Patterns of Socioeconomic Inequities in SDGs Relating to Children’s Well-Being in Thailand and Policy Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Study Design
2.2. Variables
2.3. Statistical Analysis
2.4. Ethics Approval
3. Results
3.1. Overall of Thailand’s Progress in CFI
3.1.1. Socioeconomic Differences in Household Poverty
3.1.2. Socioeconomic Differences in Growth and Nutrition among Thai Children (SDG 2.2.1)
3.1.3. Socioeconomic Differences among Thai Female Adolescents (SDG 3.7.2)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN. United Nations Inter-agency Group for Child Mortality Estimation. Levels and Trends in Child Mortality: Report 2019. 2019. Available online: https://www.unicef.org/reports/levels-and-trends-child-mortality-report-2019/ (accessed on 27 September 2022).
- World Health Organization. Trends in Maternal Mortality 2000 to 2017: Estimates by WHO, UNICEF, UNFPA, World Bank Group and the United Nations Population Division; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- WHO (74th). Committing to Implementation of the Global Strategy for Women’s, Children’s and Adolescents’ Health (2016–2030); Report by the Director-General (A74/14); WHO: Geneva, Switzerland, 2021; Available online: https://apps.who.int/gb/ebwha/pdf_files/WHA74/A74_14-en.pdf (accessed on 30 May 2021).
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development United Nations United Nations Transforming Our World: The 2030 Agenda for Sustainable Development; A/RES/70/1; United Nations: New York, NY, USA, 2015; Volume 16301, Available online: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf (accessed on 4 August 2022).
- Clark, H.; Coll-Seck, A.M.; Banerjee, A.; Peterson, S.; Dalglish, S.L.; Ameratunga, S.; Balabanova, D.; Bhan, M.K.; Bhutta, Z.A.; Borrazzo, J.; et al. A future for the world’s children? A WHO–UNICEF–Lancet Commission. Lancet 2020, 395, 605–658. [Google Scholar] [CrossRef] [Green Version]
- UN Sustainable Development Group, ‘Leaving No One Behind: A UNSDG Operational Guide for UN Country Teams: Interim draft’, UNSDG, New York, 18 March 2019. Available online: https://unsdg.un.org/sites/default/files/Interim-Draft-Operational-Guide-on-LNOB-for-UNCTs.pdf (accessed on 20 May 2021).
- Databook, C.G. Global Wealth Databook 2018. Credit Suisse Research Institute. 2018. Available online: https://www.credit-suisse.com/media/assets/corporate/docs/about-us/research/publications/global-wealth-databook-2018.pdf (accessed on 26 November 2019).
- UNICEF. Country Profile. Thailand. Key Demographic Indicators. Available online: https://data.unicef.org/country/tha/ (accessed on 1 May 2022).
- Topothai, T.; Suphanchaimat, R.; Topothai, C.; Tangcharoensathien, V.; Cetthakrikul, N.; Waleewong, O. Thailand Achievement of SDG Indicator 4.2. 1 on Early Child Development: An Analysis of the 2019 Multiple Indicator Cluster Survey. Int. J. Environ. Res. Public Health 2022, 19, 7599. [Google Scholar] [CrossRef] [PubMed]
- Topothai, T.; Suphanchaimat, R.; Topothai, C.; Tangcharoensathien, V.; Cetthakrikul, N.; Waleewong, O. Self-Reported Parental Interactions through Play with Young Children in Thailand: An Analysis of the 2019 Multiple Indicator Cluster Survey (MICS). Int. J. Environ. Res. Public Health 2022, 19, 3418. [Google Scholar] [CrossRef] [PubMed]
- UNICEF. Thailand: Multiple Indicator Cluster Survey 2019; UNICEF: Bangkok, Thailand, 2020; Available online: https://www.unicef.org/thailand/media/5146/file/Multiple%20Indicator%20Cluster%20Survey%202019.pdf (accessed on 20 May 2021).
- Rückinger, S.; von Kries, R.; Toschke, A.M. An illustration of and programs estimating attributable fractions in large scale surveys considering multiple risk factors. BMC Med. Res. Methodol. 2009, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Newson, R.B. Attributable and unattributable risks and fractions and other scenario comparisons. Stata J. 2013, 13, 672–698. [Google Scholar] [CrossRef] [Green Version]
- Prüss-Ustün, A.; Wolf, J.; Bartram, J.; Clasen, T.; Cumming, O.; Freeman, M.C.; Gordon, B.; Hunter, P.R.; Medlicott, K.; Johnston, R. Burden of disease from inadequate water, sanitation and hygiene for selected adverse health outcomes: An updated analysis with a focus on low-and middle-income countries. Int. J. Hyg. Environ. Health 2019, 222, 765–777. [Google Scholar] [CrossRef]
- Anthonj, C.; Setty, K.E.; Ezbakhe, F.; Manga, M.; Hoeser, C. A systematic review of water, sanitation and hygiene among Roma communities in Europe: Situation analysis, cultural context, and obstacles to improvement. Int. J. Hyg. Environ. Health 2020, 226, 113506. [Google Scholar] [CrossRef]
- Geere, J.A.; Hunter, P.R. The association of water carriage, water supply and sanitation usage with maternal and child health. A combined analysis of 49 Multiple Indicator Cluster Surveys from 41 countries. Int. J. Hyg. Environ. Health. 2020, 223, 238–247. [Google Scholar] [CrossRef]
- Office of the National Economic and Social Development Council, Thailand. Poverty Situation and Disparities at Regional Level of Thailand 2018. Available online: https://www.nesdc.go.th/ewt_w3c/ewt_dl_link.php?nid=7787 (accessed on 30 May 2021).
- Poonsab, W.; Vanek, J.; Carré, F. Informal workers in urban Thailand: A statistical snapshot. WIEGO Stat. Brief. 2019, 20, 1–3. [Google Scholar]
- Equitable Education Fund Thailand. Strategic Pland 2022–2024. Available online: https://www.eef.or.th/wp-content/uploads/2022/04/EEF-Strategic-Plan-2022-2024.pdf (accessed on 1 May 2022).
