Spatial Pattern, Sources Identification, and Risk Assessment of Heavy Metals in a Typical Soda Soil from Bayannur, Northwestern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Total Organic Carbon (TOC) and Mineral Analysis
2.2.2. pH, Electrical Conductivity (EC), Anions and Cations
2.2.3. Major Elements, Trace Elements Measurements
2.2.4. Sequential Extraction Procedure (BCR)
2.2.5. Quality Assurance (QA)/Quality Control (QC)
2.3. Contamination and Risk Assessment of Heavy Metals in Soils
2.3.1. Enrichment (EF)
2.3.2. Geo-Accumulation Index
2.3.3. Potential Ecological Risk Index
2.3.4. Risk Assessment Code
2.3.5. Statistical Analysis
3. Results
3.1. Physicochemical Properties of Surface Soils
3.2. The Concentration of Heavy Metals in Soils
3.3. Geochemical Fractionations of Heavy Metals
3.4. Pollution and Risk Assessment
3.4.1. EF and Igeo
3.4.2. Potential Ecological Risk Index
3.4.3. Risk Assessment Code
4. Discussion
4.1. Source Analysis of Heavy Metals in Surface Soils
4.2. Influencing Factors for the Accumulations of Heavy Metals
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Sample | GSS-18 | GSS-18 | GSS-18 | GSS-18 | GSS-18 | Actual Value | Detection Limit (mg/kg) |
---|---|---|---|---|---|---|---|
Cr | 54.653 | 56.212 | 56.75 | 53.957 | 55.721 | 55 ± 2 | 0.005 |
Ni | 25.471 | 24.53 | 24.686 | 26.243 | 25.796 | 25 ± 1 | 0.005 |
Cu | 19.981 | 19.574 | 29.889 | 19.532 | 19.663 | 19.5 ± 0.5 | 0.01 |
Zn | 62.627 | 654966 | 63.432 | 62.653 | 63.519 | 63 ± 2 | 0.02 |
As | 10.289 | 10.688 | 11.164 | 10.667 | 11.106 | 10.7 ± 0.5 | 0.05 |
Cd | 0.146 | 0.159 | 0.148 | 0.158 | 0.141 | 0.15 ± 0.01 | 0.01 |
Pb | 19.985 | 20.817 | 19.972 | 19.858 | 20.667 | 20 ± 1 | 0.005 |
Co | 9.995 | 10.468 | 10.254 | 9.965 | 10.462 | 10.2 ± 0.3 | 0.005 |
Hg | 0.016 | 0.014 | 0.016 | 0.018 | 0.013 | 0.015 ± 0.003 | 0.005 |
K+ | Na+ | Ca2+ | Mg2+ | Cl− | pH | EC | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
min | 2.41 | 12.32 | 15.76 | 7.56 | 6.41 | 8.67 | 4.90 | ND. | 0.00 | 8.07 | 165.15 |
max | 105.14 | 285.01 | 167.16 | 120.23 | 232.34 | 854.20 | 100.68 | 61.40 | 184.43 | 9.94 | 1358.00 |
mean | 14.26 | 89.87 | 43.27 | 24.30 | 57.38 | 107.65 | 35.44 | 14.16 | 44.64 | 8.63 | 458.41 |
TOC | Quartz | Plagioclase | Calcite | Dolomite | Clay | |
---|---|---|---|---|---|---|
min | 0.16 | 18.50 | 2.30 | 6.00 | ND. | ND. |
max | 0.89 | 60.30 | 49.90 | 56.30 | 15.70 | 42.30 |
mean | 0.53 | 39.92 | 15.61 | 11.98 | 3.51 | 25.08 |
As | Cd | Co | Cr | Cu | Hg | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|
min | 3.57 | 0.14 | 9.64 | 69.35 | 19.34 | ND | 37.29 | 0.98 | 77.80 |
max | 27.33 | 0.52 | 25.92 | 303.90 | 57.61 | 0.34 | 325.60 | 25.95 | 216.40 |
mean | 18.13 | 0.25 | 15.50 | 191.86 | 34.19 | 0.06 | 71.06 | 19.31 | 124.73 |
CV (100%) | 27.06 | 33.03 | 21.78 | 31.85 | 25.20 | 85.45 | 65.25 | 22.57 | 21.75 |
References
- Ince, C. Reusing gold-mine tailings in cement mortars: Mechanical properties and socio-economic developments for the Lefke-Xeros area of Cyprus. J. Clean. Prod. 2019, 238, 117871. [Google Scholar] [CrossRef]
- Massoud, A. Impact of diffuse pollution on the socio-economic development opportunities in the costal Nile delta lakes. In Proceedings of the Diffuse Pollution Conference, Dublin, Ireland, 17–22 August 2003; University College Dublin: Dublin, Ireland, 2003. [Google Scholar]
- Abdu, N.; Abdullahi, A.A.; Abdulkadir, A. Heavy metals and soil microbes. Environ. Chem. Lett. 2017, 15, 65–84. [Google Scholar] [CrossRef]
- Gadd, G.M. Heavy metal accumulation by bacteria and other microorganisms. Experientia 1990, 46, 834–840. [Google Scholar] [CrossRef]
- Gadd, G.M.; Griffiths, A.J. Microorganisms and heavy metal toxicity. Microb. Ecol. 1977, 4, 303–317. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef]
- Sutherland, T.F.; Petersen, S.A.; Levings, C.D.; Martin, A.J. Distinguishing between natural and aquaculture-derived sediment concentrations of heavy metals in the Broughton Archipelago, British Columbia. Mar. Pollut. Bull. 2007, 54, 1451–1460. [Google Scholar] [CrossRef]
