Preparation of Alkali Activated Cementitious Material by Upgraded Fly Ash from MSW Incineration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Upgrading Methods
2.2.1. Low-Temperature Calcination
2.2.2. Alkaline Washing
2.3. AACMs Preparation
2.3.1. Preparation of Alkali Activator
2.3.2. Preparation Steps of AACMs
2.4. Testing and Characterization
3. Results and Discussion
3.1. Dioxins Removal by Low-Temperature Calcination
3.1.1. Effect on Dioxins Removal
3.1.2. Effect on Crystalline Phase Change
3.2. Chlorides Removal and Calcium Retention by Alkaline Washing
3.2.1. Effect on Chlorides Removal and Calcium Retention
3.2.2. Effect on Major Components
3.2.3. Heavy Metals Migration during Washing
3.3. Performance of Prepared AACM Blocks
3.3.1. Effect of Ashes on Setting Time of AACM Blocks
3.3.2. Effect of Ashes on Compressive Strength of AACM Blocks
3.3.3. Effect on Heavy Metals Stabilization and Solidification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Tang, B.; Liu, R.; Xu, Z.; Xu, P.; Zhou, Q.; Wen, Y.; Zhong, C. Characteristics of MSWI fly ash and its resource transformation by road engineering: Mechanical and environmental considerations. Constr. Build. Mater. 2022, 323, 126575. [Google Scholar] [CrossRef]
- del Valle-Zermeño, R.; Formosa, J.; Chimenos, J.M.; Martínez, M.; Fernández, A.I. Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material. Waste Manag. 2013, 33, 621–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, W.; Chen, D.; Pan, M.; Gu, T.; Zhong, L.; Chen, G.; Yan, B.; Cheng, Z. Performance of chemical chelating agent stabilization and cement solidification on heavy metals in MSWI fly ash: A comparative study. J. Environ. Manag. 2019, 247, 169–177. [Google Scholar] [CrossRef]
- Du, B.; Li, J.; Fang, W.; Liu, J. Comparison of long-term stability under natural ageing between cement solidified and chelator-stabilised MSWI fly ash. Environ. Pollut. 2019, 250, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Jiang, J.; Zheng, R.; Yu, C.; Zhou, Z.; Hantoko, D. Experimental study on the washing characteristics of fly ash from municipal solid waste incineration. Waste Manag. Res. 2021, 40, 1212–1219. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Liu, S.; Yao, R.; Chen, S.; Gao, J.; Shimaoka, T. Removal of harmful components from MSWI fly ash as a pretreatment approach to enhance waste recycling. Waste Manag. 2022, 150, 110–121. [Google Scholar] [CrossRef]
- Yang, K.; Zhong, M.; Magee, B.; Yang, C.; Wang, C.; Zhu, X.; Zhang, Z. Investigation of effects of Portland cement fineness and alkali content on concrete plastic shrinkage cracking. Constr. Build. Mater. 2017, 144, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Zhang, Z.; Shi, C.; Li, N.; Jiao, D.; Yuan, Q. Rheology of alkali-activated materials: A review. Cem. Concr. Compos. 2021, 121, 104061. [Google Scholar] [CrossRef]
- Li, X.; Yu, L.; Zhou, H.; Huang, G.; Yang, C.; Wu, F.; Zhang, Y. An environment-friendly pretreatment process of municipal solid waste incineration fly ash to enhance the immobilization efficiency by alkali-activated slag cement. J. Clean. Prod. 2021, 290, 125728. [Google Scholar] [CrossRef]