- Draper, J.; Selway, J.S. A new dataset on horizontal structural ethnic inequalities in Thailand in order to address Sustainable Development Goal 10. Soc. Indic. Res. 2019, 141, 275–297. [Google Scholar] [CrossRef]
- Beyers, J. The Effect of Religion on Poverty. HTS Theol. Stud. 2014, 70, 1–8. [Google Scholar] [CrossRef]
- The World Bank. Data Bank, Sustainable Development Goals (SDGs). Available online: https://databank.worldbank.org/source/sustainable-development-goals-(sdgs) (accessed on 30 June 2021).
- Ramli, K.E.; Inder, K.J.; Bowe, S.J.; Jacobs, J.; Dibley, M.J. Prevalence and risk Factors for Stunting and Severe Stunting among under-Fives in north Maluku Province of indonesia. In Social Work in Public Health and Hospitals; CRC Press: Boca Raton, FL, USA, 2016; Volume 110. [Google Scholar]
- Wang, A.; Scherpbier, R.W.; Huang, X.; Guo, S.; Yang, Y.; Josephs-Spaulding, J.; Ma, C.; Zhou, H.; Wang, Y. The dietary diversity and stunting prevalence in minority children under 3 years old: A cross-sectional study in forty-two counties of Western China. Br. J. Nutr. 2017, 118, 840–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roesler, A. Development and Sustainability of Interventions to Improve Child Nutrition: A Case-Study of Ethnic Minority Communities in Northern Thailand. Ph.D. Thesis, The University of Adelaide, Adelaide, Australia.
- Mahmood, T.; Abbas, F.; Kumar, R.; Somrongthong, R. Why under five children are stunted in Pakistan? A multilevel analysis of Punjab Multiple indicator Cluster Survey (MICS-2014). BMC Public Health 2020, 20, 952. [Google Scholar]
- Rah, J.H.; Sukotjo, S.; Badgaiyan, N.; Cronin, A.A.; Torlesse, H. Improved sanitation is associated with reduced child stunting amongst Indonesian children under 3 years of age. Matern. Child Nutr. 2020, 16, e12741. [Google Scholar] [CrossRef]
- Brainerd, E.; Menon, N. Religion and health in early childhood: Evidence from South Asia. Popul. Dev. Rev. 2015, 41, 439–463. [Google Scholar] [CrossRef]
- Chowdhury, M.R.; Rahman, M.S.; Khan, M.M.; Mondal, M.N.; Rahman, M.M.; Billah, B. Risk factors for child malnutrition in Bangladesh: A multilevel analysis of a nationwide population-based survey. J. Pediatr. 2016, 172, 194–201. [Google Scholar]
- The World Bank. Data Bank, Low-birthweight babies (% of births)—Thailand. Available online: https://data.worldbank.org/indicator/SH.STA.BRTW.ZS?locations=TH (accessed on 30 June 2021).
- Momeni, M.; Danaei, M.; Kermani, A.J.; Bakhshandeh, M.; Foroodnia, S.; Mahmoudabadi, Z.; Amirzadeh, R.; Safizadeh, H. Prevalence and risk factors of low birth weight in the Southeast of Iran. Int. J. Prev. Med. 2017, 8, 12. [Google Scholar]
- Zhou, H.; Wang, A.; Huang, X.; Guo, S.; Yang, Y.; Martin, K.; Tian, X.; Josephs-Spaulding, J.; Ma, C.; Scherpbier, R.W. Quality antenatal care protects against low birth weight in 42 poor counties of Western China. PLoS ONE. 2019, 14, e0210393. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.J.; Lim, S.H. Risk of low birth weight associated with family poverty in Korea. Child. Youth Serv. Rev. 2010, 32, 1670–1674. [Google Scholar] [CrossRef]
- Khan, J.R.; Islam, M.M.; Awan, N.; Muurlink, O. Analysis of low birth weight and its co-variants in Bangladesh based on a sub-sample from nationally representative survey. BMC Pediatr. 2018, 18, 100. [Google Scholar]
- Vilcins, D.; Sly, P.D.; Jagals, P. Environmental risk factors associated with child stunting: A systematic review of the literature. Ann. Glob. Health 2018, 84, 551. [Google Scholar] [CrossRef] [PubMed]
- Wali, N.; Agho, K.E.; Renzaho, A. Factors associated with stunting among children under 5 years in five South Asian countries (2014–2018): Analysis of demographic health surveys. Nutrients 2020, 12, 3875. [Google Scholar] [CrossRef]
- Pal, A.; Manna, S.; Das, B.; Dhara, P.C. The risk of low birth weight and associated factors in West Bengal, India: A community based cross-sectional study. Egypt. Pediatr. Assoc. Gaz. 2020, 68, 1. [Google Scholar] [CrossRef]
- UNICEF. Thailand: Multiple Indicator Cluster Survey 2015–2016. Bangkok: UNICEF 2016. Available online: https://www.unicef.org/thailand/sites/unicef.org.thailand/files/2018-06/Thailand_MICS_Full_Report_EN_0.pdf (accessed on 20 May 2021).
