference Test (TASIT): A clinical test of social perception. Disabil. Rehabil. 2006, 28, 1529–1542. [Google Scholar] [CrossRef]
- Ekman, P. Cross-Cultural Studies of Facial Expression. In Darwin and Facial Expression: A Century of Research in Review; Ekman, P., Ed.; Academic Press: New York, NY, USA, 1973; pp. 169–222. [Google Scholar]
- McDonald, S.; Flanagan, S.; Martin, I.; Saunders, C. The ecological validity of TASIT: A test of social perception. Neuropsychol. Rehabil. 2004, 14, 285–302. [Google Scholar] [CrossRef]
- Moraitou, D.; Papantoniou, G.; Gkinopoulos, T.; Nigritinou, M. Older adults’ decoding of emotions: Age-related differences in interpreting dynamic emotional displays and the well-preserved ability to recognize happiness. Psychogeriatrics 2013, 13, 139–147. [Google Scholar] [CrossRef] [Green Version]
- IBM Corp. Released 2016; IBM SPSS Statistics for Windows, Version 24.0; IBM Corp.: Armonk, NY, USA, 2016. [Google Scholar]
- Palmqvist, S.; Schöll, M.; Strandberg, O.; Mattsson-Carlgren, N.; Stomrud, E.; Zetterberg, H.; Blennow, K.; Landau, S.; Jagust, W.; Hansson, O. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat. Commun. 2017, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Braak, H.; Del Tredici, K. The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain 2015, 138, 2814–2833. [Google Scholar] [CrossRef] [Green Version]
- Arfanakis, K.; Evia, A.M.; Leurgans, S.E.; Cardoso, L.F.; Kulkarni, A.; Alqam, N.; Lopes, L.F.; Vieira, D.; Bennett, D.A.; Schneider, J.A. Neuropathologic Correlates of White Matter Hyperintensities in a Community-Based Cohort of Older Adults. J. Alzheimer’s Dis. 2020, 73, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Wardlaw, J.M.; Hernández, M.C.V.; Muñoz-Maniega, S. What are White Matter Hyperintensities Made of? J. Am. Hear. Assoc. 2015, 4, 001140. [Google Scholar] [CrossRef] [PubMed]
- Olsen, R.K.; Yeung, L.-K.; Noly-Gandon, A.; D’Angelo, M.C.; Kacollja, A.; Smith, V.M.; Ryan, J.D.; Barense, M.D. Human anterolateral entorhinal cortex volumes are associated with cognitive decline in aging prior to clinical diagnosis. Neurobiol. Aging 2017, 57, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Spaniol, J.; Davidson, P.S.R.; Kim, A.S.N.; Han, H.; Moscovitch, M.; Grady, C.L. Event- related fMRI studies of episodic encoding and retrieval: Meta-analyses using activation likelihood estimation. Neuropsychologia 2009, 47, 1765–1779. [Google Scholar] [CrossRef]
- Blom, K.; Emmelot-Vonk, H.; Koek, L. The influence of vascular risk factors on cognitive decline in patients with dementia: A systematic review. Maturitas 2013, 76, 113–117. [Google Scholar] [CrossRef]
- Hugenschmidt, E.; Hsu, C.; Hayasaka, S.; Carr, J.; Freedman, I.; Nyenhuis, L.; Williamson, J.; Bowden, D. The influence of sub-clinical cardiovascular disease and related risk factors on cognition in type 2 diabetes mellitus: The DHS-Mind study. J. Di-abetes Complicat. 2013, 27, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Spauwen, J.; Kohler, S.; Verhey, R.; Stehouwer, D.; van Boxtel, P. Effects of type 2 diabetes on 12-year cognitive change: Results from the Maastricht aging study. Diabetes Care 2013, 36, 1554–1561. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, X.; Zhang, J.; Liu, C.; Yuan, Q.; Yin, X.; Wei, L.; Cui, J.; Tao, R.; Wei, P.; et al. Gray matter volume abnormalities in type 2 diabetes mellitus with and without mild cognitive impairment. Neurosci. Lett. 2014, 562, 1–6. [Google Scholar] [CrossRef]
