Characteristics of Artificial Intelligence Clinical Trials in the Field of Healthcare: A Cross-Sectional Study on ClinicalTrials.gov
Abstract
:1. Introduction
- Clinical decision support, e.g., integrating NLP into electronic health records (EHRs) to identify errors and omissions in treatment protocols and provide more effective therapy for patients [10,11] and performing patient risk stratification based on artificial neural networks (ANN) to improve emergency triage efficiency [12];
2. Materials and Methods
2.1. Data Search
2.2. Data Screening and Extraction
2.3. Data Processing
- “Reasoning and decision-making” embodies the ability to transform data into knowledge and organize decisions, typically using symbolic rules for knowledge representation, reasoning, planning, and optimization;
- “Learning and perception” usually uses structured or unstructured data for problem-solving, including learning and perception of changes, and covers AI subdomains, such as ML, NN, DL, NLP, and CV;
- Robotics as “Embodied AI” is an integrated application of multiple AI system capabilities (reasoning, learning, and perception).
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Included Trials
3.2. Overview of AI Technology Applications in AI-Related Trials
3.3. Overview of Disease Areas in AI-Related Trials
3.4. Overview of Healthcare Application Scenarios in AI-Related Trials
3.5. Construction of AI Technology Application Graph
4. Discussion
4.1. Characteristics of AI-Related Trials
4.2. Status of AI Application
4.3. Challenges
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, D.D.; Brown, E.W. Artificial Intelligence in Medical Practice: The Question to the Answer? Am. J. Med. 2018, 131, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.; Mohamed, K.; Zeeshan, S.; Dong, X. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database 2020, 2020, baaa010. [Google Scholar] [CrossRef]
- Coudray, N.; Ocampo, P.S.; Sakellaropoulos, T.; Narula, N.; Snuderl, M.; Fenyö, D.; Moreira, A.L.; Razavian, N.; Tsirigos, A. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat. Med. 2018, 24, 1559–1567. [Google Scholar] [CrossRef]
- Hesamian, M.H.; Jia, W.; He, X.; Kennedy, P. Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges. J. Digit. Imaging 2019, 32, 582–596. [Google Scholar] [CrossRef] [Green Version]
- Rodellar, J.; Alférez, S.; Acevedo, A.; Molina, A.; Merino, A. Image processing and machine learning in the morphological analysis of blood cells. Int. J. Lab. Hematol. 2018, 40, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Yang, J.; Fong, S.; Zhao, Q. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Lett. 2020, 471, 61–71. [Google Scholar] [CrossRef]
- Choi, D.J.; Park, J.J.; Ali, T.; Lee, S. Artificial intelligence for the diagnosis of heart failure. NPJ Digit. Med. 2020, 3, 54. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Dong, W.; Wang, J.; Lu, X.; Kaymak, U.; Huang, Z. Interpretable clinical prediction via attention-based neural network. BMC Med. Inform. Decis. Mak. 2020, 20, 131. [Google Scholar] [CrossRef]
- Chen, L.; Chen, S. Prediction of readmission in patients with acute exacerbation of chronic obstructive pulmonary disease within one year after treatment and discharge. BMC Pulm. Med. 2021, 21, 320. [Google Scholar] [CrossRef]