- Papri, F.S.; Khanam, Z.; Ara, S.; Panna, M.B. Adolescent pregnancy: Risk factors, outcome and prevention. Chattagram Maa-O-Shishu Hosp. Med. Coll. J. 2016, 15, 53–56. [Google Scholar] [CrossRef]
- Omar, K.; Hasim, S.; Muhammad, N.A.; Jaffar, A.; Hashim, S.M.; Siraj, H.H. Adolescent pregnancy outcomes and risk factors in Malaysia. Int. J. Gynecol. Obstet. 2010, 111, 220–223. [Google Scholar] [CrossRef]
- Laeheem, K.; Suwansuntorn, P. The social effects on pregnant teenagers in Na Mom district, Songkhla Province. NIDA Dev. J. 2015, 55, 130–152. [Google Scholar]
- Kaphagawani, N.C.; Kalipeni, E. Sociocultural factors contributing to teenage pregnancy in Zomba district, Malawi. Glob. Public Health 2017, 12, 694–710. [Google Scholar] [CrossRef]
- Bain, L.E.; Zweekhorst, M.B.M.; Amoakoh-Coleman, M.; Muftugil-Yalcin, S.; Omolade, A.I.O.; Becquet, R.; De Cock Buning, T. To keep or not to keep? Decision making in adolescent pregnancies in Jamestown, Ghana. PLoS ONE 2019, 14, e0221789. [Google Scholar] [CrossRef] [Green Version]
- The World Bank. Data Bank, Women Who Were First Married by Age 15 (% of Women Ages 20–24)—Thailand. Available online: https://data.worldbank.org/indicator/SP.M15.2024.FE.ZS?locations=TH (accessed on 20 July 2021).
- Choe, M.K.; Thapa, S.; Mishra, V. Early marriage and early motherhood in Nepal. J. Biosoc. Sci. 2005, 37, 143–162. [Google Scholar] [CrossRef] [Green Version]
- Choe, M.K.; Thapa, S.; Achmad, S. Early Marriage and Childbearing in Indonesia and Nepal (East-West Center Working Papers Population Series, No. 108–115); East-West Center: Honolulu, HI, USA, 2001. [Google Scholar]
- Aurpibul, L.; Tangmunkongvorakul, A.; Musumari, P.M.; Srithanaviboonchai, K.; Tarnkehard, S. Patterns of sexual behavior in lowland Thai youth and ethnic minorities attending high school in rural Chiang Mai, Thailand. PLoS ONE 2016, 11, e0165866. [Google Scholar] [CrossRef]
- WHO European Review of Social Determinants of Health and the Health Divide. Available online: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(12)61228-8/fulltext (accessed on 4 August 2022).
Category | Other Wealth Index Quintiles (0) | The Lowest Wealth Index Quintile (1) | Chi2 (p-Value) | Univariate | Multivariate | Population Attributable Fraction: PAF | Different Pseudo R2 | |||
---|---|---|---|---|---|---|---|---|---|---|
No. (Column%) | No. (Column%) | No. (Column%) | OR (95%CI) | p Value | AOR (95%CI) | p Value | ||||
Poverty status (n = 35,393) | ||||||||||
Poorest: 10,054 (28.40%) | ||||||||||
Poor: 7953 (22.47%) | ||||||||||
Middle: 6861 (19.39%) | ||||||||||
Rich: 5847 (16.52%) | ||||||||||
Richest: 4678 (13.22%) | ||||||||||
Residential area (n = 35,393) | ||||||||||
Urban (municipal): 14,146 (39.97%) | 11,305 (44.62%) | 2841 (28.26%) | 802.70 (<0.001) * | Reference | Reference | 0.0026 | ||||
Rural (non-municipal): 21,247 (60.03%) | 14,034 (55.38%) | 7213 (71.74%) | 2.04 (1.94, 2.15) | <0.001 * | 1.38 (1.30, 1.46) | <0.001 * | 0.1960 | |||
Residential region (n = 35,391) | <0.001 * | <0.001 * | ||||||||
Bangkok (a): 3436 (9.71%) | 3014 (11.89%) | 422 (4.20%) | 892.99 (<0.001) * all are distinct ** | Reference | Reference | 0.0280 | ||||
Central (b): 8768 (24.77%) | 6647 (26.24%) | 2121 (21.10%) | 2.27 (2.03, 2.55) | <0.001 * | 1.49 (1.32, 1.69) | <0.001 * | 0.3862 | |||
Northern (c): 5452 (15.4%) | 3860 (15.23%) | 1592 (15.83%) | 2.94 (2.61, 3.31) | <0.001 * | 1.28 (1.12, 1.46) | <0.001 * | ||||
Northeastern (d): 10,734 (30.33%) | 6280 (24.78%) | 4454 (44.30%) | 5.06 (4.54, 5.64) | <0.001 * | 3.11 (2.75, 3.52) | <0.001 * | ||||
Southern (e): 7003 (19.79%) | 5538 (21.86%) | 1465 (14.57%) | 1.88 (1.68, 2.12) | <0.001 * | 0.82 (0.71, 0.94) | 0.005 * | ||||
Head of household language (n = 35,393) | ||||||||||
Thai: 32,018 (90.46%) | 23,627 (93.24%) | 8391 (83.46%) | 798.80 (<0.001) * | Reference | Reference | 0.0097 | ||||
Non-Thai: 3375 (9.54%) | 1712 (6.76%) | 1663 (16.54%) | 2.73 (2.54, 2.93) | <0.001 * | 2.90 (2.61, 3.22) | <0.001 * | 0.1081 | |||