- Li, Z.; Kondoa, R.; Ikeda, K. Development of Foamed Geopolymer with Addition of Municipal Solid Waste Incineration Fly Ash. J. Adv. Concr. Technol. 2021, 19, 830–846. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, B.; Chang, J.; Fan, C.; Liu, Z. Effect of zeolite contents on mineral evolution and heavy metal solidification in alkali-activated MSWI fly ash specimens. Constr. Build. Mater. 2022, 345, 128309. [Google Scholar] [CrossRef]
- Lan, T.; Meng, Y.; Ju, T.; Chen, Z.; Du, Y.; Deng, Y.; Song, M.; Han, S.; Jiang, J. Synthesis and application of geopolymers from municipal waste incineration fly ash (MSWI FA) as raw ingredient—A review. Resour. Conserv. Recycl. 2022, 182, 106308. [Google Scholar] [CrossRef]
- Liu, J.; Hu, L.; Tang, L.; Ren, J. Utilisation of municipal solid waste incinerator (MSWI) fly ash with metakaolin for preparation of alkali-activated cementitious material. J. Hazard. Mater. 2021, 402, 123451. [Google Scholar] [CrossRef]
- Ren, J.; Hu, L.; Dong, Z.; Tang, L.; Xing, F.; Liu, J. Effect of silica fume on the mechanical property and hydration characteristic of alkali-activated municipal solid waste incinerator (MSWI) fly ash. J. Clean. Prod. 2021, 295, 126317. [Google Scholar] [CrossRef]
- Tahri, W.; Hu, X.; Shi, C.; Zhang, Z. Review on corrosion of steel reinforcement in alkali-activated concretes in chloride-containing environments. Constr. Build. Mater. 2021, 293, 123484. [Google Scholar] [CrossRef]
- Ghadir, P.; Razeghi, H.R. Effects of sodium chloride on the mechanical strength of alkali activated volcanic ash and slag pastes under room and elevated temperatures. Constr. Build. Mater. 2022, 344, 128113. [Google Scholar] [CrossRef]
- Song, G.-J.; Kim, S.H.; Seo, Y.-C.; Kim, S.-C. Dechlorination and destruction of PCDDs/PCDFs in fly ashes from municipal solid waste incinerators by low temperature thermal treatment. Chemosphere 2008, 71, 248–257. [Google Scholar] [CrossRef]
- Chang, M.B.; Huang, T.F. The effects of temperature and oxygen content on the PCDD/PCDFs formation in MSW fly ash. Chemosphere 2000, 40, 159–164. [Google Scholar] [CrossRef]
- Yan, J.; Chen, T.; Lu, S.; Li, X.; Gu, Y.; Cen, K. Experimental study on low temperature thermal treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in fly ash. Front. Energy Power Eng. China 2007, 1, 280–284. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer Chemistry & Application; Institut Géopolymère: Saint-Quentin, France, 2011; pp. 12–22. [Google Scholar]
- Guo, X.; Zhang, T. Utilization of municipal solid waste incineration fly ash to produce autoclaved and modified wall blocks. J. Clean. Prod. 2020, 252, 119759. [Google Scholar] [CrossRef]
- GB/T1346-2011; Test Methods for Water Requirement of Normal Consistency Setting Time and Soundness of the Portland Cement. National Standardization Technical Committee of Cement: Beijing, China, 2011.
- GB/T 5101-2107; Fired Common Bricks. National Wall Roofing and Road Building Materials Standardization Technical Committee: Beijing, China, 2017.
- Yang, J.; Yan, M.; Li, X.; Chen, T.; Lu, S.; Yan, J.; Buekens, A. Influence of temperature and atmosphere on polychlorinated dibenzo-p-dioxins and dibenzofurans desorption from waste incineration fly ash. Environ. Technol. 2015, 36, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Wang, W. Formation and Stabilization of the Product of the Reaction of Ca(OH)2 and CaCl2. Master’s Thesis, National Taiwan University, New Taipei, Taiwan, 2010. [Google Scholar]
