Enhanced Adsorption of Cd on Iron–Organic Associations Formed by Laccase-Mediated Modification: Implications for the Immobilization of Cadmium in Paddy Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation and Characterization of Fe-OM
2.3. Adsorption Kinetics and Isotherms
2.4. Adsorption Kinetics and Isotherm Models and Parameters
2.5. Soil Passivation Experiment
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Materials
3.2. Adsorption Edge
3.3. Adsorption Kinetics
3.4. Adsorption Isotherms
- Lac-P-FH has the best adsorption capacity.
- Fe-OM with high organic matter content has better adsorption performance for Cd.
- Lac-OM-FH has better adsorption capacity than OM-FH.
3.5. Adsorption Mechanism
3.6. Immobilization of Cd in Contaminated Paddy Soil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schwertmann, U.; Taylor, R.M. Iron oxides. In Minerals in Soil Environments, 2nd ed.; SSSA Book Series No. 1; Dixon, J.B., Weed, S.B., Eds.; SSSA: Madison, WI, USA, 1989; pp. 379–438. [Google Scholar]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses; VCH Ver-lagsgesell- schaft: Weinheim, Germany, 1996. [Google Scholar]
- Shi, M.; Min, X.; Ke, Y.; Lin, Z.; Yang, Z.; Wang, S.; Peng, N.; Yan, X.; Luo, S.; Wu, J.; et al. Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr)oxides. Sci. Total. Environ. 2021, 752, 141930. [Google Scholar] [CrossRef]
- Ren, Z.-L.; Tella, M.; Bravin, M.N.; Comans, R.N.J.; Dai, J.; Garnier, J.-M.; Sivry, Y.; Doelsch, E.; Straathof, A.; Benedetti, M.F. Effect of dissolved organic matter composition on metal speciation in soil solutions. Chem. Geol. 2015, 398, 61–69. [Google Scholar] [CrossRef]
- Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Van Riemsdijk, W.H. Complexation with Dissolved Organic Matter and Solubility Control of Heavy Metals in a Sandy Soil. Environ. Sci. Technol. 2002, 36, 4804–4810. [Google Scholar] [CrossRef] [PubMed]
- Kleber, M.; Eusterhues, K.; Keiluweit, M.; Mikutta, C.; Mikutta, R.; Nico, P.S. Chapter One—Mineral–Organic Associations: Formation, Properties, and Relevance in Soil Environments. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2015; Volume 130, pp. 1–140. [Google Scholar]
- Chen, C.; Dynes, J.J.; Wang, J.; Sparks, D.L. Properties of Fe-Organic Matter Associations via Coprecipitation versus Adsorption. Environ. Sci. Technol. 2014, 48, 13751–13759. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Lai, J.; Wang, Y.; Fang, Z.; Su, Y.; Alessi, D.S.; Bolan, N.S.; Wu, X.; Zhang, Y.; Jiang, X.; et al. Effect of fulvic acid co-precipitation on biosynthesis of Fe(III) hydroxysulfate and its adsorption of lead. Environ. Pollut. 2022, 295, 118669. [Google Scholar] [CrossRef]
- Zhang, L.; Fu, F.; Yu, G.; Sun, G.; Tang, B. Fate of Cr(VI) during aging of ferrihydrite-humic acid co-precipitates: Comparative studies of structurally incorporated Al(III) and Mn(II). Sci. Total Environ. 2022, 807, 151073. [Google Scholar] [CrossRef]
- Qu, C.; Chen, J.; Mortimer, M.; Wu, Y.; Cai, P.; Huang, Q. Humic acids restrict the transformation and the stabilization of Cd by iron (hydr)oxides. J. Hazard. Mater. 2022, 430, 128365. [Google Scholar] [CrossRef]
- Coward, E.K.; Ohno, T.; Plante, A.F. Adsorption and Molecular Fractionation of Dissolved Organic Matter on Iron-Bearing Mineral Matrices of Varying Crystallinity. Environ. Sci. Technol. 2018, 52, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cheng, Z.; Zhi, L.; Zhou, S. Binding of Hg to preformed ferrihydrite-humic acid composites synthesized via co-precipitation and adsorption with different morphologies. Ecotoxicol. Environ. Saf. 2020, 204, 111097. [Google Scholar] [CrossRef] [PubMed]