Head of household religion (n = 35,393) | <0.001 * | <0.001 * | ||||||||
Buddhism (a): 31,735 (89.67%) | 22,836 (90.13%) | 8899 (88.51%) | 151.02 (<0.001) * a and b differ from d ** | Reference | Reference | 0.0007 | ||||
Islam (b): 3296 (9.31%) | 2345 (9.26%) | 951 (9.46%) | 1.04 (0.96, 1.12) | 0.324 | 1.13 (0.99, 1.29) | 0.062 | 0.0225 | |||
Christianity (c): 336 (0.95%) | 147 (0.58%) | 189 (1.88%) | 3.29 (2.65, 4.09) | <0.001 * | 1.76 (1.36, 2.28) | <0.001 * | ||||
Others (d): 9 (0.03%) | 6 (0.02%) | 3 (0.03%) | 1.28 (0.32, 5.13) | 0.725 | 2.38 (0.97, 5.86) | 0.058 | ||||
No religion (e): 15 (0.04%) | 3 (0.01%) | 12 (0.12%) | 10.2 (2.89, 36.3) | <0.001 * | 5.64 (1.40, 22.61) | 0.015 * | ||||
Head of household education (n = 35,367) | <0.001 * | <0.001 * | ||||||||
Kindergarten or none (a): 2254 (6.36%) | 883 (3.48%) | 1371 (13.65%) | 3600.00 (<0.001) * all are distinct ** | Reference | 0.1024 | 0.0778 | ||||
Primary (b): 20,950 (59.24%) | 13,670 (53.98%) | 7280 (72.51%) | 0.34 (0.31, 0.37) | <0.001 * | 0.38 (0.34, 0.42) | <0.001 * | Reference | |||
Lower Secondary (c): 3540 (10.01%) | 2822 (11.14%) | 718 (7.15%) | 0.16 (0.14, 0.18) | <0.001 * | 0.18 (0.16, 0.21) | <0.001 * | ||||
Upper Secondary (d): 4073 (11.52%) | 3540 (13.98%) | 533 (5.31%) | 0.09 (0.08, 0.10) | <0.001 * | 0.11 (0.09, 0.12) | <0.001 * | ||||
Higher (e): 4550 (12.87%) | 4411 (17.42%) | 139 (1.38%) | 0.02 (0.01, 0.02) | <0.001 * | 0.02 (0.02, 0.03) | <0.001 * | ||||
Head of household sex (n = 35,392) | ||||||||||
Male: 20,695 (58.47%) | 14,962 (59.05%) | 5733 (57.02%) | 12.19 (<0.001) * | Reference | 0.0648 | 0.0005 | ||||
Female: 14,697 (41.53%) | 10,376 (40.95%) | 4321 (42.98%) | 1.08 (1.03, 1.13) | <0.001 * | 0.89 (0.84, 0.94) | <0.001 * | Reference |
Category | Normal Height for Age (0) | Stunting (1) | Chi2 (p-Value) | Univariate | Multivariate | Population Attributable Fraction: PAF | Different Pseudo R2 | |||
---|---|---|---|---|---|---|---|---|---|---|
No. (Column%) | No. (Column%) | No. (Column%) | OR (95%CI) | p Value | AOR (95%CI) | p Value | ||||
Poverty status (n = 13,649) | <0.001 * | <0.001 * | ||||||||
Poorest (a): 3338 (24.46%) | 2805 (23.54%) | 533 (30.76%) | 57.13 (<0.001) * a differs from c,d,e ** | Reference | 0.0700 | 0.0021 | ||||
Poor (b): 3128 (22.91%) | 2717 (22.80%) | 411 (23.72%) | 0.79 (0.69, 0.91) | 0.001 * | 0.83 (0.71, 0.95) | 0.008 * | Reference | |||
Middle (c): 2888 (21.16%) | 2539 (21.31%) | 349 (20.13%) | 0.72 (0.62, 0.83) | <0.001 * | 0.76 (0.65, 0.88) | <0.001 * | ||||
Rich (d): 2489 (18.24%) | 2237 (18.77%) | 252 (14.54%) | 0.59 (0.50, 0.69) | <0.001 * | 0.68 (0.57, 0.81) | <0.001 * | ||||
Richest (e): 1806 (13.23%) | 1618 (13.58%) | 188 (10.85%) | 0.61 (0.51, 0.72) | <0.001 * | 0.78 (0.63, 0.97) | 0.026 * | ||||
Residential area (n = 13,649) | ||||||||||
Urban (municipal): 4674 (34.24%) | 4118 (34.56%) | 556 (32.08%) | 4.12 (0.042) * | Reference | 0.0038 | 0.0000 | ||||
Rural (non-municipal): 8975 (65.76%) | 7798 (65.44%) | 1177 (67.92%) | 1.11 (1.00, 1.24) | 0.043 * | 0.99 (0.88, 1.11) | 0.843 | Reference | |||
Residential region (n = 13,649) | <0.001 * | <0.001 * | ||||||||
Bangkok (a): 677 (4.96%) | 593 (4.98%) | 84 (4.85%) | 54.79 (<0.001) * b differs from c,d,e ** | Reference | 0.0074 | 0.0027 | ||||
Central (b): 3562 (26.10%) | 3222 (27.04%) | 340 (19.62%) | 0.74 (0.57, 0.96) | 0.023 * | 0.68 (0.52, 0.90) | 0.005* | Reference | |||
Northern (c): 2061 (15.10%) | 1774 (14.89%) | 287 (16.56%) | 1.14 (0.88, 1.48) | 0.317 | 1.00 (0.76, 1.33) | 0.977 | ||||
Northeastern (d): 4372 (32.03%) | 3809 (31.97%) | 563 (32.49%) | 1.04 (0.81, 1.33) | 0.734 | 0.92 (0.70, 1.20) | 0.532 | ||||
Southern (e): 2977 (21.81%) | 2518 (21.13%) | 459 (26.49%) | 1.28 (1.00, 1.65) | 0.047 * | 0.95 (0.72, 1.26) | 0.726 | ||||
Household leader’s language (n = 13,649) | ||||||||||
Thai: 12,213 (89.48%) | 10,760 (90.30%) | 1453 (83.84%) | 66.98 (<0.001) * | Reference | Reference | 0.0004 | ||||