- Anakal, S.; Sandhya, P. Clinical decision support system for chronic obstructive pulmonary disease using machine learning techniques. In Proceedings of the IEEE International Conference on Electrical, Electronics, Communication, Computer and Optimisation Techniques (ICEECCOT), Mysuru, India, 15–16 December 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Medrano, I.H.; Guijarro, J.T.; Belda, C.; Urena, A.; Salcedo, I.; Espinosa-Anke, L.; Saggion, H. Savana: Re-using Electronic Health Records with Artificial Intelligence. Int. J. Interact. Multi. 2018, 4, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Falavigna, G.; Costantino, G.; Furlan, R.; Quinn, J.V.; Ungar, A.; Ippoliti, R. Artificial neural networks and risk stratification in emergency departments. Intern. Emerg. Med. 2019, 14, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Rajan Jeyaraj, P.; Nadar, E.R.S. Smart-monitor: Patient monitoring system for IoT-based healthcare system using deep learning. IETE J. Res. 2022, 68, 1435–1442. [Google Scholar] [CrossRef]
- Rghioui, A.; Lloret, J.; Sendra, S.; Oumnad, A. A Smart Architecture for Diabetic Patient Monitoring Using Machine Learning Algorithms. Healthcare 2020, 8, 348. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, M.A.; Qureshi, K.N.; Jeon, G.; Piccialli, F. Deep learning-based ambient assisted living for self-management of cardiovascular conditions. Neural Comput. Appl. 2022, 34, 10449–10467. [Google Scholar] [CrossRef]
- Kim, K.; Kim, B.; Chung, A.J.; Kwon, K.; Choi, E.; Nah, J.W. Algorithm and System for improving the medication adherence of tuberculosis patients. In Proceedings of the IEEE International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 17–19 October 2018; pp. 914–916. [Google Scholar] [CrossRef]
- Kumar, S.; Singhal, P.; Krovi, V.N. Computer-vision-based decision support in surgical robotics. IEEE Des. Test. 2015, 32, 89–97. [Google Scholar] [CrossRef]
- Takeuchi, M.; Kawakubo, H.; Saito, K.; Maeda, Y.; Matsuda, S.; Fukuda, K.; Nakamura, R.; Kitagawa, Y. Automated Surgical-Phase Recognition for Robot-Assisted Minimally Invasive Esophagectomy Using Artificial Intelligence. Ann. Surg. Oncol. 2022, 29, 6847–6855. [Google Scholar] [CrossRef]
- Forghani, R.; Savadjiev, P.; Chatterjee, A.; Muthukrishnan, N.; Reinhold, C.; Forghani, B. Radiomics and Artificial Intelligence for Biomarker and Prediction Model Development in Oncology. Comput. Struct. Biotechnol. J. 2019, 17, 995–1008. [Google Scholar] [CrossRef]
- Mann, M.; Kumar, C.; Zeng, W.F.; Strauss, M.T. Artificial intelligence for proteomics and biomarker discovery. Cell Syst. 2021, 12, 759–770. [Google Scholar] [CrossRef]
- Cario, C.L.; Chen, E.; Leong, L.; Emami, N.C.; Lopez, K.; Tenggara, I.; Simko, J.P.; Friedlander, T.W.; Li, P.S.; Paris, P.L.; et al. A machine learning approach to optimizing cell-free DNA sequencing panels: With an application to prostate cancer. BMC Cancer 2020, 20, 820. [Google Scholar] [CrossRef]
- Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021, 26, 80–93. [Google Scholar] [CrossRef]
- Zhu, H. Big Data and Artificial Intelligence Modeling for Drug Discovery. Annu. Rev. Pharmacol. Toxicol. 2020, 6, 573–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rong, G.; Mendez, A.; Assi, E.B.; Zhao, B.; Sawan, M. Artificial Intelligence in Healthcare: Review and Prediction Case Studies. Engineering 2020, 6, 291–301. [Google Scholar] [CrossRef]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019, 25, 65–69. [Google Scholar] [CrossRef]
- Rodríguez-Ruiz, A.; Lång, K.; Gubern-Merida, A.; Broeders, M.; Gennaro, G.; Clauser, P.; Helbich, T.H.; Chevalier, M.; Tan, T.; Mertelmeier, T.; et al. Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison with 101 Radiologists. J. Natl Cancer Inst. 2019, 111, 916–922. [Google Scholar] [CrossRef]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
- Umscheid, C.A.; Margolis, D.J.; Grossman, C.E. Key concepts of clinical trials: A narrative review. Postgrad. Med. 2011, 123, 194–204. [Google Scholar] [CrossRef] [Green Version]
- McCray, A.T. Better access to information about clinical trials. Ann. Intern. Med. 2000, 133, 609–614. [Google Scholar] [CrossRef]
- US National Library of Medicine. Clinicaltrials.gov. Available online: https://clinicaltrials.gov/ (accessed on 15 July 2022).