- Riedel, T.; Zak, D.; Biester, H.; Dittmar, T. Iron traps terrestrially derived dissolved organic matter at redox interfaces. Proc. Natl. Acad. Sci. USA 2013, 110, 10101–10105. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, K.; Mikutta, R.; Guggenberger, G. Increased Stability of Organic Matter Sorbed to Ferrihydrite and Goethite on Aging. Soil Sci. Soc. Am. J. 2007, 71, 711–719. [Google Scholar] [CrossRef]
- Mikutta, C. X-ray absorption spectroscopy study on the effect of hydroxybenzoic acids on the formation and structure of ferrihydrite. Geochim. Cosmochim. Acta 2011, 75, 5122–5139. [Google Scholar] [CrossRef]
- Colombo, C.; Palumbo, G.; Sellitto, V.M.; Cho, H.G.; Amalfitano, C.; Adamo, P. Stability of coprecipitated natural humic acid and ferrous iron under oxidative conditions. J. Geochem. Explor. 2015, 151, 50–56. [Google Scholar] [CrossRef]
- Laird, D. Nature of Clay-Humic Complexes in an Agricultural Soil. Soil Sci. Soc. Am. J. 2001, 65, 1419–1425. [Google Scholar] [CrossRef]
- ThomasArrigo, L.K.; Byrne, J.M.; Kappler, A.; Kretzschmar, R. Impact of Organic Matter on Iron(II)-Catalyzed Mineral Transformations in Ferrihydrite–Organic Matter Coprecipitates. Environ. Sci. Technol. 2018, 52, 12316–12326. [Google Scholar] [CrossRef]
- ThomasArrigo, L.K.; Kaegi, R.; Kretzschmar, R. Ferrihydrite Growth and Transformation in the Presence of Ferrous Iron and Model Organic Ligands. Environ. Sci. Technol. 2019, 53, 13636–13647. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-Y.; Chen, T.-Y.; Chan, Y.-T.; Cheng, C.-Y.; Tzou, Y.-M.; Liu, Y.-T.; Teah, H.-Y. Stabilization of Natural Organic Matter by Short-Range-Order Iron Hydroxides. Environ. Sci. Technol. 2016, 50, 12612–12620. [Google Scholar] [CrossRef]
- Curti, L.; Moore, O.W.; Babakhani, P.; Xiao, K.-Q.; Woulds, C.; Bray, A.W.; Fisher, B.J.; Kazemian, M.; Kaulich, B.; Peacock, C.L. Carboxyl-richness controls organic carbon preservation during coprecipitation with iron (oxyhydr)oxides in the natural environment. Commun. Earth Environ. 2021, 2, 1–13. [Google Scholar] [CrossRef]
- Kaiser, K.; Guggenberger, G. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org. Geochem. 2000, 31, 711–725. [Google Scholar] [CrossRef]
- Huang, Y.B.; Zhao, T.T.; Xiang, W.; Zhao, Y.P.; Liu, Y. Stability of Organic Iron Complexes in Dajiuhu Peats and Its Ecological Significance. Earth Sci. 2021, 46, 1862–1870. (In Chinese) [Google Scholar]
- Karimian, N.; Burton, E.D.; Johnston, S.G. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates. Environ. Pollut. 2019, 254, 113112. [Google Scholar] [CrossRef] [PubMed]
- Karimian, N.; Burton, E.D.; Johnston, S.G.; Hockmann, K.; Choppala, G. Humic acid impacts antimony partitioning and speciation during iron(II)-induced ferrihydrite transformation. Sci. Total Environ. 2019, 683, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Deng, N.; Li, Z.; Zuo, X.; Chen, J.; Shakiba, S.; Louie, S.M.; Rixey, W.G.; Hu, Y. Coprecipitation of Fe/Cr Hydroxides with Organics: Roles of Organic Properties in Composition and Stability of the Coprecipitates. Environ. Sci. Technol. 2021, 55, 4638–4647. [Google Scholar] [CrossRef] [PubMed]
- Alessi, D.S.; Fein, J.B. Cadmium adsorption to mixtures of soil components: Testing the component additivity approach. Chem. Geol. 2010, 270, 186–195. [Google Scholar] [CrossRef]