- Groeneveld, O.N.; Berg, E.V.D.; Rutten, G.E.; Koekkoek, P.S.; Kappelle, L.J.; Biessels, G.J. Applicability of diagnostic constructs for cognitive impairment in patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pr. 2018, 142, 92–99. [Google Scholar] [CrossRef]
- Gocmeza, S.; Şahina, T.; Yazirb, Y.; Duruksuc, G.; Eraldemird, F.; Polatc, S.; Utkan, T. Resveratrol prevents cognitive deficits by attenuating oxidative damage and inflammation in rat model of streptozotocin diabetes induced vascular dementia. Physiol. Behav. 2019, 201, 198–207. [Google Scholar] [CrossRef]
- Rosenberga, J.; Lecheaa, N.; Pentanga, G.; Shaha, N. What magnetic resonance imaging reveals – A systematic review of the relationship between type II diabetes and associated brain distortions of structure and cognitive functioning. Front Neuroen-Docrinol. 2019, 52, 79–112. [Google Scholar] [CrossRef] [PubMed]
- Kivipelto, M.; Helkala, E.-L.; Soininen, H.; Laakso, M.P.; Hänninen, T.; Hallikainen, M.; Alhainen, K.; Iivonen, S.; Mannermaa, A.; Tuomilehto, J.; et al. Apolipoprotein E ϵ4 Allele, Elevated Midlife Total Cholesterol Level, and High Midlife Systolic Blood Pressure Are Independent Risk Factors for Late-Life Alzheimer Disease. Ann. Intern. Med. 2002, 137, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.D.; Montagne, A.; Sagare, A.P.; Nation, D.A.; Schneider, L.S.; Chui, H.C.; Harrington, M.G.; Pa, J.; Law, M.; Wang, D.J.J.; et al. Vascular dysfunction—The disregarded partner of Alzheimer’s disease. Alzheimer’s Dement. 2019, 15, 158–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, G.A.; Nunes, M.V.S.; Alzola, P.; Contador, I. Cognitive reserve and brain maintenance in aging and dementia: An integrative review. Appl. Neuropsychol. Adult 2021, 1–11. [Google Scholar] [CrossRef]
- Low, A.; Mak, E.; Rowe, J.B.; O’Brien, J.T. Inflammation and cerebral small vessel disease: A systematic review. Ageing Res. Rev. 2019, 53, 100916. [Google Scholar] [CrossRef] [PubMed]
- Kinney, J.W.; BeMiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dementia: Transl. Res. Clin. Interv. 2018, 4, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Grande, G.; Marengoni, A.; Vetrano, D.L.; Roso-Llorach, A.; Rizzuto, D.; Zucchelli, A.; Qiu, C.; Fratiglioni, L.; Calderón-Larrañaga, A. Multimorbidity burden and dementia risk in older adults: The role of in-flammation and genetics. Alzheimer’s Dement. 2021, 17, 768–776. [Google Scholar] [CrossRef]
- Silva, N.C.B.S.; Dao, E.; Hsu, C.L.; Tam, R.C.; Lam, K.; Alkeridy, W.; Laule, C.; Vavasour, I.M.; Stein, R.G.; Liu-Ambrose, T. Myelin and Physical Activity in Older Adults With Cerebral Small Vessel Disease and Mild Cognitive Impairment. J. Gerontol. Ser. A 2022, 119, 56–66. [Google Scholar] [CrossRef]
- Ihara, M.; Polvikoski, T.M.; Hall, R.; Slade, J.Y.; Perry, R.H.; Oakley, A.E.; Englund, E.; O’Brien, J.T.; Ince, P.G.; Kalaria, R.N. Quantification of myelin loss in frontal lobe white matter in vascular dementia, Alzheimer’s disease, and dementia with Lewy bodies. Acta Neuropathol. 2010, 119, 579–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuladhar, A.M.; van Norden, A.G.; de Laat, K.F.; Zwiers, M.P.; van Dijk, E.J.; Norris, D.G.; de Leeuw, F.-E. White matter integrity in small vessel disease is related to cognition. NeuroImage: Clin. 2015, 7, 518–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wada, S.; Honma, M.; Masaoka, Y.; Yoshida, M.; Koiwa, N.; Sugiyama, H.; Iizuka, N.; Kubota, S.; Kokudai, Y.; Yoshikawa, A.; et al. Volume of the right supramarginal gyrus is associated with a maintenance of emotion recognition ability. PLoS ONE 2021, 16, e0254623. [Google Scholar] [CrossRef]
