Tracking Key Industrial Sectors for CO2 Mitigation through the Driving Effects: An Attribution Analysis
Abstract
:1. Introduction
2. Methods
2.1. Divisia Decomposition Analysis
2.2. Attribution Analysis
2.3. Decoupling Index
2.4. Data and Study Area
3. Results
3.1. Decomposition Analysis of Industrial CO2 Emissions
3.2. Attribution Analysis of Sectors’ Contributions to CO2 Mitigation
3.3. Key Industrial Sectors for CO2 Mitigation
3.4. Emission Characteristics of the Key Sectors for CO2 Mitigation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rahut, D.B.; Aryal, J.P.; Marenya, P. Understanding climate-risk coping strategies among farm households: Evidence from five countries in Eastern and Southern Africa. Sci. Total Environ. 2021, 769, 145236. [Google Scholar] [CrossRef] [PubMed]
- Rivas, S.; Urraca, R.; Bertoldi, P.; Thiel, C. Towards the EU Green Deal: Local key factors to achieve ambitious 2030 climate targets. J. Clean. Prod. 2021, 320, 128878. [Google Scholar] [CrossRef]
- Dong, H.; Feng, Z.; Yang, Y.; Li, P.; You, Z.; Xiao, C. Sub-national climate change risk assessment: A case analysis for Tibet and its prefecture-level cities. Sci. Total Environ. 2022, 807, 151045. [Google Scholar] [CrossRef] [PubMed]
- IEA. Energy Technology Perspective 2020—Special Report on Carbon Capture Utilisation and Storage; IEA: Paris, France, 2020. [Google Scholar]
- Gao, C.; Ge, H. Spatiotemporal characteristics of China’s carbon emissions and driving forces: A Five-Year Plan perspective from 2001 to 2015. J. Clean. Prod. 2020, 248, 119280. [Google Scholar] [CrossRef]
- Kouyakhi, N.R. CO2 emissions in the Middle East: Decoupling and decomposition analysis of carbon emissions, and projection of its future trajectory. Sci. Total Environ. 2022, 845, 157182. [Google Scholar] [CrossRef]
- Jiao, J.; Chen, C.; Bai, Y. Is green technology vertical spillovers more significant in mitigating carbon intensity? Evidence from Chinese industries. J. Clean. Prod. 2020, 257, 120354. [Google Scholar] [CrossRef]
- Yu, X.; Chen, H.; Wang, B.; Wang, R.; Shan, Y. Driving forces of CO2 emissions and mitigation strategies of China’s National low carbon pilot industrial parks. Appl. Energy 2018, 212, 1553–1562. [Google Scholar] [CrossRef]
- Cheng, H.; Dong, S.; Li, F.; Yang, Y.; Li, S.; Li, Y. Multiregional Input-Output Analysis of Spatial-Temporal Evolution Driving Force for Carbon Emissions Embodied in Interprovincial Trade and Optimization Policies: Case Study of Northeast Industrial District in China. Environ. Sci. Technol. 2018, 52, 346–358. [Google Scholar] [CrossRef]
- Tian, X.; Bai, F.; Jia, J.; Liu, Y.; Shi, F. Realizing low-carbon development in a developing and industrializing region: Impacts of industrial structure change on CO2 emissions in southwest China. J. Environ. Manag. 2019, 233, 728–738. [Google Scholar] [CrossRef]
- Ortega-Ruiz, G.; Mena-Nieto, A.; Golpe, A.A.; Garcia-Ramos, J.E. CO2 emissions and causal relationships in the six largest world emitters. Renew. Sustain. Energy Rev. 2022, 162, 112435. [Google Scholar] [CrossRef]
- Wang, Z.J.; Jiang, Q.Z.; Dong, K.Y.; Mubarik, M.S.; Dong, X.C. Decomposition of the US CO2 emissions and its mitigation potential: An aggregate and sectoral analysis. Energy Policy 2020, 147, 111925. [Google Scholar] [CrossRef]
- Wen, L.; Li, Z. Provincial-level industrial CO2 emission drivers and emission reduction strategies in China: Combining two-layer LMDI method with spectral clustering. Sci. Total Environ. 2020, 700, 134374. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Li, X.; Li, F.; Zhou, D. The potential for energy saving and carbon emission reduction in China’s regional industrial sectors. Sci. Total Environ. 2020, 716, 135009. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira-De Jesus, P.M. Effect of generation capacity factors on carbon emission intensity of electricity of Latin America & the Caribbean, a temporal IDA-LMDI analysis. Renew. Sustain. Energy Rev. 2019, 101, 516–526. [Google Scholar]
- Zhang, Y.; Wang, Y.; Hou, X. Carbon Mitigation for Industrial Sectors in the Jing-Jin-Ji Urban Agglomeration, China. Sustainability 2019, 11, 6383. [Google Scholar] [CrossRef] [Green Version]
- Talaei, A.; Gemechu, E.; Kumar, A. Key factors affecting greenhouse gas emissions in the Canadian industrial sector: A decomposition analysis. J. Clean. Prod. 2020, 246, 119026. [Google Scholar] [CrossRef]
- Xie, P.; Yang, F.; Mu, Z.; Gao, S. Influencing factors of the decoupling relationship between CO2 emission and economic development in China’s power industry. Energy 2020, 209, 118341. [Google Scholar] [CrossRef]