- Simes, R.J. Publication bias: The case for an international registry of clinical trials. J. Clin. Oncol. 1986, 4, 1529–1541. [Google Scholar] [CrossRef]
- Dickersin, K.; Min, Y.I. NIH clinical trials and publication bias. Online J. Curr. Clin. Trials. 1993, Doc No 50. [Google Scholar]
- Turner, B.; Rajeshuni, N.; Tran, E.M.; Ludwig, C.A.; Tauqeer, Z.; Weeks, B.; Kinde, B.; Pershing, S. Characteristics of Ophthalmology Trials Registered in ClinicalTrials.gov, 2007–2018. Am. J. Ophthalmol. 2020, 211, 132–141. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhang, X.; Zhou, L.; Li, L.; Zhang, T. Updated analysis of pediatric clinical studies registered in ClinicalTrials.gov, 2008–2019. BMC Pediatr. 2021, 21, 212. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, J.; Li, J.V.; Lv, Y.; He, Y.; Zheng, Q. The Characteristics of TCM Clinical Trials: A Systematic Review of ClinicalTrials.gov. Evid. Based Complement. Altern. Med. 2017, 2017, 9461415. [Google Scholar] [CrossRef] [Green Version]
- Goswami, N.D.; Pfeiffer, C.D.; Horton, J.R.; Chiswell, K.; Tasneem, A.; Tsalik, E.L. The state of infectious diseases clinical trials: A systematic review of ClinicalTrials.gov. PLoS ONE 2013, 8, e77086. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Wang, M.; Yang, Y.; Shen, J.; Zhang, Y. Registered Interventional Clinical Trials for Old Populations With Infectious Diseases on ClinicalTrials.gov: A Cross-Sectional Study. Front. Pharmacol. 2020, 11, 942. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.E.; Harrington, R.A.; Desai, S.A.; Mahaffey, K.W.; Turakhia, M.P. Characteristics of Digital Health Studies Registered in ClinicalTrials.gov. JAMA Intern. Med. 2019, 179, 838–840. [Google Scholar] [CrossRef]
- Zippel, C.; Bohnet-Joschko, S. Rise of Clinical Studies in the Field of Machine Learning: A Review of Data Registered in ClinicalTrials.gov. Int. J. Environ. Res. Public Health 2021, 18, 5072. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Geng, Y.; Lu, D.; Li, B.; Tian, L.; Lin, D.; Zhang, Y. Clinical Trials for Artificial Intelligence in Cancer Diagnosis: A Cross-Sectional Study of Registered Trials in ClinicalTrials.gov. Front. Oncol. 2020, 10, 1629. [Google Scholar] [CrossRef]
- Liu, G.; Li, N.; Chen, L.; Yang, Y.; Zhang, Y. Registered Trials on Artificial Intelligence Conducted in Emergency Department and Intensive Care Unit: A Cross-Sectional Study on ClinicalTrials.gov. Front. Med. 2021, 8, 634197. [Google Scholar] [CrossRef]
- US National Library of Medicine. Clinicaltrials.gov Advanced Search. Available online: https://clinicaltrials.gov/ct2/search/advanced/ (accessed on 15 July 2022).
- US National Library of Medicine. Artificial Intelligence; MeSH Unique ID: D001185. Available online: https://www.ncbi.nlm.nih.gov/mesh/68001185/ (accessed on 15 July 2022).
- European Commission. A Definition of AI: Main Capabilities and Disciplines. Available online: https://digital-strategy.ec.europa.eu/en/library/definition-artificial-intelligence-main-capabilities-and-scientific-disciplines (accessed on 26 September 2022).
- World Health Organization. ICD-11 for Mortality and Morbidity Statistics. Available online: https://icd.who.int/browse11/l-m/en/ (accessed on 15 July 2022).
- Neo4j. Available online: https://neo4j.com/ (accessed on 6 October 2022).
- The White House. The Administration’s Report on the Future of Artificial Intelligence. Available online: https://obamawhitehouse.archives.gov/blog/2016/10/12/administrations-report-future-artificial-intelligence (accessed on 7 August 2022).
- République Française. France Intelligence Artificielle—Rapport de Synthèse. Available online: https://www.vie-publique.fr/rapport/36456-france-intelligence-artificielle-rapport-de-synthese (accessed on 28 September 2022).
- Government of Canada. Pan-Canadian Artificial Intelligence Strategy. Available online: https://ised-isde.canada.ca/site/ai-strategy/en (accessed on 28 September 2022).
- New America. Full Translation: China’s ‘New Generation Artificial Intelligence Development Plan’. Available online: https://www.newamerica.org/cybersecurity-initiative/digichina/blog/full-translation-chinas-new-generation-artificial-intelligence-development-plan-2017/ (accessed on 7 August 2022).
- GOV.UK. Growing the Artificial Intelligence Industry in the UK. Available online: https://www.gov.uk/government/publications/growing-the-artificial-intelligence-industry-in-the-uk (accessed on 28 September 2022).