- Saeedi, M.; Li, L.Y.; Karbassi, A.R.; Zanjani, A.J. Sorbed metals fractionation and risk assessment of release in river sediment and particulate matter. Environ. Monit. Assess. 2013, 185, 1737–1754. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, Z.-F.; Li, Y.-W.; Shen, Y.; Zhao, S.-H. Sources analysis of heavy metal aerosol particles in north suburb of nanjing. Huan Jing Ke Xue= Huanjing Kexue 2016, 37, 4467–4474. [Google Scholar] [PubMed]
- Mcconnell, J.R.; Edwards, R. Coal burning leaves toxic heavy metal legacy in the Arctic. Proc. Natl. Acad. Sci. USA 2008, 105, 12140–12144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemente, R.; Bernal, M. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids. Chemosphere 2006, 64, 1264–1273. [Google Scholar] [CrossRef] [PubMed]
- Cameselle, C.; Gouveia, S.; Cabo, A. Enhanced electrokinetic remediation for the removal of heavy metals from contaminated soils. Appl. Sci. 2021, 11, 1799. [Google Scholar] [CrossRef]
- Pablo, L.D.; Chávez, M.; Abatal, M. Adsorption of heavy metals in acid to alkaline environments by montmorillonite and Ca-montmorillonite. Chem. Eng. J. 2011, 171, 1276–1286. [Google Scholar] [CrossRef]
- Alloway, B.J. Sources of heavy metals and metalloids in soils. In Heavy Metals in Soils; Springer: Dordrecht, The Nederland, 2013; pp. 11–50. [Google Scholar]
- Golia, E.E.; Tsiropoulos, G.N.; Füleky, G.; Floras, S.; Vleioras, S. Pollution assessment of potentially toxic elements in soils of different taxonomy orders in central Greece. Environ. Monit. Assess. 2019, 191, 106. [Google Scholar] [CrossRef]
- Yun, S.-W.; Kim, D.-H.; Kang, D.-H.; Son, J.-k.; Lee, S.-Y.; Lee, C.-K.; Lee, S.-H.; Ji, W.-H.; Baveye, P.C.; Yu, C. Effect of farmland type on the transport and spatial distribution of metal(loid)s in agricultural lands near an abandoned gold mine site: Confirmation of previous observations. J. Geochem. Explor. 2017, 181, 129–137. [Google Scholar] [CrossRef]
- Hu, H.; Jin, Q.; Kavan, P. A study of heavy metal pollution in China: Current status, pollution-control policies and countermeasures. Sustainability 2014, 6, 5820–5838. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, X.-Q.; Wang, D.-F. Immobilization of heavy metals in sewage sludge during land application process in China: A review. Sustainability 2017, 9, 2020. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Yu, M.; Yuan, Q.; Meng, Y.; Qie, Y.; Shang, Z.; Luan, F.; Zhang, D. Spatial distribution, pollution assessment, and source identification of heavy metals in the Yellow River. J. Hazard. Mater. 2022, 436, 129309. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef]
- Jia, L.; Zhang, X.; He, Z.; He, X.; Wu, F.; Zhou, Y.; Fu, L.; Zhao, J. Late Quaternary climatic and tectonic mechanisms driving river terrace development in an area of mountain uplift: A case study in the Langshan area, Inner Mongolia, northern China. Geomorphology 2015, 234, 109–121. [Google Scholar] [CrossRef]
- Yu, E.; Wang, H.; Sun, J.; Gao, Y. Climatic response to changes in vegetation in the Northwest Hetao Plain as simulated by the WRF model. Int. J. Climatol. 2013, 33, 1470–1481. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Z. Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Expo. Health 2016, 8, 311–329. [Google Scholar] [CrossRef]
- Pacifico, R.; Adamo, P.; Cremisini, C.; Spaziani, F.; Ferrara, L. A geochemical analytical approach for the evaluation of heavy metal distribution in lagoon sediments. J. Soils Sediments 2007, 7, 313–325. [Google Scholar] [CrossRef]
- Ball, D. Carbon analysis in a mud sample based on loss on ignition. J. Soil Sci. 1964, 15, 84. [Google Scholar] [CrossRef]
- Zhang, C.; Nie, S.; Liang, J.; Zeng, G.; Wu, H.; Hua, S.; Liu, J.; Yuan, Y.; Xiao, H.; Deng, L.; et al. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Sci. Total Environ. 2016, 557, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Estefan, G.; Sommer, R.; Ryan, J. Methods of Soil, Plant and Water Analysis: Laboratory Manual. Int. Cent. Agric. Res. Dry Areas (ICARDA) 2013. Available online: https://repo.mel.cgiar.org/handle/20.500.11766/7512 (accessed on 1 October 2022).