- Meng, X.; D’Arcy, C. Education and Dementia in the Context of the Cognitive Reserve Hypothesis: A Systematic Review with Meta-Analyses and Qualitative Analyses. PLoS ONE 2012, 7, e38268. [Google Scholar] [CrossRef] [PubMed]
- Demenescu, L.R.; Stan, A.; Kortekaas, R.; Van Der Wee, N.J.A.; Veltman, D.J.; Aleman, A.; Aleman, A. On the connection between level of education and the neural circuitry of emotion perception. Front. Hum. Neurosci. 2014, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Góngora, D.; Vega-Hernández, M.; Jahanshahi, M.; Valdés-Sosa, P.A.; Bringas-Vega, M.L. Chbmp Crystallized and fluid intelligence are predicted by microstructure of specific white-matter tracts. Hum. Brain Mapp. 2019, 41, 906–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bora, E.; Özerdem, A. Meta-analysis of longitudinal studies of cognition in bipolar disorder: Comparison with healthy controls and schizophrenia. Psychol. Med. 2017, 47, 2753–2766. [Google Scholar] [CrossRef] [PubMed]
- Guaita, A.; Malnati, M.; Vaccaro, R.; Pezzati, R.; Marcionetti, J.; Vitali, S.; Colombo, M. Impaired facial emotion recognition and preserved reactivity to facial expressions in people with severe dementia. Arch. Gerontol. Geriatr. 2009, 49, 135–146. [Google Scholar] [CrossRef]
- Fusar-Poli, P.; Placentino, A.; Carletti, F.; Landi, P.; Allen, P.; Surguladze, S.; Benedetti, F.; Abbamonte, M.; Gasparotti, R.; Barale, F.; et al. Functional atlas of emotional faces processing: A voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J. Psychiatry Neurosci. 2009, 34, 418–432. [Google Scholar]
- Raz, N.; Lindenberger, U.; Rodrigue, K.; Kennedy, K.; Head, D.; Williamson, A.; Dahle, C.; Gerstorf, D.; Acker, J.D. Regional Brain Changes in Aging Healthy Adults: General Trends, Individual Differences and Modifiers. Cereb. Cortex 2005, 15, 1676–1689. [Google Scholar] [CrossRef] [Green Version]
- Raz, N.; Rodrigue, K.M. Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neurosci. Biobehav. Rev. 2006, 30, 730–748. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, C.M.; Kensinger, E.A. Effects of age on detection of emotional information. Psychol. Aging 2008, 23, 209–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samanez-Larkin, G.R.; Robertson, E.R.; Mikels, J.A.; Carstensen, L.L.; Gotlib, I.H. Selective attention to emotion in the aging brain. Psychol. Aging 2009, 24, 519–529. [Google Scholar] [CrossRef] [Green Version]
- Isaacowitz, D.M.; Wadlinger, H.A.; Goren, D.; Wilson, H.R. Selective preference in visual fixation away from negative images in old age? An eye-tracking study. Psychol. Aging 2006, 21, 40–48. [Google Scholar] [CrossRef]
- Kryla-Lighthall, N.; Mather, M. The Role of Cognitive Control in Older Adults’ Emotional Well-Being. In Handbook of Theories of Aging; Bengston, V., Gans, D., Putney, N., Silverstein, M., Eds.; Springer: New York, NY, USA, 2009; pp. 323–344. [Google Scholar]