Non-Thai: 1436 (10.52%) | 1156 (9.70%) | 280 (16.16%) | 1.79 (1.55, 2.06) | <0.001 * | 1.21 (1.01, 1.46) | 0.043 * | 0.0282 | |||
Household leader’s religion (n = 13,649) | <0.001 * | 0.007 * | ||||||||
Buddhism (a): 11,970 (87.71%) | 10,555 (88.59%) | 1415 (81.65%) | 68.32 (<0.001) * a differs from b ** | Reference | Reference | 0.0009 | ||||
Islam (b): 1526 (11.18%) | 1236 (10.37%) | 290 (16.73%) | 1.75 (1.52, 2.01) | <0.001 * | 1.39 (1.13, 1.71) | 0.002 * | 0.0484 | |||
Christianity (c): 149 (1.09%) | 121 (1.02%) | 28 (1.62%) | 1.72 (1.14, 2.61) | 0.010 * | 1.25 (0.81, 1.92) | 0.310 | ||||
Others (d): 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | ||||||||
No religion (e): 2 (0.01%) | 2 (0.02%) | 0 (0.00%) | ||||||||
Household leader’s education (n = 13,649) | <0.001 * | 0.097 | ||||||||
Kindergarten or none (a): 737 (5.41%) | 602 (5.06%) | 135 (7.79%) | 36.91 (<0.001) * a differs from b,d,e and b differs from e ** | Reference | 0.0144 | 0.0008 | ||||
Primary (b): 8080 (59.25%) | 7044 (59.16%) | 1036 (59.82%) | 0.65 (0.53, 0.79) | <0.001 * | 0.83 (0.65, 1.05) | 0.128 | Reference | |||
Lower Secondary (c): 1574 (11.54%) | 1363 (11.45%) | 211 (12.18%) | 0.69 (0.54, 0.87) | 0.002 * | 0.83 (0.63, 1.10) | 0.194 | ||||
Upper Secondary (d): 1738 (12.74%) | 1531 (12.86%) | 207 (11.95%) | 0.60 (0.47, 0.76) | <0.001 * | 0.74 (0.56, 0.98) | 0.035 * | ||||
Higher (e): 1509 (11.06%) | 1366 (11.47%) | 143 (8.26%) | 0.46 (0.36, 0.60) | <0.001 * | 0.66 (0.49, 0.91) | 0.010* | ||||
Maternal education (n = 13,649) | <0.001 * | 0.290 | ||||||||
Kindergarten or none (a): 463 (3.39%) | 386 (3.24%) | 77 (4.44%) | 25.97 (<0.001) * a and c differ from e ** | Reference | Reference | 0.0005 | ||||
Primary (b): 4221 (30.94%) | 3671 (30.82%) | 550 (31.74%) | 0.75 (0.57, 0.97) | 0.031 * | 0.98 (0.73, 1.35) | 0.946 | 0.0388 | |||
Lower Secondary (c): 2684 (19.67%) | 2307 (19.37%) | 377 (21.75%) | 0.81 (0.62, 1.07) | 0.144 | 1.14 (0.83, 1.56) | 0.428 | ||||
Upper Secondary (d): 3104 (22.75%) | 2706 (22.72%) | 398 (22.97%) | 0.73 (0.56, 0.96) | 0.025 * | 1.09 (0.79, 1.50) | 0.597 | ||||
Higher (e): 3172 (23.25%) | 2841 (23.85%) | 331 (19.10%) | 0.58 (0.44, 0.76) | <0.001 * | 0.97 (0.69, 1.35) | 0.842 | ||||
Sex (n = 13,649) | ||||||||||
Male: 7012 (51.37%) | 6094 (51.14%) | 918 (52.97%) | 2.03 (0.154) | Reference | 0.0383 | 0.0002 | ||||
Female: 6637 (48.63%) | 5822 (48.86%) | 815 (47.03%) | 0.92 (0.84, 1.02) | 0.154 | Reference |
Category | Non-Low Birth Weight (0) | Low Birth Weight (1) | Chi2 (p Value) | Univariate | Multivariate | Population Attributable Fraction: PAF | Different Pseudo R2 | |||
---|---|---|---|---|---|---|---|---|---|---|
No. (Column%) | No. (Column%) | No. (Column%) | OR (95%CI) | p Value | AOR (95%CI) | p Value | ||||
Poverty status (n = 11,510) | 0.002 * | 0.022 * | ||||||||
Poorest (a): 2907 (25.26%) | 2589 (24.88%) | 318 (28.83%) | 16.49 (0.002) * a differs from e ** | Reference | 0.0437 | 0.0016 | ||||
Poor (b): 2692 (23.39%) | 2412 (23.18%) | 280 (25.39%) | 0.94 (0.79, 1.12) | 0.518 | 0.95 (0.80, 1.13) | 0.538 | Reference | |||
Middle (c): 2438 (21.18%) | 2225 (21.38%) | 213 (19.31%) | 0.77 (0.64, 0.93) | 0.007 * | 0.78 (0.64, 0.4) | 0.011 * | ||||
Rich (d): 2070 (17.98%) | 1903 (18.29%) | 167 (15.14%) | 0.71 (0.58, 0.86) | 0.001 * | 0.74 (0.59, 0.92) | 0.006 * | ||||
Richest (e): 1403 (12.19%) | 1278 (12.28%) | 125 (11.33%) | 0.79 (0.64, 0.99) | 0.040 * | 0.88 (0.67, 1.15) | 0.348 | ||||
Residential area (n = 11,510) | ||||||||||
Urban (municipal): 3789 (32.92%) | 3442 (33.07%) | 347 (31.46%) | 1.18 (0.278) | Reference | Reference | 0.0000 | ||||
Rural (non-municipal): 7721 (67.08%) | 6965 (66.93%) | 756 (68.54%) | 1.07 (0.94, 1.23) | 0.276 | 0.0322 | |||||
Residential region (n = 11,510) | 0.484 | |||||||||
Bangkok (a): 458 (3.98%) | 415 (3.99%) | 43 (3.90%) | 3.48 (0.481) | Reference | 0.0012 | 0.0003 | ||||
Central (b): 2936 (25.51%) | 2674 (25.69%) | 262 (23.75%) | 0.94 (0.67, 1.32) | 0.745 | Reference | |||||
Northern (c): 1770 (15.38%) | 1606 (15.43%) | 164 (14.87%) | 0.98 (0.69, 1.40) | 0.936 | ||||||