- Califf, R.M.; Zarin, D.A.; Kramer, J.M.; Sherman, R.E.; Aberle, L.H.; Tasneem, A. Characteristics of Clinical Trials Registered in ClinicalTrials.gov, 2007–2010. JAMA 2012, 307, 1838–1847. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.-W.; Song, F.; Vickers, A.; Jefferson, T.; Dickersin, K.; Gøtzsche, P.C.; Krumholz, H.M.; Ghersi, D.; van der Worp, H.B. Increasing value and reducing waste: Addressing inaccessible research. Lancet 2014, 383, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Zarin, D.A.; Tse, T.; Williams, R.J.; Califf, R.M.; Ide, N.C. The ClinicalTrials.gov results database—Update and key issues. N. Engl. J. Med. 2011, 364, 852–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, M.L.; Chiswell, K.; Peterson, E.D.; Tasneem, A.; Topping, J.; Califf, R.M. Compliance with results reporting at ClinicalTrials.gov. N. Engl. J. Med. 2015, 372, 1031–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarin, D.A.; Fain, K.M.; Dobbins, H.D.; Tse, T.; Williams, R.J. 10-Year Update on Study Results Submitted to ClinicalTrials.gov. N. Engl. J. Med. 2019, 381, 1966–1974. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Xu, B.-B.; Shen, L.-L.; Wu, D.; Xue, Z.; Zheng, H.-L.; Xie, J.-W.; Wang, J.-B.; Lin, J.-X.; Chen, Q.-Y.; et al. Characteristics and Research Waste among Randomized Clinical Trials in Gastric Cancer. JAMA Netw. Open 2021, 4, e2124760. [Google Scholar] [CrossRef]
- Canestaro, W.J.; Hendrix, N.; Bansal, A.; Sullivan, S.D.; Devine, E.B.; Carlson, J.J. Favorable and publicly funded studies are more likely to be published: A systematic review and meta-analysis. J. Clin. Epidemiol. 2017, 92, 58–68. [Google Scholar] [CrossRef]
- Nakata, N. Recent technical development of artificial intelligence for diagnostic medical imaging. Jpn. J. Radiol. 2019, 37, 103–108. [Google Scholar] [CrossRef]
- Esteva, A.; Chou, K.; Yeung, S.; Naik, N.; Madani, A.; Mottaghi, A.; Liu, Y.; Topol, E.; Dean, J.; Socher, R. Deep learning-enabled medical computer vision. NPJ Digit. Med. 2021, 4, 5. [Google Scholar] [CrossRef]
- Livovsky, D.M.; Veikherman, D.; Golany, T.; Aides, A.; Dashinsky, V.; Rabani, N.; Ben Shimol, D.; Blau, Y.; Katzir, L.; Shimshoni, I.; et al. Detection of elusive polyps using a large-scale artificial intelligence system (with videos). Gastrointest. Endosc. 2021, 94, 1099–1109.e10. [Google Scholar] [CrossRef]
- Zhu, T.; Uduku, C.; Li, K.; Herrero, P.; Oliver, N.; Georgiou, P. Enhancing self-management in type 1 diabetes with wearables and deep learning. NPJ Digit. Med. 2022, 5, 78. [Google Scholar] [CrossRef]
- Piette, J.D.; Newman, S.; Krein, S.L.; Marinec, N.; Chen, J.; Williams, D.A.; Edmond, S.N.; Driscoll, M.; LaChappelle, K.M.; Kerns, R.D.; et al. Patient-Centered Pain Care Using Artificial Intelligence and Mobile Health Tools: A Randomized Comparative Effectiveness Trial. JAMA Intern. Med. 2022, 182, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Mohr, D.; Tomasino, K.N.; Lattie, E.G.; Palac, H.L.; Kwasny, M.J.; Weingardt, K.; Karr, C.J.; Kaiser, S.M.; Rossom, R.C.; Bardsley, L.R.; et al. IntelliCare: An Eclectic, Skills-Based App Suite for the Treatment of Depression and Anxiety. J. Med. Internet Res. 2017, 19, e10. [Google Scholar] [CrossRef] [PubMed]
- Rubanovich, C.K.; Mohr, D.C.; Schueller, S.M. Health App Use among Individuals with Symptoms of Depression and Anxiety: A Survey Study with Thematic Coding. JMIR Ment. Health 2017, 4, e22. [Google Scholar] [CrossRef]