- Allal, K.M.; Dolignier, J.C.; Martin, G. Reaction Mechanism of Calcium Hydroxide with Gaseous Hydrogen Chloride. Oil Gas Sci. Technol. 1998, 53, 871–880. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Wang, S.; Samo, I.A.; Zhang, X.; Wang, Z.; Wang, C.; Li, Y.; Du, Y.; Zhong, Y.; Cheng, C.; et al. Common-Ion Effect Triggered Highly Sustained Seawater Electrolysis with Additional NaCl Production. Research 2020, 2020, 2872141. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; Wang, J.; Li, Z. Measurement and modelling of solubility for calcium sulfate dihydrate and calcium hydroxide in NaOH/KOH solutions. Fluid Phase Equilibria 2010, 297, 129–137. [Google Scholar] [CrossRef]
- Jin, M.; Zheng, Z.; Sun, Y.; Chen, L.; Jin, Z. Resistance of metakaolin-MSWI fly ash based geopolymer to acid and alkaline environments. J. Non-Cryst. Solids 2016, 450, 116–122. [Google Scholar] [CrossRef]
- Li, Y.; Min, X.; Ke, Y.; Liu, D.; Tang, C. Preparation of red mud-based geopolymer materials from MSWI fly ash and red mud by mechanical activation. Waste Manag. 2019, 83, 202–208. [Google Scholar] [CrossRef]
- Na, O.; Kim, K.; Lee, H.; Lee, H. Printability and Setting Time of CSA Cement with Na2SiO3 and Gypsum for Binder Jetting 3D Printing. Materials 2021, 14, 2811. [Google Scholar] [CrossRef]
- Huang, G.; Li, Y.; Zhang, Y.; Zhu, J.; Li, D.; Wang, B. Effect of Sodium Hydroxide, Liquid Sodium Silicate, Calcium Hydroxide, and Slag on the Mechanical Properties and Mineral Crystal Structure Evolution of Polymer Materials. Crystals 2021, 11, 1586. [Google Scholar] [CrossRef]
- Li, X.; Yu, Z.; Ma, B.; Wu, B. Effect of MSWI fly ash and incineration residues on cement performances. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2010, 25, 312–315. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhang, J.S.; Han, B. Analysis of Factors Affecting the Bonding Characteristics of Sodium Silicate Calcium Chloride. Zhongzhou Coal 2012, 2, 5–7. [Google Scholar]
- Zhu, F.; Takaoka, M.; Shiota, K.; Oshita, K.; Kitajima, Y. Chloride chemical form in various types of fly ash. Environ. Sci. Technol. 2008, 42, 3932–3937. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.; Ling, T.C. Roles of chlorine and sulphate in MSWIFA in GGBFS binder: Hydration, mechanical properties and stabilization considerations. Environ. Pollut. 2021, 284, 117175. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, D.; Li, Q. Effects of Activator on Compressive Strength of Fly Ash-Based Geopolymers. Build. Mater. 2007, 10, 214–218. [Google Scholar]
- Wan, Q.; Rao, F.; Song, S.; García, R.E.; Estrella, R.M.; Patiño, C.L.; Zhang, Y. Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios. Cem. Concr. Compos. 2017, 79, 45–52. [Google Scholar] [CrossRef]
- Raju, K.; Ravindhar, D.S. Multiple categories of bricks used for construction—A Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 993, 012122. [Google Scholar] [CrossRef]
- Wei, W.; Gao, Y.; Chen, Z.; Zhu, W.; Zhu, Z. Experimental study on the ratio of geopolymer of low calcium fly ash excited by alkali at room temperature. Bull. Silic. 2020, 39, 3889–3896. [Google Scholar] [CrossRef]
- HJ/T 299-2007; Solid Waste-Extraction Procedure for Leaching Toxicity-Sulphuric Acid & Nitric Acid-Method. State Environmental Protection Administration: Beijing, China, 2007.
- GB18598-2019; Standard for Pollution Control on the Hazardous Waste Landfill “Identification Standard of Hazardous Waste”. China Environmental Science Press: Beijing, China, 2020.