- Ismayilov, A.I.; Mamedov, A.I.; Fujimaki, H.; Tsunekawa, A.; Levy, G.J. Soil salinity type effects on the relationship between the electrical conductivity and salt content for 1, 5 soil-to-water extract. Sustainability 2021, 13, 3395. [Google Scholar] [CrossRef]
- Dierickx, W.R. The salinity and alkalinity status of arid and semi-arid lands. Encycl. Land Use Land Cover Soil Sci. 2009, 5, 163–189. [Google Scholar]
- Peng, Y.; Wu, J.; Chao, J.; Chen, Y. A method for the accurate determination of 14 metal elements in soils/sediments by ICP-MS. Environ. Chem. 2017, 36, 175–182. [Google Scholar]
- Rauret, G.; López-Sánchez, J.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ure, A.; Quevauviller, P. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1999, 1, 57–61. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, S.; Chen, Y.; Chen, B.; Lei, T. Distribution characteristics, source identification, and risk assessment of heavy metals in surface sediments of the salt lakes in the Ordos Plateau, China. Environ. Sci. Pollut. Res. 2022, 29, 74772–74783. [Google Scholar] [CrossRef]
- Caeiro, S.; Costa, M.H.; Ramos, T.; Fernandes, F.; Silveira, N.; Coimbra, A.; Medeiros, G.; Painho, M. Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach. Ecol. Indic. 2005, 5, 151–169. [Google Scholar] [CrossRef]
- China National Environmental Monitoring Center. The Background Values of Chinese Soils; Environmental Science Press of China: Beijing, China, 1990. (In Chinese) [Google Scholar]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Muller, G. Schwermetallbelstung der Sedimente des Neckars und Seiner Nebenflusse. Chemiker-Zeitung 1981, 6, 157–164. [Google Scholar]
- Zhang, S.; Chen, B.; Du, J.; Wang, T.; Shi, H.; Wang, F. Distribution, assessment, and source of heavy metals in sediments of the Qinjiang River, China. Int. J. Environ. Res. Public Health 2022, 19, 9140. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Agyeman, P.C.; Kingsley, J.; Kebonye, N.M.; Ofori, S.; Borůvka, L.; Vašát, R.; Kočárek, M. Ecological risk source distribution, uncertainty analysis, and application of geographically weighted regression cokriging for prediction of potentially toxic elements in agricultural soils. Process Saf. Environ. Prot. 2022, 164, 729–746. [Google Scholar] [CrossRef]
- Ferreira, S.L.; da Silva Junior, J.B.; dos Santos, I.F.; de Oliveira, O.M.; Cerda, V.; Queiroz, A.F. Use of pollution indices and ecological risk in the assessment of contamination from chemical elements in soils and sediments–Practical aspects. Trends Environ. Anal. Chem. 2022, 35, e00169. [Google Scholar] [CrossRef]
- Perin, G.; Craboledda, L.; Lucchese, M.; Cirillo, R.; Dotta, L.; Zanette, M.L.; Orio, A.A. Heavy metal speciation in the sediments of northern Adriatic Sea. A new approach for environmental toxicity determination. Heavy Met. Environ. 1985, 2, 454–456. [Google Scholar]
- Xia, P.; Ma, L.; Sun, R.; Yang, Y.; Tang, X.; Yan, D.; Lin, T.; Zhang, Y.; Yi, Y. Evaluation of potential ecological risk, possible sources and controlling factors of heavy metals in surface sediment of Caohai Wetland, China. Sci. Total Environ. 2020, 740, 140231. [Google Scholar] [CrossRef]
- Ma, X.; Zuo, H.; Tian, M.; Zhang, L.; Meng, J.; Zhou, X.; Min, N.; Chang, X.; Liu, Y. Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere 2016, 144, 264–272. [Google Scholar] [CrossRef]