- Bibault, J.-E.; Chaix, B.; Guillemassé, A.; Cousin, S.; Escande, A.; Perrin, M.; Pienkowski, A.; Delamon, G.; Nectoux, P.; Brouard, B. A Chatbot Versus Physicians to Provide Information for Patients With Breast Cancer: Blind, Randomized Controlled Noninferiority Trial. J. Med. Internet Res. 2019, 21, e15787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupont, P.E.; Nelson, B.J.; Goldfarb, M.; Hannaford, B.; Menciassi, A.; O’Malley, M.K.; Simaan, N.; Valdastri, P.; Yang, G.-Z. A decade retrospective of medical robotics research from 2010 to 2020. Sci. Robot. 2021, 6, eabi8017. [Google Scholar] [CrossRef] [PubMed]
- Gumbs, A.A.; Frigerio, I.; Spolverato, G.; Croner, R.; Illanes, A.; Chouillard, E.; Elyan, E. Artificial Intelligence Surgery: How Do We Get to Autonomous Actions in Surgery? Sensors 2021, 21, 5526. [Google Scholar] [CrossRef]
- O’Sullivan, S.; Nevejans, N.; Allen, C.; Blyth, A.; Leonard, S.; Pagallo, U.; Holzinger, K.; Holzinger, A.; Sajid, M.I.; Ashrafian, H. Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery. Int. J. Med. Robot. 2019, 15, e1968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aung, Y.Y.M.; Wong, D.C.S.; Ting, D.S.W. The promise of artificial intelligence: A review of the opportunities and challenges of artificial intelligence in healthcare. Br. Med. Bull. 2021, 139, 4–15. [Google Scholar] [CrossRef]
- Meskó, B.; Hetényi, G.; Győrffy, Z. Will artificial intelligence solve the human resource crisis in healthcare? BMC Health Serv. Res. 2018, 18, 545. [Google Scholar] [CrossRef]
- Kaissis, G.A.; Makowski, M.R.; Rückert, D.; Braren, R.F. Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 2020, 2, 305–311. [Google Scholar] [CrossRef]
- Saeed, H.; El Naqa, I. Artificial intelligence in clinical trials. In Machine and Deep Learning in Oncology, Medical Physics and Radiology, 2nd ed.; El Naqa, I., Murphy, M.J., Eds.; Springer: Cham, Switzerland, 2022; pp. 453–501. [Google Scholar]
- Price, W.N.; Cohen, I.G. Privacy in the age of medical big data. Nat. Med. 2019, 25, 37–43. [Google Scholar] [CrossRef]
- Shortliffe, E.H.; Sepúlveda, M.J. Clinical Decision Support in the Era of Artificial Intelligence. JAMA 2018, 320, 2199–2200. [Google Scholar] [CrossRef]
- Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V.I. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 2020, 20, 310. [Google Scholar] [CrossRef] [PubMed]
- Gunning, D.; Vorm, E.; Wang, J.Y.; Turek, M. DARPA’s explainable AI (XAI) program: A retrospective. Appl. AI Lett. 2021, 2, e61. [Google Scholar] [CrossRef]
- Bhatia, R. Is Deep Learning Going to Be Illegal in Europe? Available online: https://analyticsindiamag.com/deep-learning-going-illegal-europe/ (accessed on 28 September 2022).
- Meskó, B.; Görög, M. A short guide for medical professionals in the era of artificial intelligence. NPJ Digit. Med. 2020, 3, 126. [Google Scholar] [CrossRef] [PubMed]
- Rivera, S.C.; Liu, X.; Chan, A.-W.; Denniston, A.K.; Calvert, M.J.; Darzi, A.; Holmes, C.; Yau, C.; Moher, D.; Ashrafian, H.; et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: The SPIRIT-AI extension. Nat. Med. 2020, 26, 1351–1363. [Google Scholar] [CrossRef]
- Liu, X.; Rivera, S.C.; Moher, D.; Calvert, M.J.; Denniston, A.K.; Chan, A.-W.; Darzi, A.; Holmes, C.; Yau, C.; Ashrafian, H.; et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: The CONSORT-AI extension. Nat. Med. 2020, 26, 1364–1374. [Google Scholar] [CrossRef]
AI Domain | AI Subdomain |
---|---|
Reasoning and decision-making | Computer reasoning |
Computer heuristics | |
Fuzzy logic | |
Expert systems | |
Knowledge bases | |
Learning and perception | Machine learning |
Supervised machine learning | |
Unsupervised machine learning | |
Reinforcement learning | |
Neural networks, including deep learning | |
Perception | |
Natural language processing, including sentiment analysis | |