Northeastern (d): 3918 (34.04%) | 3518 (33.80%) | 400 (36.26%) | 1.09 (0.78, 1.52) | 0.584 | ||||||
Southern (e): 2428 (21.09%) | 2194 (21.08%) | 234 (21.21%) | 1.02 (0.73, 1.44) | 0.870 | ||||||
Household leader’s language (n = 11,510) | ||||||||||
Thai: 10,361 (90.02%) | 9361 (89.95%) | 1000 (90.66%) | 0.56 (0.453) | Reference | 0.2135 | 0.0005 | ||||
Non-Thai: 1149 (9.98%) | 1046 (10.05%) | 103 (9.34%) | 0.92 (0.74, 1.14) | 0.455 | Reference | |||||
Household leader’s religion (n = 11,508) | 0.445 | |||||||||
Buddhism (a): 10,152 (88.22%) | 9187 (88.29%) | 965 (87.49%) | 3.02 (0.388) | Reference | Reference | 0.0003 | ||||
Islam (b): 1215 (10.56%) | 1096 (10.53%) | 119 (10.79%) | 1.03 (0.84, 1.26) | 0.744 | 0.0199 | |||||
Christianity (c): 139 (1.21%) | 120 (1.15%) | 19 (1.72%) | 1.49 (0.91, 2.43) | 0.106 | ||||||
Others (d): 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | ||||||||
No religion (e): 2 (0.02%) | 2 (0.02%) | 0 (0.00%) | ||||||||
Household leader’s education (n = 11,502) | 0.308 | |||||||||
Kindergarten or none (a): 600 (5.22%) | 535 (5.14%) | 65 (9.50%) | 4.85 (0.303) | Reference | 0.0084 | 0.0002 | ||||
Primary (b): 65,958 (60.49%) | 6218 (60.39%) | 677 (61.43%) | 0.88 (0.67, 1.16) | 0.390 | Reference | |||||
Lower Secondary (c): 1312 (11.41%) | 1181 (11.36%) | 131 (11.89%) | 0.91 (0.66, 1.25) | 0.578 | ||||||
Upper Secondary (d): 1443 (12.55%) | 1310 (12.60%) | 133 (12.07%) | 0.83 (0.61, 1.14) | 0.264 | ||||||
Higher (e): 1189 (10.34%) | 1093 (10.51%) | 96 (8.71%) | 0.72 (0.51, 1.00) | 0.056 | ||||||
Maternal education (n = 11,507) | 0.019 * | 0.066 | ||||||||
Kindergarten or none (a): 368 (3.20%) | 333 (3.20%) | 35 (3.17%) | 13.18 (0.01) * b differs from d ** | Reference | Reference 0.0854 | 0.0012 | ||||
Primary (b): 3620 (31.46%) | 3254 (31.28%) | 366 (33.18%) | 1.06 (0.74, 1.54) | 0.718 | 1.07 (0.71, 1.63) | 0.727 | 0.0433 | |||
Lower Secondary (c): 2251 (19.56%) | 2010 (19.32%) | 241 (21.85%) | 1.14 (0.78, 1.65) | 0.491 | 1.12 (0.73, 1.70) | 0.607 | ||||
Upper Secondary (d): 2677 (23.26%) | 2420 (23.26%) | 257 (23.30%) | 1.01 (0.69, 1.46) | 0.956 | 1.01 (0.66, 1.54) | 0.969 | ||||
Higher (e): 2591 (22.52%) | 2387 (22.94%) | 204 (18.50%) | 0.81 (0.55, 1.18) | 0.280 | 0.80 (0.52, 1.25) | 0.328 | ||||
Sex (n = 11,510) | ||||||||||
Male: 5943 (51.63%) | 5424 (52.12%) | 519 (47.05%) | 10.25 (0.001) * | Reference | Reference | 0.0014 | ||||
Female: 5567 (48.37%) | 4983 (47.88%) | 584 (52.95%) | 1.22 (1.08, 1.38) | 0.001 * | 1.23 (1.08, 1.39) | 0.001 * | 0.0999 |
Category | Non-Adolescent Birth (0) | Adolescent Birth (1) | Chi2 (p Value) | Univariate | Multivariate | Population Attributable Fraction: PAF | Different Pseudo R2 | |||
---|---|---|---|---|---|---|---|---|---|---|
No. (Column%) | No. (Column%) | No. (Column%) | OR (95%CI) | p Value | AOR (95%CI) | p Value | ||||
Poverty status (n = 2847) | <0.001 * | 0.225 | ||||||||
Poorest (a): 656 (23.04%) | 520 (21.16%) | 136 (34.96%) | 46.05 (<0.001) * a differs from c,d,e ** | Reference | Reference | 0.0042 | ||||
Poor (b): 726 (25.50%) | 621 (25.26%) | 105 (26.99%) | 0.64 (0.48, 0.85) | 0.002 * | 0.99 (0.61, 1.61) | 0.965 | 0.0200 | |||
Middle (c): 605 (21.25%) | 537 (21.85%) | 68 (17.48%) | 0.48 (0.35, 0.66) | <0.001 * | 0.92 (0.52, 1.60) | 0.759 | ||||
Rich (d): 484 (17.00%) | 434 (17.66%) | 50 (12.85%) | 0.44 (0.31, 0.62) | <0.001 * | 1.76 (0.93, 3.31) | 0.081 | ||||
Richest (e): 376 (13.21%) | 346 (14.07%) | 30 (7.72%) | 0.33 (0.21, 0.50) | <0.001 * | 0.75 (0.35, 1.63) | 0.466 | ||||
Residential area (n = 2847) | ||||||||||
Urban (municipal): 1051 (36.92%) | 921 (37.47%) | 130 (33.42%) | 2.37 (0.124) | Reference | Reference | 0.0001 | ||||
Rural (non-municipal): 1796 (63.08%) | 1537 (62.53%) | 259 (66.58%) | 1.19 (0.95, 1.49) | 0.124 | 0.01164 | |||||
Residential region (n = 2847) | <0.001 * | 0.517 | ||||||||
Bangkok (a): 223 (7.83%) | 203 (8.26%) | 20 (5.14%) | 25.12 (<0.001) * b differs from a,e ** | Reference | Reference | 0.0027 | ||||