- Μoraitou, D.; Papantoniou, G. Mindfulness and Action Control in Young, Middle-Aged, and Old Adults: An Examination of Their Relationship to Attentional Bias towards Emotional Information. Res. Psychol. 2010, 591–626. [Google Scholar]
- Knight, M.; Seymour, T.L.; Gaunt, J.T.; Baker, C.; Nesmith, K.; Mather, M. Aging and goal-directed emotional attention: Distraction reverses emotional biases. Emotion 2007, 7, 705–714. [Google Scholar] [CrossRef]
- Mather, M.; Knight, M. Goal-directed memory: The role of cognitive control in older adults’ emotional memory. Psychol. Aging 2005, 20, 554–570. [Google Scholar] [CrossRef] [Green Version]
- Ochsner, K.N.; Gross, J.J. The Neural Architecture of Emotion Regulation. In Handbook of Emotion Regulation; Gross, J.J., Ed.; Guilford: New York, NY, USA, 2007; pp. 87–109. [Google Scholar]
- Gkinopoulos, T.; Moraitou, D.; Papantoniou, G.; Nigritinou, M.; Ginos, P.; Kotselidou, D. Decoding of Basic Emotions from Dynamic Visual Displays in Dementia: A Sign of Loss of Positivity Bias in Emotional Processing in Cognitively Unhealthy Aging? Open J. Med Psychol. 2014, 03, 325–336. [Google Scholar] [CrossRef] [Green Version]
- Bar-Anan, Y.; Wilson, T.D.; Gilbert, D.T. The feeling of uncertainty intensifies affective reactions. Emotion 2009, 9, 123–127. [Google Scholar] [CrossRef]
Groups | MCI (n = 43) | VRF (n = 41) | HC (n = 22) |
---|---|---|---|
Age-groups: Late Middle-Aged Adults/Older Adults | 12/31 | 14/27 | 22/0 |
Educational Level: High/Middle/Low | 17/11/15 | 12/8/21 | 10/9/3 |
Gender: Men/Women | 9/34 | 9/32 | 4/18 |
Happiness | Non Emotional Condition | Total Emotion Recognition | |
---|---|---|---|
MCI | 3.49 (S.D. 0.703) | 2.47 (S.D. 1.14) | 12.88 (S.D. 2.95) |
Adults with VRF | 3.47 (S.D. 0.679) | 1.90 (S.D. 1.19) | 12.92 (S.D. 2.03) |
Healthy Controls | 3.50 (S.D. 0.673) | 2.41 (S.D. 1.21) | 13.82 (S.D. 3.66) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsentidou, G.; Moraitou, D.; Tsolaki, M. Emotion Recognition in a Health Continuum: Comparison of Healthy Adults of Advancing Age, Community Dwelling Adults Bearing Vascular Risk Factors and People Diagnosed with Mild Cognitive Impairment. Int. J. Environ. Res. Public Health 2022, 19, 13366. https://doi.org/10.3390/ijerph192013366
Tsentidou G, Moraitou D, Tsolaki M. Emotion Recognition in a Health Continuum: Comparison of Healthy Adults of Advancing Age, Community Dwelling Adults Bearing Vascular Risk Factors and People Diagnosed with Mild Cognitive Impairment. International Journal of Environmental Research and Public Health. 2022; 19(20):13366. https://doi.org/10.3390/ijerph192013366
Chicago/Turabian StyleTsentidou, Glykeria, Despina Moraitou, and Magdalini Tsolaki. 2022. "Emotion Recognition in a Health Continuum: Comparison of Healthy Adults of Advancing Age, Community Dwelling Adults Bearing Vascular Risk Factors and People Diagnosed with Mild Cognitive Impairment" International Journal of Environmental Research and Public Health 19, no. 20: 13366. https://doi.org/10.3390/ijerph192013366
APA StyleTsentidou, G., Moraitou, D., & Tsolaki, M. (2022). Emotion Recognition in a Health Continuum: Comparison of Healthy Adults of Advancing Age, Community Dwelling Adults Bearing Vascular Risk Factors and People Diagnosed with Mild Cognitive Impairment. International Journal of Environmental Research and Public Health, 19(20), 13366. https://doi.org/10.3390/ijerph192013366