Computer vision | |
Integration | Robotics |
Characteristics | Number of Trials | Percent (%) |
---|---|---|
All (N = 1725) | ||
Study type | ||
Interventional | 742 | 43.01 |
Observational | 983 | 56.99 |
Status | ||
Completed | 451 | 26.14 |
Recruiting | 717 | 41.57 |
Not recruiting | 323 | 18.72 |
Suspended | 6 | 0.35 |
Terminated | 26 | 1.51 |
Withdrawn | 29 | 1.68 |
Unknown status | 173 | 10.03 |
Interventional (n = 742) | ||
Allocation | ||
Randomized | 391 | 52.70 |
Non-randomized | 92 | 12.40 |
NA | 257 | 34.64 |
Unknown | 2 | 0.27 |
Intervention model | ||
Single group assignment | 269 | 36.25 |
Parallel assignment | 398 | 53.64 |
Crossover assignment | 45 | 6.06 |
Sequential assignment | 19 | 2.56 |
Factorial assignment | 10 | 1.35 |
Unknown | 1 | 0.13 |
Masking | ||
Open label | 477 | 64.29 |
Single | 141 | 19.00 |
Double | 69 | 9.30 |
Triple | 38 | 5.12 |
Quadruple | 15 | 2.02 |
Unknown | 2 | 0.27 |
Phase | ||
Phase 1 | 14 | 1.89 |
Phase 1/Phase 2 | 8 | 1.08 |
Phase 2 | 20 | 2.70 |
Phase 2/Phase 3 | 3 | 0.40 |
Phase 3 | 9 | 1.21 |
Phase 4 | 16 | 2.16 |
NA | 672 | 90.57 |
Observational (n = 983) | ||
Observational model | ||
Case–control | 116 | 11.80 |
Case–crossover | 14 | 1.42 |
Case-only | 124 | 12.61 |
Cohort | 594 | 60.43 |
Other | 129 | 13.12 |
Unknown | 6 | 0.61 |
Time perspective | ||
Cross-sectional | 97 | 9.87 |
Prospective | 589 | 59.92 |
Retrospective | 236 | 24.01 |
Other | 58 | 5.90 |
Unknown | 3 | 0.31 |
Characteristics | Number (%) of Trials ** | p-Value | ||
---|---|---|---|---|
All (N = 1725) | Interventional (n = 742) | Observational (n = 983) | ||
Posted Year | ||||
Before 2015 | 152 (8.81) | 83 (11.19) | 69 (7.02) | <0.001 |
2016 | 41 (2.38) | 21 (2.83) | 20 (2.03) | |
2017 | 79 (4.58) | 38 (5.12) | 41 (4.17) | |
2018 | 137 (7.94) | 65 (8.76) | 72 (7.32) | |
2019 | 226 (13.10) | 111 (14.96) | 115 (11.70) | |
2020 | 409 (23.71) | 151 (20.35) | 258 (26.25) | |
2021 | 523 (30.32) | 198 (26.68) | 325 (33.06) | |
2022 | 158 (9.16) | 75 (10.11) | 83 (8.44) | |
Study results | ||||
Has available results | 30 (1.74) | 28 (3.77) | 2 (0.20) | <0.001 |
No available results | 1695 (98.26) | 714 (96.23) | 981 (99.80) | |
Enrollment | ||||
≤100 | 587 (34.03) | 352 (47.44) | 235 (23.91) | <0.001 |
100–500 | 555 (32.17) | 226 (30.46) | 329 (33.47) | |
500–1000 | 196 (11.36) | 55 (7.41) | 141 (14.34) | |
>1000 | 386 (22.38) | 109 (14.69) | 277 (28.18) | |
Unknown | 1 (0.06) | 0 (0) | 1 (0.10) | |
Age group | ||||
Children only (<18 y) | 59 (3.42) | 33 (4.45) | 26 (2.64) | <0.001 |
Adults only (18–65 y) | 69 (4.00) | 43 (5.80) | 26 (2.64) | |
Older adults only (>65 y) | 29 (1.68) | 16 (2.16) | 13 (1.32) | |
Children and adults | 52 (3.01) | 18 (2.43) | 34 (3.46) | |
Adults and older adults | 1283 (74.38) | 570 (76.82) | 713 (72.53) | |
All | 233 (13.51) | 62 (8.36) | 171 (17.40) | |
Gender | ||||
Female only | 108 (6.26) | 45 (6.06) | 63 (6.41) | 0.862 |
Male only | 23 (1.33) | 11 (1.48) | 12 (1.22) | |
Both | 1594 (92.41) | 686 (92.45) | 908 (92.37) | |
Center | ||||
Single-center | 1197 (69.39) | 507 (68.33) | 690 (70.19) | 0.699 |
Multi-center | 330 (19.13) | 146 (19.68) | 184 (18.72) | |
Unknown | 198 (11.48) | 89 (11.99) | 109 (11.09) | |
Region * | ||||
Europe | 622 (36.06) | 231 (31.13) | 391 (39.78) | |
North America | 498 (28.87) | 283 (38.14) | 215 (21.87) | |
Asia | 519 (30.09) | 185 (24.93) | 334 (33.98) | |
Africa | 29 (1.68) | 12 (1.62) | 17 (1.73) | <0.001 |
South America | 23 (1.33) | 8 (1.08) | 15 (1.53) | |
Oceania | 18 (1.04) | 12 (1.62) | 6 (0.61) | |
Unknown | 192 (11.13) | 87 (11.73) | 105 (10.68) | |
Country * | ||||