CaO | Cl | SO3 | K2O | Na2O | Fe2O3 | SiO2 | Al2O3 | MgO | Other | |
---|---|---|---|---|---|---|---|---|---|---|
MSWI-FA | 45.7 | 22.5 | 9.7 | 6.7 | 7.2 | 1.3 | 2.4 | 1.0 | 0.9 | 2.2 |
PCC-FA | 4.0 | 0 | 0.7 | 2.0 | 0.9 | 4.2 | 54.0 | 31.1 | 1.0 | 2.1 |
Group | The Composition of AACM | ||
---|---|---|---|
Alkali Activator Modulus (A) | Silica Fume Addition/% (B) | AW-MSWI Fly Ash Addition/% (C) | |
PSM1 | 1.2 | 5 | 10 |
PSM2 | 1.2 | 10 | 20 |
PSM3 | 1.2 | 15 | 30 |
PSM4 | 1.4 | 5 | 20 |
PSM5 | 1.4 | 10 | 30 |
PSM6 | 1.4 | 15 | 10 |
PSM7 | 1.6 | 5 | 30 |
PSM8 | 1.6 | 10 | 10 |
PSM9 | 1.6 | 15 | 20 |
Group | Alkali Activator Modulus | Composition |
---|---|---|
PC1 | 1.2 | PCC-FA |
PC2 | 1.4 | |
PC3 | 1.6 | |
SF1 | 1.4 | PPC-FA:SF = 95:5 |
SF2 | PPC-FA:SF = 80:10 | |
SF3 | PPC-FA:SF = 85:15 |
Species | TEF | MSWI Fly Ash | Calcined Ash | Removal Fraction | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Concentration | TEQ | Concentration | TEQ | ||||||||
ng/kg | % | ng/kg | % | ng/kg | % | ng/kg | % | % | |||
PCDFs | 2,3,7,8- T4CDF | 0.1 | 69.0 | 7.1 | 6.9 | 7.4 | 5.3 | 11.2 | 0.5 | 8.1 | 92.3 |
1,2,3,7,8- P5CDF | 0.05 | 89.0 | 9.1 | 4.5 | 4.8 | 5.3 | 11.2 | 0.3 | 4.1 | 94.0 | |
2,3,4,7,8- P5CDF | 0.5 | 74.0 | 7.6 | 37.0 | 39.6 | 7.2 | 15.2 | 3.6 | 55.3 | 90.3 | |
1,2,3,4,7,8- H6CDF | 0.1 | 56.0 | 5.7 | 5.6 | 6.0 | 3.9 | 8.2 | 0.4 | 6.0 | 93.0 | |
1,2,3,6,7,8- H6CDF | 0.1 | 64.0 | 6.5 | 6.4 | 6.8 | 3.7 | 7.8 | 0.4 | 5.7 | 94.2 | |
2,3,4,6,7,8- H6CDF | 0.1 | 46.0 | 4.7 | 4.6 | 4.9 | 3.9 | 8.2 | 0.4 | 6.0 | 91.5 | |
1,2,3,7,8,9- H6CDF | 0.1 | 4.2 | 0.4 | 0.4 | 0.4 | 0.5 | 1.1 | 0.1 | 0.8 | 88.1 | |
1,2,3,4,6,7,8- H7CDF | 0.01 | 110.0 | 11.3 | 1.1 | 1.2 | 6.7 | 14.2 | 0.1 | 1.0 | 93.9 | |
1,2,3,4,7,8,9- H7CDF | 0.01 | 17.0 | 1.7 | 0.2 | 0.2 | 1.1 | 2.3 | 0.0 | 0.2 | 93.5 | |
O8CDF | 0.001 | 33.0 | 3.4 | 0.0 | 0.0 | 1.2 | 2.5 | 0.0 | 0.0 | 96.4 | |
PCDDs | 2,3,7,8- T4CDD | 1 | 9.3 | 1.0 | 9.3 | 9.9 | 0.0 | 0.0 | 0.0 | 0.2 | 99.9 |
1,2,3,7,8- P5CDD | 0.5 | 24.0 | 2.5 | 12.0 | 12.8 | 1.2 | 2.5 | 0.6 | 9.2 | 95.0 | |
1,2,3,4,7,8- H6CDD | 0.1 | 11.0 | 1.1 | 1.1 | 1.2 | 0.9 | 1.9 | 0.1 | 1.4 | 91.8 | |
1,2,3,6,7,8- H6CDD | 0.1 | 16.0 | 1.6 | 1.6 | 1.7 | 0.5 | 1.1 | 0.1 | 0.8 | 96.9 | |
1,2,3,7,8,9- H6CDD | 0.1 | 15.0 | 1.5 | 1.5 | 1.6 | 0.6 | 1.3 | 0.1 | 0.9 | 96.0 | |
1,2,3,4,6,7,8- H7CDD | 0.01 | 110.0 | 11.3 | 1.1 | 1.2 | 2.5 | 5.3 | 0.0 | 0.4 | 97.7 | |
O8CDD | 0.001 | 230.0 | 23.5 | 0.2 | 0.2 | 2.8 | 5.9 | 0.0 | 0.0 | 98.8 | |
∑(PCDFs + PCDDs) | 977.5 | 100 | 93.5 | 100 | 47.32 | 100 | 6.5 | 100 | 93.0 |
CaO | Cl | SO3 | K2O | Na2O | Fe2O3 | SiO2 | Al2O3 | MgO | Other | |