- Fariña, A.O.; Peacock, C.L.; Fiol, S.; Antelo, J.; Carvin, B. A universal adsorption behaviour for Cu uptake by iron (hydr)oxide organo-mineral composites. Chem. Geol. 2018, 479, 22–35. [Google Scholar] [CrossRef]
- Qu, C.; Chen, W.; Hu, X.; Cai, P.; Chen, C.; Yu, X.-Y.; Huang, Q. Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors. Environ. Int. 2019, 131, 104995. [Google Scholar] [CrossRef]
- Christl, I.; Kretzschmar, R. C-1s NEXAFS Spectroscopy Reveals Chemical Fractionation of Humic Acid by Cation-Induced Coagulation. Environ. Sci. Technol. 2007, 41, 1915–1920. [Google Scholar] [CrossRef]
- Riedel, T.; Biester, H.; Dittmar, T. Molecular Fractionation of Dissolved Organic Matter with Metal Salts. Environ. Sci. Technol. 2012, 46, 4419–4426. [Google Scholar] [CrossRef]
- Xue, J.K.; Deng, Y.M.; Luo, Y.P.; Du, Y.; Yang, Y.J.; Cheng, Y.H.; Xie, X.J.; Gan, Y.Q.; Wang, Y.X. Unraveling the impact of iron oxides-organic matter complexes on iodine mobilization in alluvial-lacustrine aquifers from central Yangtze River Basin. Sci. Total Environ. 2022, 814, 151930. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, S.; Wang, S.; Luo, L.; Cao, D.; Christie, P. Molecular-Scale Investigation with ESI-FT-ICR-MS on Fractionation of Dissolved Organic Matter Induced by Adsorption on Iron Oxyhydroxides. Environ. Sci. Technol. 2016, 50, 2328–2336. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiang, W.; Ma, M.; Zhang, X.; Bao, Z.; Xie, S.; Yan, S. The role of laccase in stabilization of soil organic matter by iron in various plant-dominated peatlands: Degradation or sequestration? Plant Soil 2019, 443, 575–590. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiang, W.; Zhang, X.; Xie, S.; Yan, S.; Wu, C.; Liu, Y. Mechanistic study on laccase-mediated formation of Fe-OM associations in peatlands. Geoderma 2020, 375, 114502. [Google Scholar] [CrossRef]
- Jones, D.L.; Willett, V.B.; Stockdale, E.A.; Macdonald, A.J.; Murphy, D.V. Molecular Weight of Dissolved Organic Carbon, Nitrogen, and Phenolics in Grassland Soils. Soil Sci. Soc. Am. J. 2012, 76, 142–150. [Google Scholar] [CrossRef]
- Li, Y.H.; Gong, X.F.; Sun, Y.H.; Shu, Y.; Niu, D.N.; Ye, H.T. High molecular weight fractions of dissolved organic matter (DOM) determined the adsorption and electron transfer capacity of DOM on iron minerals. Chem. Geol. 2022, 604, 120907. [Google Scholar] [CrossRef]
- Su, H.-H.; Hu, M.-M.; Harvey-Samuel, T.; Yang, Y.-Z. Accumulation and excretion of cadmium in three successive generations of Spodoptera exigua (Lepidoptera: Noctuidae) and impact on the population increase. J. Econ. Èntomol. 2014, 107, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Pang, Y.; Ji, P.; Gao, P.; Nguyen, T.H.; Tong, Y. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.). Ecotoxicol. Environ. Saf. 2016, 125, 102–106. [Google Scholar] [CrossRef]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Huang, Y.; He, C.; Shen, C.; Guo, J.; Mubeen, S.; Yuan, J.; Yang, Z. Toxicity of cadmium and its health risks from leafy vegetable consumption. Food Funct. 2017, 8, 1373–1401. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, Z.; Song, Y.; Li, J.; You, Y.; Li, J. Evaluation of ferrihydrite-humic acid coprecipitate as amendment to remediate a Cd- and Pb-contaminated soil. Geoderma 2019, 361, 114131. [Google Scholar] [CrossRef]
- Weng, X.; Jin, X.; Lin, J.; Naidu, R.; Chen, Z. Removal of mixed contaminants Cr(VI) and Cu(II) by green synthesized iron based nanoparticles. Ecol. Eng. 2016, 97, 32–39. [Google Scholar] [CrossRef]