United States | 420 (24.35) | 243 (32.75) | 177 (18.01) | <0.001 |
China | 358 (20.75) | 109 (14.69) | 249 (25.33) | |
France | 125 (7.25) | 49 (6.60) | 76 (7.73) | |
United Kingdom | 109 (6.32) | 35 (4.72) | 74 (7.53) | |
Canada | 76 (4.41) | 38 (5.12) | 38 (3.87) | |
Italy | 67 (3.88) | 25 (3.37) | 42 (4.27) | |
Spain | 50 (2.90) | 27 (3.64) | 23 (2.34) | |
Germany | 50 (2.90) | 18 (2.43) | 32 (3.26) | |
Republic of Korea | 41 (2.38) | 17 (2.29) | 24 (2.44) | |
Switzerland | 35 (2.03) | 10 (1.35) | 25 (2.54) | |
All others | 378 (21.91) | 160 (21.56) | 218 (22.18) | |
Unknown | 192 (11.13) | 87 (11.73) | 105 (10.68) | |
Lead sponsor | ||||
Hospital | 614 (35.59) | 236 (31.81) | 378 (38.45) | |
University | 494 (28.64) | 227 (30.59) | 267 (27.16) | <0.05 |
Industry | 275 (15.94) | 125 (16.85) | 150 (15.26) | |
Other | 342 (19.83) | 154 (20.75) | 188 (19.13) | |
Funded by * | ||||
NIH | 95 (5.51) | 63 (8.49) | 32 (3.26) | <0.001 |
US Fed | 33 (1.91) | 20 (2.70) | 13 (1.32) | |
Industry | 343 (19.88) | 160 (21.56) | 183 (18.62) | |
Other | 1530 (88.7) | 654 (88.14) | 876 (89.11) |
Characteristics | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Posted year | ||||
Before 2012 (reference) | 1.00 | |||
After 2013 | 0.26 (0.10–0.67) | <0.05 | 0.41 (0.16–1.42) | 0.158 |
Allocation | ||||
Randomized (reference) | 1.00 | |||
Non-randomized | 2.12 (0.51–8.83) | 0.300 | 2.63 (0.57–12.26) | 0.218 |
NA | 3.26 (1.29–8.21) | <0.05 | 2.69 (0.99–7.30) | 0.052 |
Masking | ||||
None/open label (reference) | 1.00 | |||
Single | 0 (0) | 0.997 | ||
Double or more | 0 (0) | 0.998 | ||
Enrollment | ||||
≤100 (reference) | ||||
>100 | 0.90 (0.39–2.05) | 0.794 | ||
Center | ||||
Single-center (reference) | 1.00 | |||
Multi-center | 5.54 (2.35–13.05) | <0.001 | 3.99 (1.54–10.29) | <0.05 |
Lead sponsor | ||||
Other (reference) | 1.00 | |||
Industry | 0.91 (0.31–2.74) | 0.873 | ||
University/Hospital | 0.52 (0.19–1.41) | 0.198 | ||
Region of lead sponsor | ||||
Asia (reference) | 1.00 | |||
North America | 9.49 (1.24–72.45) | <0.05 | 5.49 (0.68–44.21) | 0.110 |
Europe | 2.31 (0.23–22.94) | 0.474 | 1.79 (0.18–18.28) | 0.623 |
Other | 9.40 (0.51–174.48) | 0.133 | 7.94 (0.35–178.58) | 0.192 |
Funded by | ||||
Industry/other (reference) | 1.00 | |||
NIH/US Fed | 5.08 (1.94–13.30) | <0.05 | 1.77 (0.50–6.29) | 0.376 |
Domain | Subdomain (n) * | Terms (n) * | ||
---|---|---|---|---|
Reasoning and decision-making | Computer reasoning (10) | Case-based reasoning (4) | ||
Reasoning (6) | ||||
Computer heuristics (3) | Heuristics (3) | |||
Fuzzy logic (3) | Fuzzy logic (3) | |||
Expert systems (22) | Expert systems (22) | |||
Optimization (8) | Genetic algorithm (8) | |||
Learning and perception | Machine learning | Supervised machine learning (191) | Classification | Decision tree (33) |
Support vector machine (42) | ||||
Random forests (36) | ||||
Boosting (12) | ||||
Classifier not specified (34) | ||||
Regression | Linear regression (15) | |||
Logistic regression (44) | ||||
Regression models not specified (16) | ||||
Supervised learning not specified (17) | ||||
Unsupervised machine learning (97) | Clustering (79) | |||
Unsupervised learning not specified (18) | ||||
Reinforcement learning (18) | Reinforcement learning (18) | |||
Neural networks, including deep learning (392) | Deep learning (223) | |||
Deep neural networks (31) | ||||
Artificial neural networks (20) | ||||
Convolutional neural networks (86) | ||||
Recurrent neural networks (4) | ||||
Generative adversarial networks (3) | ||||
Long–short-term memory networks (4) | ||||
Neural networks not specified (36) | ||||
Pattern recognition (46) | ||||
Machine learning not specified (398) | ||||