Central (b): 746 (26.20%) | 607 (24.69%) | 139 (35.73%) | 2.32 (1.41, 3.81) | 0.001 * | 1.32 (0.61, 2.83) | 0.480 | 0.1067 | |||
Northern (c): 374 (13.14%) | 322 (13.10%) | 52 (13.37%) | 1.63 (0.95, 2.82) | 0.075 | 1.39 (0.56, 3.46) | 0.485 | ||||
Northeastern (d): 821 (28.84%) | 717 (29.17%) | 104 (26.74%) | 1.47 (0.89, 2.43) | 0.132 | 0.98 (0.43, 2.23) | 0.957 | ||||
Southern (e): 683 (23.99%) | 609 (24.78%) | 74 (19.02%) | 1.23 (0.73, 2.07) | 0.428 | 1.80 (0.30, 2.12) | 0.653 | ||||
Household leader’s language (n = 2847) | ||||||||||
Thai: 2461 (86.44%) | 2103 (85.56%) | 358 (92.03%) | 12.01 (0.001) * | Reference | 0.2475 | 0.0005 | ||||
Non-Thai: 386 (13.56%) | 355 (14.44%) | 31 (7.97%) | 0.51 (0.34, 0.75) | 0.001 * | 0.73 (0.33, 1.61) | 0.434 | Reference | |||
Household leader’s religion (n = 2847) | 0.002 * | 0.748 | ||||||||
Buddhism (a): 2380 (83.60%) | 2031 (82.63%) | 349 (89.72%) | 21.68 (<0.001) * a differs from b ** | Reference | 0.2152 | 0.0000 | ||||
Islam (b): 438 (15.38%) | 404 (16.43%) | 34 (8.73%) | 0.48 (0.33, 0.70) | <0.001 * | 0.72 (0.26, 1.87) | 0.499 | Reference | |||
Christianity (c): 28 (0.98%) | 23 (0.94%) | 5 (1.29%) | 1.26 (0.47, 3.34) | 0.636 | 0.69 (0.10, 4.56) | 0.698 | ||||
Others (d): 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | ||||||||
No religion (e): 1 (0.04%) | 0 (0.00%) | 1 (0.26%) | ||||||||
Household leader’s education (n = 2847) | <0.001 * | 0.059 | ||||||||
Kindergarten or none (a): 181 (6.36%) | 162 (6.60%) | 19 (4.88%) | 26.77 (<0.001) * b differs from e ** | Reference | Reference | 0.0062 | ||||
Primary (b): 1710 (60.11%) | 1437 (58.51%) | 273 (70.18%) | 1.61 (0.98, 2.65) | 0.055 | 2.98 (1.28, 6.95) | 0.011 * | 0.6036 | |||
Lower Secondary (c): 342 (12.01%) | 299 (12.17%) | 43 (11.06%) | 1.22 (0.69, 2.17) | 0.485 | 1.80 (0.67, 4.87) | 0.244 | ||||
Upper Secondary (d): 370 (13.01%) | 328 (13.36%) | 42 (10.8%) | 1.09 (0.61, 1.93) | 0.764 | 2.76 (1.04, 7.33) | 0.041 * | ||||
Higher (e): 242 (8.51%) | 230 (9.36%) | 12 (3.08%) | 0.44 (0.21, 0.94) | 0.034* | 2.12 (0.65, 6.88) | 0.213 | ||||
Education of Adolescent Mother (n = 2847) | <0.001 * | <0.001 * | ||||||||
Kindergarten or none (a): 14 (0.49%) | 10 (0.41%) | 4 (1.04%) | 378.95 (<0.001) * b differs from c,d,e and c differs from d,e ** | Reference | 0.0051 | 0.0920 | ||||
Primary (b): 158 (5.55%) | 81 (3.30%) | 77 (19.79%) | 2.37 (0.71, 7.89) | 0.158 | 1.01 (0.25, 4.15) | 0.987 | Reference | |||
Lower Secondary (c): 762 (26.78%) | 561 (22.83%) | 201 (51.67%) | 0.89 (0.27, 2.88) | 0.854 | 0.54 (0.13, 2.21) | 0.389 | ||||
Upper Secondary (d): 1690 (59.38%) | 1589 (64.67%) | 101 (25.96%) | 0.15 (0.04, 0.51) | 0.002 * | 0.09 (0.02, 0.38) | 0.001 * | ||||
Higher (e): 222 (7.80%) | 216 (8.79%) | 6 (1.54%) | 0.06 (0.01, 0.28) | <0.001 * | 0.01 (0.00, 0.15) | 0.001 * |
Category | Non-Early Marriage (0) | Early Marriage (1) | Chi2 (p Value) | Univariate | Multivariate | Population Attributable Fraction: PAF | Different Pseudo R2 | |||
---|---|---|---|---|---|---|---|---|---|---|
No. (Column%) | No. (Column%) | No. (Column%) | OR (95%CI) | p Value | AOR (95%CI) | p Value | ||||
Poverty status (n = 2953) | <0.001 * | 0.772 | ||||||||
Poorest (a): 648 (21.94%) | 581 (21.12%) | 67 (33.33%) | 26.70 (<0.001) * a differs from e ** | Reference | Reference | 0.0020 | ||||
Poor (b): 692 (23.43%) | 649 (23.58%) | 43 (21.39%) | 0.57 (0.38, 0.85) | 0.006 * | 0.94 (0.54, 1.62) | 0.817 | 0.0181 | |||
Middle (c): 662 (22.42%) | 616 (22.38%) | 46 (22.89%) | 0.64 (0.43, 0.95) | 0.030 * | 1.02 (0.57, 1.84) | 0.947 | ||||
Rich (d): 591 (20.02%) | 553 (20.09%) | 38 (18.91%) | 0.59 (0.39, 0.90) | 0.014 * | 1.31 (0.71, 2.42) | 0.393 | ||||
Richest (e): 360 (12.19%) | 353 (12.83%) | 7 (3.48%) | 0.17 (0.07, 0.37) | <0.001 * | 0.77 (0.28, 2.09) | 0.605 | ||||
Residential area (n = 2953) | ||||||||||
Urban (municipal): 1171 (39.65%) | 1088 (39.53%) | 83 (41.29%) | 0.24 (0.623) | Reference | 0.1375 | 0.0033 | ||||