- Lin, J.; He, F.; Su, B.; Sun, M.; Owens, G.; Chen, Z. The stabilizing mechanism of cadmium in contaminated soil using green synthesized iron oxide nanoparticles under long-term incubation. J. Hazard. Mater. 2019, 379, 120832. [Google Scholar] [CrossRef] [PubMed]
- Francy, N.; Shanthakumar, S.; Chiampo, F.; Sekhar, Y.R. Remediation of Lead and Nickel Contaminated Soil Using Nanoscale Zero-Valent Iron (nZVI) Particles Synthesized Using Green Leaves: First Results. Processes 2020, 8, 1453. [Google Scholar] [CrossRef]
- Qiu, C.; Hu, C.X.; Tan, Q.L.; Sun, X.C. Effects of calcium and boron on leaf nutrition, fruit yield and quality of Changshanhuyou (Citrus changshanensis). J. Plant Nutr. Fertil. 2016, 22, 459–467. (In Chinese) [Google Scholar]
- Schwertmann, U.; Cornell, R. Iron Oxides in the Laboratory: Preparation and Characterization, 2nd ed.; WILEY-VCH: Weinheim, Germany, 2020. [Google Scholar] [CrossRef]
- Merder, J.; Freund, J.A.; Feudel, U.; Hansen, C.T.; Hawkes, J.A.; Jacob, B.; Klaproth, K.; Niggemann, J.; Noriega-Ortega, B.E.; Osterholz, H.; et al. ICBM-OCEAN: Processing Ultrahigh-Resolution Mass Spectrometry Data of Complex Molecular Mixtures. Anal. Chem. 2020, 92, 6832–6838. [Google Scholar] [CrossRef]
- Xu, J.; Cheng, J.J. Pretreatment of switchgrass for sugar production with the combination of sodium hydroxide and lime. Bioresour. Technol. 2011, 102, 3861–3868. [Google Scholar] [CrossRef]
- DeMartini, J.D.; Pattathil, S.; Miller, J.S.; Li, H.; Hahn, M.G.; Wyman, C.E. Investigating plant cell wall components that affect biomass recalcitrance in poplar and switchgrass. Energy Environ. Sci. 2013, 6, 898–909. [Google Scholar] [CrossRef]
- Alvira, P.; Tomás-Pejó, E.; Ballesteros, M.J.; Negro, M. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef]
- Sharma, A.; Jain, K.K.; Jain, A.; Kidwai, M.; Kuhad, R.C. Bifunctional in vivo role of laccase exploited in multiple biotechnological applications. Appl. Microbiol. Biotechnol. 2018, 102, 10327–10343. [Google Scholar] [CrossRef]
- Brunow, G. Methods to Reveal the Structure of Lignin. In Biopolymers Online; Wiley VCH Verlag GmbH Co. KGaA: Weinheim, Germany, 2005. [Google Scholar]
- Savy, D.; Piccolo, A. Physical–chemical characteristics of lignins separated from biomasses for second-generation ethanol. Biomass-Bioenergy 2014, 62, 58–67. [Google Scholar] [CrossRef]
- Monda, H.; Cozzolino, V.; Vinci, G.; Spaccini, R.; Piccolo, A. Molecular characteristics of water-extractable organic matter from different composted biomasses and their effects on seed germination and early growth of maize. Sci. Total. Environ. 2017, 590–591, 40–49. [Google Scholar] [CrossRef]
- Smidt, E.; Meissl, K. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag. 2007, 27, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Lützenkirchen, J. Ionic Strength Effects on Cation Sorption to Oxides: Macroscopic Observations and Their Significance in Microscopic Interpretation. J. Colloid Interface Sci. 1997, 195, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, S. Inconsistency in the triple layer model description of ionic strength dependent boron adsorption. J. Colloid Interface Sci. 2005, 285, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Angelico, R.; Ceglie, A.; Ji, H.-Z.; Yu, L.-R.; Palumbo, G.; Colombo, C. Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite. Chemosphere 2014, 99, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, A.; López, R.; Gondar, D.; Antelo, J.; Fiol, S.; Arce, F. Adsorption of paraquat on goethite and humic acid-coated goethite. J. Hazard. Mater. 2010, 183, 664–668. [Google Scholar] [CrossRef] [PubMed]