- Rosado, D.; Usero, J.; Morillo, J. Assessment of heavy metals bioavailability and toxicity toward Vibrio fischeri in sediment of the Huelva estuary. Chemosphere 2016, 153, 10–17. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, Y.; Zheng, C.; An, C.; Mi, Z. Spatial distribution, source identification, and risk assessment of heavy metals in the soils from a mining region: A case study of Bayan Obo in northwestern China. Hum. Ecol. Risk Assess. Int. J. 2021, 27, 1276–1295. [Google Scholar] [CrossRef]
- Liang, J.; Feng, C.; Zeng, G.; Gao, X.; Zhong, M.; Li, X.; Li, X.; He, X.; Fang, Y. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environ. Pollut. 2017, 225, 681–690. [Google Scholar] [CrossRef]
- Wong, S.C.; Li, X.D.; Zhang, G.; Zhang, G.; Qi, S.; Min, Y. Heavy metals in agricultural soils of the Pearl River Delta, South China. Environ. Pollut. 2002, 119, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Wang, T.; Lu, Y.; John, P.G.; Shi, Y.; Zheng, Y.; Xing, Y.; Wu, G. Landscape ecology of the Guanting Reservoir, Beijing, China: Multivariate and geostatistical analyses of metals in soils. Environ. Pollut. 2007, 146, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Shahab, A.; Xi, B.; Chang, Q.; You, S.; Li, J.; Sun, X.; Huang, H.; Li, X. Heavy metal pollution, ecological risk, spatial distribution, and source identification in sediments of the Lijiang River, China. Environ. Pollut. 2021, 269, 116189. [Google Scholar] [CrossRef]
- Nemati, K.; Bakar, N.K.A.; Abas, M.R.; Sobhanzadeh, E. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. J. Hazard. Mater. 2011, 192, 402–410. [Google Scholar] [CrossRef]
- Hui, Z. Heavy-metal Pollution and Arseniasis in Hetao Region, China. AMBIO A J. Hum. Environ. 2004, 33, 138–140. [Google Scholar]
- Veysseyre, A.; Moutard, K.; Ferrari, C.; Van de Velde, K.; Barbante, C.; Cozzi, G.; Capodaglio, G.; Boutron, C. Heavy metals in fresh snow collected at different altitudes in the Chamonix and Maurienne valleys, French Alps: Initial results. Atmos. Environ. 2001, 35, 415–425. [Google Scholar] [CrossRef]
- Zhang, F.; Meng, B.; Gao, S.; Hough, R.; Hu, P.; Zhang, Z.; Yu, S.; Li, K.; Liu, Z.; Cui, S. Levels, Inventory, and Risk Assessment of Heavy Metals in Wetland Ecosystem, Northeast China: Implications for Snow Cover Monitoring. Water 2021, 13, 2161. [Google Scholar] [CrossRef]
- de Jonge, M.; Dreesen, F.; de Paepe, J.; Blust, R.; Bervoets, L. Do acid volatile sulfides (AVS) influence the accumulation of sediment-bound metals to benthic invertebrates under natural field conditions? Environ. Sci. Technol. 2009, 43, 4510–4516. [Google Scholar] [CrossRef]
- Fernandes, L.; Nayak, G.N.; Ilangovan, D.; Borole, D.V. Accumulation of sediment, organic matter and trace metals with space and time, in a creek along Mumbai coast, India. Estuar. Coast Shelf Sci. 2011, 91, 388–399. [Google Scholar] [CrossRef]
- Huang, J.Z.; Ge, X.; Wang, D. Distribution of heavy metals in the water column, suspended particulate matters and the sediment under hydrodynamic conditions using an annular flume. Environl. Sci. 2012, 24, 2051–2059. [Google Scholar] [CrossRef]
- Kucuksezgin, F.; Uluturhan, E.; Batki, H. Distribution of heavy metals in water, particulate matter and sediments of Gediz River (Eastern Aegean). Environ. Monit. Assess. 2008, 141, 213–225. [Google Scholar] [CrossRef]
- Lu, X.Q.; Werner, I.; Young, T.M. Geochemistry and bioavailability of metals in sediments from northern San Francisco Bay. Environ. Int. 2005, 31, 593–602. [Google Scholar] [CrossRef]