Rural (non-municipal): 1782 (60.35%) | 1664 (60.47%) | 118 (58.71%) | 0.92 (0.69, 1.24) | 0.623 | Reference | |||||
Residential region (n = 2953) | <0.001 * | 0.022 * | ||||||||
Bangkok (a): 296 (10.02%) | 281 (10.21%) | 15 (7.46%) | 20.83 (<0.001) * b differs from e ** | Reference | Reference | 0.0187 | ||||
Central (b): 848 (28.72%) | 766 (27.83%) | 82 (40.80%) | 2.00 (1.13, 3.53) | 0.016 * | 1.72 (0.80, 3.70) | 0.163 | 0.2143 | |||
Northern (c): 421 (14.26%) | 389 (14.14%) | 32 (15.92%) | 1.54 (0.81, 2.89) | 0.180 | 1.62 (0.68, 3.87) | 0.273 | ||||
Northeastern (d): 711 (24.08%) | 667 (24.24%) | 44 (21.89%) | 1.23 (0.67, 2.25) | 0.491 | 0.74 (0.32, 1.73) | 0.489 | ||||
Southern (e): 677 (22.93%) | 649 (23.58%) | 28 (13.93%) | 0.80 (0.42, 1.53) | 0.516 | 0.84 (0.33, 2.14) | 0.719 | ||||
Household leader’s language (n = 2953) | ||||||||||
Thai: 2538 (85.95%) | 2355 (85.57%) | 183 (91.04%) | 4.64 (0.031) * | Reference | 0.4929 | 0.0045 | ||||
Non-Thai: 415 (14.05%) | 397 (14.43%) | 18 (8.96%) | 0.58 (0.35, 0.95) | 0.033 * | 0.45 (0.21, 0.96) | 0.040 * | Reference | |||
Household leader’s religion (n = 2953) | 0.118 | |||||||||
Buddhism (a): 2511 (85.03%) | 2328 (84.59%) | 183 (91.04%) | 6.20 (0.102) | Reference | Reference | 0.0004 | ||||
Islam (b): 411 (13.92%) | 394 (14.32%) | 17 (8.46%) | 0.54 (0.33, 0.91) | 0.021 | 0.0009 | |||||
Christianity (c): 29 (0.98%) | 28 (1.02%) | 1 (0.50%) | 0.45 (0.06, 3.35) | 0.440 | ||||||
Others (d): 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | ||||||||
No religion (e): 2 (0.07%) | 2 (0.07%) | 0 (0.00%) | ||||||||
Household leader’s education (n = 2949) | 0.085 | |||||||||
Kindergarten or none (a): 186 (6.31%) | 173 (6.30%) | 13 (6.47%) | 8.49 (0.075) | Reference | Reference | 0.0018 | ||||
Primary (b): 1676 (56.83%) | 1550 (56.40%) | 126 (62.69%) | 1.08 (0.59, 1.95) | 0.795 | 0.1320 | |||||
Lower Secondary (c): 397 (13.46%) | 366 (13.31%) | 31 (15.42%) | 1.12 (0.57, 2.20) | 0.727 | ||||||
Upper Secondary (d): 384 (13.02%) | 364 (13.25%) | 20 (9.95%) | 0.73 (0.35, 1.50) | 0.395 | ||||||
Higher (e): 306 (10.38%) | 295 (10.74%) | 11 (5.47%) | 0.49 (0.21, 1.13) | 0.096 | ||||||
Education of Adolescent Mother (n = 2952) | <0.001 * | <0.001 * | ||||||||
Kindergarten or none (a): 52 (1.76%) | 46 (1.67%) | 6 (2.99%) | 143.16 (<0.001) * d differs from b,c and e differs from b,c,d ** | Reference | 0.0251 | 0.0661 | ||||
Primary (b): 235 (7.96%) | 194 (7.05%) | 41 (20.40%) | 1.62 (0.64, 4.04) | 0.301 | 0.84 (0.23, 3.07) | 0.792 | Reference | |||
Lower Secondary (c): 780 (26.42%) | 681 (24.75%) | 99 (49.25%) | 1.11 (0.46, 2.67) | 0.808 | 0.43 (0.12, 1.57) | 0.203 | ||||
Upper Secondary (d): 1000 (33.88%) | 952 (34.61%) | 48 (23.88%) | 0.38 (0.15, 0.94) | 0.038 * | 0.21 (0.06, 0.78) | 0.019 * | ||||
Higher (e): 885 (29.98%) | 878 (31.92%) | 7 (3.48%) | 0.06 (0.01, 0.18) | <0.001 * | 0.02 (0.00, 0.12) | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waleewong, O.; Yueayai, K. Patterns of Socioeconomic Inequities in SDGs Relating to Children’s Well-Being in Thailand and Policy Implications. Int. J. Environ. Res. Public Health 2022, 19, 13626. https://doi.org/10.3390/ijerph192013626
Waleewong O, Yueayai K. Patterns of Socioeconomic Inequities in SDGs Relating to Children’s Well-Being in Thailand and Policy Implications. International Journal of Environmental Research and Public Health. 2022; 19(20):13626. https://doi.org/10.3390/ijerph192013626
Chicago/Turabian StyleWaleewong, Orratai, and Khanuengnij Yueayai. 2022. "Patterns of Socioeconomic Inequities in SDGs Relating to Children’s Well-Being in Thailand and Policy Implications" International Journal of Environmental Research and Public Health 19, no. 20: 13626. https://doi.org/10.3390/ijerph192013626
APA StyleWaleewong, O., & Yueayai, K. (2022). Patterns of Socioeconomic Inequities in SDGs Relating to Children’s Well-Being in Thailand and Policy Implications. International Journal of Environmental Research and Public Health, 19(20), 13626. https://doi.org/10.3390/ijerph192013626