Perception | Natural language processing (59) | Natural language processing (42) | ||
Sentiment analysis (5) | ||||
Chatbot (17) | ||||
Computer vision (78) | Computer vision (43) | |||
Machine vision (4) | ||||
Image recognition (45) | ||||
Integration | Robotics (111) | Robotics (111) | ||
Other | Artificial intelligence not specified (449) |
Classification * | Number of Trials (N = 1573) | Percent (%) ** |
---|---|---|
Neoplasms | 392 | 24.92 |
Diseases of the circulatory system | 204 | 12.97 |
Diseases of the nervous system | 181 | 11.51 |
Diseases of the digestive system | 139 | 8.84 |
Mental, behavioural, or neurodevelopmental disorders | 136 | 8.65 |
Symptoms, signs, or clinical findings not elsewhere classified | 112 | 7.12 |
Endocrine, nutritional, or metabolic diseases | 101 | 6.42 |
Diseases of the musculoskeletal system or connective tissue | 89 | 5.66 |
Diseases of the visual system | 78 | 4.96 |
Factors influencing health status or contact with health services | 74 | 4.70 |
Certain infectious or parasitic diseases | 70 | 4.45 |
Injury, poisoning, or certain other consequences of external causes | 69 | 4.39 |
Codes for special purposes (RA01, RA02) *** | 66 | 4.20 |
Diseases of the respiratory system | 63 | 4.01 |
Diseases of the genitourinary system | 48 | 3.05 |
Diseases of the immune system | 21 | 1.34 |
Developmental anomalies | 18 | 1.14 |
Sleep–wake disorders | 17 | 1.08 |
Pregnancy, childbirth, or the puerperium | 17 | 1.08 |
Certain conditions originating in the perinatal period | 11 | 0.70 |
Diseases of the blood or blood-forming organs | 10 | 0.64 |
External causes of morbidity or mortality | 8 | 0.51 |
Diseases of the skin | 8 | 0.51 |
Diseases of the ear or mastoid process | 6 | 0.38 |
Application * | Number of Trials (N = 1725) | Percent (%) ** |
---|---|---|
Diagnosis and screening | 662 | 38.38 |
Medical imaging | 365 | 21.16 |
Clinical outcome prediction | 296 | 17.16 |
Patient monitoring and management | 177 | 10.26 |
Clinical decision support | 155 | 8.99 |
Adjuvant treatment | 108 | 6.26 |
Surgery | 95 | 5.51 |
Rehabilitation | 78 | 4.52 |
Biomarker discovery | 56 | 3.25 |
Analysis of disease risk factors | 46 | 2.67 |
Patient identification and risk stratification | 46 | 2.67 |
Health management | 32 | 1.86 |
Living assistance | 28 | 1.62 |
Mechanism research | 25 | 1.45 |
Other | 46 | 2.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, A.; Xiu, X.; Liu, S.; Qian, Q.; Wu, S. Characteristics of Artificial Intelligence Clinical Trials in the Field of Healthcare: A Cross-Sectional Study on ClinicalTrials.gov. Int. J. Environ. Res. Public Health 2022, 19, 13691. https://doi.org/10.3390/ijerph192013691
Wang A, Xiu X, Liu S, Qian Q, Wu S. Characteristics of Artificial Intelligence Clinical Trials in the Field of Healthcare: A Cross-Sectional Study on ClinicalTrials.gov. International Journal of Environmental Research and Public Health. 2022; 19(20):13691. https://doi.org/10.3390/ijerph192013691
Chicago/Turabian StyleWang, Anran, Xiaolei Xiu, Shengyu Liu, Qing Qian, and Sizhu Wu. 2022. "Characteristics of Artificial Intelligence Clinical Trials in the Field of Healthcare: A Cross-Sectional Study on ClinicalTrials.gov" International Journal of Environmental Research and Public Health 19, no. 20: 13691. https://doi.org/10.3390/ijerph192013691
APA StyleWang, A., Xiu, X., Liu, S., Qian, Q., & Wu, S. (2022). Characteristics of Artificial Intelligence Clinical Trials in the Field of Healthcare: A Cross-Sectional Study on ClinicalTrials.gov. International Journal of Environmental Research and Public Health, 19(20), 13691. https://doi.org/10.3390/ijerph192013691