- Seda, N.N.; Koenigsmark, F.; Vadas, T.M. Sorption and coprecipitation of copper to ferrihydrite and humic acid organomineral complexes and controls on copper availability. Chemosphere 2016, 147, 272–278. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, T.; Li, F.; Zhang, W.; Zhou, S.; Li, Y. Reduction of structural Fe(III) in oxyhydroxides by Shewanella decolorationis S12 and characterization of the surface properties of iron minerals. J. Soils Sediments 2011, 12, 217–227. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- Inyang, H.; Onwawoma, A.; Bae, S. The Elovich equation as a predictor of lead and cadmium sorption rates on contaminant barrier minerals. Soil Tillage Res. 2016, 155, 124–132. [Google Scholar] [CrossRef]
- Violante, A.; Huang, P.M. Influence of Oxidation Treatments on Surface Properties and Reactivities of Short-Range Ordered Precipitation Products of Aluminum. Soil Sci. Soc. Am. J. 1989, 53, 1402–1407. [Google Scholar] [CrossRef]
- Thiele-Bruhn, S. Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems—Edited by Senesi, N. Xing, B. & Huang, P.M. Eur. J. Soil Sci. 2010, 61, 437–438. [Google Scholar]
- Yang, Y.; Saiers, J.E.; Barnett, M.O. Impact of Interactions between Natural Organic Matter and Metal Oxides on the Desorption Kinetics of Uranium from Heterogeneous Colloidal Suspensions. Environ. Sci. Technol. 2013, 47, 2661–2669. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Whalen, M.; Gagnon, G.A. Adsorption of dissolved organic matter (DOM) onto the synthetic iron pipe corrosion scales (goethite and magnetite): Effect of pH. Chem. Eng. J. 2013, 234, 149–157. [Google Scholar] [CrossRef]
- Eusterhues, K.; Rennert, T.; Knicker, H.; Kögel-Knabner, I.; Totsche, K.U.; Schwertmann, U. Fractionation of Organic Matter Due to Reaction with Ferrihydrite: Coprecipitation versus Adsorption. Environ. Sci. Technol. 2010, 45, 527–533. [Google Scholar] [CrossRef]
- Torres, J.; Svistunenko, D.; Karlsson, B.; Cooper, C.E.; Wilson, M.T. Fast Reduction of a Copper Center in Laccase by Nitric Oxide and Formation of a Peroxide Intermediate. J. Am. Chem. Soc. 2002, 124, 963–967. [Google Scholar] [CrossRef]
- Asta, C.; Schmidt, D.; Conrad, J.; Förster-Fromme, B.; Tolasch, T.; Beifuss, U. The first enzymatic Achmatowicz reaction: Selective laccase-catalyzed synthesis of 6-hydroxy-(2H)-pyran-3(6H)-ones and (2H)-pyran-2,5(6H)-diones. RSC Adv. 2013, 3, 19259–19263. [Google Scholar] [CrossRef]
- Martínez-Montero, L.; Gotor, V.; Gotor-Fernández, V.; Lavandera, I. Mild Chemoenzymatic Oxidation of Allylic sec-Alcohols. Application to Biocatalytic Stereoselective Redox Isomerizations. ACS Catal. 2018, 8, 2413–2419. [Google Scholar] [CrossRef]
- Shang, Z.; Zhang, L.; Zhao, X.; Liu, S.; Li, D. Removal of Pb(II), Cd(II) and Hg(II) from aqueous solution by mercapto-modified coal gangue. J. Environ. Manag. 2019, 231, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Xie, Q.; Chai, G.; Li, G. Simultaneous adsorption of As(III) and Cd(II) by ferrihydrite-modified biochar in aqueous solution and their mutual effects. Sci. Rep. 2022, 12, 5918. [Google Scholar] [CrossRef]