---|---|---|---|---|---|---|---|---|---|---|
MSWI-FA | 45.7 | 22.5 | 9.7 | 6.7 | 7.2 | 1.3 | 2.4 | 1.0 | 0.9 | 2.2 |
WW-MSMI-FA | 52.8 | 5.7 | 19.2 | 1.7 | 2.1 | 1.7 | 7.6 | 1.8 | 3.2 | 4.2 |
AW-MSMI-FA | 65.1 | 3.9 | 9.1 | 1.6 | 4.6 | 1.6 | 6.4 | 1.7 | 2.6 | 3.4 |
Group | Fly Ash Dosage wt/% | Setting Time/s | |
---|---|---|---|
Initial | Final | ||
PCC-FA | / | 4500 | 8700 |
MSWI-FA | 10% | 1110 | 3360 |
20% | / | 166 | |
30% | / | 23s | |
WW-MSWI-FA | 10% | 1630 | 5040 |
20% | 254 | 646 | |
30% | / | 49s | |
AW-MSWI-FA | 10% | 1026 | 2280 |
20% | 347 | 752 | |
30% | 205 | 515 |
Range | 3 d Compressive Strength/MPa | 7 d Compressive Strength/MPa | 28 d Compressive Strength/MPa | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | A | B | C | A | B | C | |
K1j | 44.71 | 33.70 | 31.11 | 66.92 | 55.27 | 50.53 | 125.47 | 100.13 | 90.50 |
K2j | 23.57 | 26.21 | 32.27 | 50.28 | 50.19 | 51.77 | 87.05 | 86.33 | 85.66 |
K3j | 25.71 | 34.09 | 30.61 | 37.83 | 49.56 | 52.73 | 49.04 | 75.09 | 85.40 |
k1j | 14.90 | 11.23 | 10.37 | 22.31 | 18.42 | 16.84 | 41.82 | 33.38 | 30.17 |
k2j | 7.86 | 8.74 | 10.76 | 16.76 | 16.73 | 17.26 | 29.02 | 28.78 | 28.55 |
k3j | 8.57 | 11.36 | 10.20 | 12.61 | 16.52 | 17.58 | 16.35 | 25.03 | 28.47 |
Rj | 6.33 | 2.63 | 0.55 | 9.69 | 1.90 | 0.73 | 25.47 | 8.35 | 1.70 |
Order | A > B > C | A > B > C | A > B > C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Zhao, R.; Zuo, W.; Dong, G.; He, D.; Zheng, T.; Liu, C.; Xie, H.; Wang, X. Preparation of Alkali Activated Cementitious Material by Upgraded Fly Ash from MSW Incineration. Int. J. Environ. Res. Public Health 2022, 19, 13666. https://doi.org/10.3390/ijerph192013666
Chen H, Zhao R, Zuo W, Dong G, He D, Zheng T, Liu C, Xie H, Wang X. Preparation of Alkali Activated Cementitious Material by Upgraded Fly Ash from MSW Incineration. International Journal of Environmental Research and Public Health. 2022; 19(20):13666. https://doi.org/10.3390/ijerph192013666
Chicago/Turabian StyleChen, Hongwei, Runbo Zhao, Wu Zuo, Guanghui Dong, Dongyang He, Tengfei Zheng, Changqi Liu, Hao Xie, and Xinye Wang. 2022. "Preparation of Alkali Activated Cementitious Material by Upgraded Fly Ash from MSW Incineration" International Journal of Environmental Research and Public Health 19, no. 20: 13666. https://doi.org/10.3390/ijerph192013666
APA StyleChen, H., Zhao, R., Zuo, W., Dong, G., He, D., Zheng, T., Liu, C., Xie, H., & Wang, X. (2022). Preparation of Alkali Activated Cementitious Material by Upgraded Fly Ash from MSW Incineration. International Journal of Environmental Research and Public Health, 19(20), 13666. https://doi.org/10.3390/ijerph192013666