- Sadeghi, S.H.R.; Harchegani, M.; Younesi, H.A. Suspended sediment concentration and particle size distribution, and their relationship with heavy metal content. Earth Syst. Sci. 2012, 121, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Strom, D.; Simpson, S.L.; Batley, G.E.; Jolley, D.F. The influence of sediment particle size and organic carbon on toxicity of copper to benthic invertebrates in oxic/suboxic surface sediments. Environ. Toxicol. Chem. 2011, 30, 1599–1610. [Google Scholar] [CrossRef]
- Zhao, H.; Li, X.; Wang, X.; Tian, D. Grain size distribution of road-deposited sediment and its contribution to heavy metal pollution in urban runoff in Beijing, China. J. Hazard. Mater. 2010, 183, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Belzile, N.; Chen, Y.-W.; Gunn, J.M.; Dixit, S.-S. Sediment trace metal profiles in lakes of Killarney Park, Canada: From regional to continental influence. Environ. Pollut. 2004, 130, 239–248. [Google Scholar] [CrossRef]
- Guven, D.E.; Akinci, G. Effect of sediment size on bioleaching of heavy metals from contaminated sediments of Izmir Inner Bay. J. Environ. Sci. 2013, 25, 1784–1794. [Google Scholar] [CrossRef]
- Du Laing, G.; Rinklebe, J.; Vandecasteele, B.; Meers, E.; Tack, F.-M. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Sci. Total Environ. 2009, 407, 3972–3985. [Google Scholar] [CrossRef]
HM | Bayannur | Bayan Obo | Lianyuan | Pearl River | Guanting Reservoir | Lijiang River |
---|---|---|---|---|---|---|
As | 3.57–27.33 | 7.70–22.73 | 0.78–512.05 | / | 3.06–10.90 | 9.97–36.44 |
Cd | 0.14–0.52 | 0.08–5.28 | 0.05–8.71 | 0–1.76 | 0.39–1.20 | 0.16–4.41 |
Co | 9.64–25.92 | / | / | 0.22–39.90 | / | 4.50–15.38 |
Cr | 69.35–303.9 | 28.95–102.64 | 21.49–206.20 | 13.3–144.00 | 16.78–59.40 | 24.38–95.38 |
Cu | 19.34–57.61 | 11.73–72.29 | 7.92–719.60 | 1.41–44.00 | 2.86–64.40 | 9.38–102.75 |
Hg | 0.001–0.33 | 0.01–0.71 | 1.20–3601.10 | / | / | 0.08–2.13 |
Ni | 37.29–325.6 | / | / | 3.55–78.60 | 5.95–33.30 | 11.63–37.13 |
Pb | 0.98–25.95 | 15.94–502.35 | 8.69–744.70 | 7.74–54.70 | 1.74–165.00 | 17.88–171.75 |
Zn | 77.8–216.4 | / | 21.13–1112.00 | 14.80–110.00 | 22.99–109.00 | 53.63–258.00 |
This study | Wang et al., 2012 [45] | Liang et al., 2017 [46] | Wong et al., 2002 [47] | Luo et al., 2007 [48] | Xiao et al., 2021 [49] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Wang, T.; Wang, H.; Kang, Q.; Zhou, Q.; Chen, B. Spatial Pattern, Sources Identification, and Risk Assessment of Heavy Metals in a Typical Soda Soil from Bayannur, Northwestern China. Int. J. Environ. Res. Public Health 2022, 19, 13880. https://doi.org/10.3390/ijerph192113880
Zhang S, Wang T, Wang H, Kang Q, Zhou Q, Chen B. Spatial Pattern, Sources Identification, and Risk Assessment of Heavy Metals in a Typical Soda Soil from Bayannur, Northwestern China. International Journal of Environmental Research and Public Health. 2022; 19(21):13880. https://doi.org/10.3390/ijerph192113880
Chicago/Turabian StyleZhang, Shuncun, Tao Wang, Hao Wang, Qiangqiang Kang, Qian Zhou, and Bo Chen. 2022. "Spatial Pattern, Sources Identification, and Risk Assessment of Heavy Metals in a Typical Soda Soil from Bayannur, Northwestern China" International Journal of Environmental Research and Public Health 19, no. 21: 13880. https://doi.org/10.3390/ijerph192113880
APA StyleZhang, S., Wang, T., Wang, H., Kang, Q., Zhou, Q., & Chen, B. (2022). Spatial Pattern, Sources Identification, and Risk Assessment of Heavy Metals in a Typical Soda Soil from Bayannur, Northwestern China. International Journal of Environmental Research and Public Health, 19(21), 13880. https://doi.org/10.3390/ijerph192113880