- Guo, S.; Dan, Z.; Duan, N.; Chen, G.; Gao, W.; Zhao, W. Zn(II), Pb(II), and Cd(II) adsorption from aqueous solution by magnetic silica gel: Preparation, characterization, and adsorption. Environ. Sci. Pollut. Res. 2018, 25, 30938–30948. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Yue, R.; Gao, F.; Ren, R.; Wei, J.; Wang, X.; Kong, Z. Rapid preparation of adsorbent based on mussel inspired chemistry and simultaneous removal of heavy metal ions in water. Chem. Eng. J. 2020, 383, 123107. [Google Scholar] [CrossRef]
Adsorption Kinetics | |||||||||||||
Elovich Qt = a + blnt | Pseudo First-Order In(1 − Qt/Qe) = −kt | Pseudo Second-Order t/Qt = 1/(KQe2) + t/Qe | Two-Constant In Qt = a + blnt | Intra-Particle Diffusion Qt = K t1/2 | |||||||||
a | b | R2 | K | R2 | Qe | R2 | a | b | R2 | K | b | R2 | |
FH | 0.5139 | 7.2054 | 0.933 | 0.0075 | 0.795 | 10.1523 | 0.9999 | 0.0568 | 1.9954 | 0.9187 | 1.015 | 8.3154 | 0.7238 |
LAC-P-FH | 1.8244 | 9.8186 | 0.9919 | 0.0065 | 0.9421 | 21.367 | 0.9978 | 0.1082 | 2.3961 | 0.9889 | 0.3931 | 13.458 | 0.9156 |
OM1-FH | 0.9794 | 9.0347 | 0.974 | 0.006 | 0.9631 | 15.36 | 0.9986 | 0.0759 | 2.522 | 0.9756 | 0.2147 | 10.954 | 0.931 |
OM5-FH | 0.5645 | 8.9008 | 0.9228 | 0.0059 | 0.7382 | 12.195 | 0.9997 | 0.0516 | 2.2031 | 0.9114 | 0.1123 | 10.113 | 0.7261 |
LAC-OM1-FH | 1.7978 | 6.9645 | 0.9938 | 0.0074 | 0.9727 | 18.083 | 0.999 | 0.1304 | 2.1122 | 0.9819 | 0.3819 | 10.601 | 0.8915 |
LAC-OM5-FH | 0.6822 | 9.5116 | 0.9734 | 0.0061 | 0.8718 | 13.624 | 0.9996 | 0.0565 | 2.2755 | 0.9642 | 0.1406 | 10.931 | 0.8223 |
Isotherm adsorption | |||||||||||||
Langmuir equation Ce/Qe = 1/KQm + Ce/Qm | Freundlich equation InQe = In k + nIn Ce | ||||||||||||
Qm (mg/g) | K | R2 | n | In k | R2 | ||||||||
FH | 39.53 | 0.0403 | 0.9861 | 0.5046 | 1.1383 | 0.9772 | |||||||
LAC-P-FH | 117.65 | 0.0343 | 0.9804 | 0.6635 | 1.6706 | 0.9627 | |||||||
OM1-FH | 86.96 | 0.0240 | 0.9809 | 0.6802 | 1.1 | 0.981 | |||||||
OM5-FH | 59.52 | 0.0183 | 0.9845 | 0.6864 | 0.5321 | 0.9825 | |||||||
LAC-OM1-FH | 100.00 | 0.0208 | 0.9753 | 0.7028 | 1.0872 | 0.9885 | |||||||
LAC-OM5-FH | 68.49 | 0.0163 | 0.9809 | 0.709 | 0.5306 | 0.9848 | |||||||
LAC-P | 68.97 | 0.0275 | 0.9887 | 0.6471 | 1.046 | 0.947 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Huang, C.; Wan, X.; Zhao, Y.; Bao, Z.; Xiang, W. Enhanced Adsorption of Cd on Iron–Organic Associations Formed by Laccase-Mediated Modification: Implications for the Immobilization of Cadmium in Paddy Soil. Int. J. Environ. Res. Public Health 2022, 19, 15650. https://doi.org/10.3390/ijerph192315650
Yang W, Huang C, Wan X, Zhao Y, Bao Z, Xiang W. Enhanced Adsorption of Cd on Iron–Organic Associations Formed by Laccase-Mediated Modification: Implications for the Immobilization of Cadmium in Paddy Soil. International Journal of Environmental Research and Public Health. 2022; 19(23):15650. https://doi.org/10.3390/ijerph192315650
Chicago/Turabian StyleYang, Weilin, Chunlei Huang, Xiang Wan, Yunyun Zhao, Zhengyu Bao, and Wu Xiang. 2022. "Enhanced Adsorption of Cd on Iron–Organic Associations Formed by Laccase-Mediated Modification: Implications for the Immobilization of Cadmium in Paddy Soil" International Journal of Environmental Research and Public Health 19, no. 23: 15650. https://doi.org/10.3390/ijerph192315650
APA StyleYang, W., Huang, C., Wan, X., Zhao, Y., Bao, Z., & Xiang, W. (2022). Enhanced Adsorption of Cd on Iron–Organic Associations Formed by Laccase-Mediated Modification: Implications for the Immobilization of Cadmium in Paddy Soil. International Journal of Environmental Research and Public Health, 19(23), 15650. https://doi.org/10.3390/ijerph192315650