- Dong, J.; Li, C.; Wang, Q. Decomposition of carbon emission and its decoupling analysis and prediction with economic development: A case study of industrial sectors in Henan Province. J. Clean. Prod. 2021, 321, 129019. [Google Scholar] [CrossRef]
- Kopidou, D.; Diakoulaki, D. Decomposing industrial CO2 emissions of Southern European countries into production- and consumption-based driving factors. J. Clean. Prod. 2017, 167, 1325–1334. [Google Scholar] [CrossRef]
- Lin, B.; Benjamin, N.I. Determinants of industrial carbon dioxide emissions growth in Shanghai: A quantile analysis. J. Clean. Prod. 2019, 217, 776–786. [Google Scholar] [CrossRef]
- Lu, L.; Zhou, L.; Zhang, H.; Weng, Y. The effects of industrial energy consumption on energy-related carbon emissions at national and provincial levels in China. Energy Sci. Eng. 2018, 6, 371–384. [Google Scholar] [CrossRef]
- Lu, Q.; Yang, H.; Huang, X.; Chuai, X.; Wu, C. Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China. Energy 2015, 82, 414–425. [Google Scholar] [CrossRef]
- Román-Collado, R.; Morales-Carrión, A.V. Towards a sustainable growth in Latin America: A multiregional spatial decomposition analysis of the driving forces behind CO2 emissions changes. Energy Policy 2018, 115, 273–280. [Google Scholar] [CrossRef]
- Avenyo, E.K.; Tregenna, F. Greening manufacturing: Technology intensity and carbon dioxide emissions in developing countries. Appl. Energy 2022, 324, 119726. [Google Scholar] [CrossRef]
- Wang, M.; Feng, C. Impacts of oriented technologies and economic factors on China’s industrial climate mitigation. J. Clean. Prod. 2019, 233, 1016–1028. [Google Scholar] [CrossRef]
- Fang, K.; Tang, Y.Q.; Zhang, Q.F.; Song, J.N.; Wen, Q.; Sun, H.P.; Ji, C.Y.; Xu, A.Q. Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces. Appl. Energy 2019, 255, 113852. [Google Scholar] [CrossRef]
- Jiang, J.; Ye, B.; Liu, J. Research on the peak of CO2 emissions in the developing world: Current progress and future prospect. Appl. Energy 2019, 235, 186–203. [Google Scholar] [CrossRef]
- Xu, G.Y.; Schwarz, P.; Yang, H.L. Adjusting energy consumption structure to achieve China’s CO2 emissions peak. Renew. Sustain. Energy Rev. 2020, 122, 109737. [Google Scholar] [CrossRef]
- Wu, R.; Geng, Y.; Cui, X.; Gao, Z.; Liu, Z. Reasons for recent stagnancy of carbon emissions in China’s industrial sectors. Energy 2019, 172, 457–466. [Google Scholar] [CrossRef]
- Yu, S.; Zheng, S.; Li, X.; Li, L. China can peak its energy-related carbon emissions before 2025: Evidence from industry restructuring. Energy Econ. 2018, 73, 91–107. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, Y.; Yuan, Z.; Ou, X. Peak energy consumption and CO2 emissions in China’s industrial sector. Energy Strategy Rev. 2018, 20, 113–123. [Google Scholar] [CrossRef]
- Li, M.; Mi, Z.; Coffman, D.M.; Wei, Y.M. Assessing the policy impacts on non-ferrous metals industry’s CO2 reduction: Evidence from China. J. Clean. Prod. 2018, 192, 252–261. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Li, W.; Gao, S. Driving determinants and prospective prediction simulations on carbon emissions peak for China’s heavy chemical industry. J. Clean. Prod. 2020, 251, 119642. [Google Scholar] [CrossRef]
- Tang, B.; Li, R.; Yu, B.; An, R.; Wei, Y.M. How to peak carbon emissions in China’s power sector: A regional perspective. Energy Policy 2018, 120, 365–381. [Google Scholar] [CrossRef]
- van Ruijven, B.J.; van Vuuren, D.P.; Boskaljon, W.; Neelis, M.L.; Saygin, D.; Patel, M.K. Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries. Resour. Conserv. Recycl. 2016, 112, 15–36. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; Wen, Z.; Xu, L.; Zhang, X.; Tan, Q.; Li, H.; Evans, S. Technology options: Can Chinese power industry reach the CO2 emission peak before 2030? Resour. Conserv. Recycl. 2019, 147, 85–94. [Google Scholar] [CrossRef]
- Meng, M.; Jing, K.; Mander, S. Scenario analysis of CO2 emissions from China’s electric power industry. J. Clean. Prod. 2017, 142, 3101–3108. [Google Scholar] [CrossRef]
- Li, Z.; Dai, H.; Song, J.; Sun, L.; Ge, Y.; Lu, K.; Hanaoka., T. Assessment of the carbon emissions reduction potential of China’s iron and steel industry based on a simulation analysis. Energy 2019, 183, 279–290. [Google Scholar] [CrossRef]
- Zhao, Y.; Cui, Z.; Wu, L.; Gao, W. The green behavioral effect of clean coal technology on China’s power generation industry. Sci. Total Environ. 2019, 675, 286–294. [Google Scholar] [CrossRef]
- Quader, M.A.; Ahmed, S.; Ghazilla, R.A.R.; Ahmed, S.; Dahari, M. A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing. Renew. Sustain. Energy Rev. 2015, 50, 594–614. [Google Scholar] [CrossRef]
- Xuan, D.; Ma, X.; Shang, Y. Can China’s policy of carbon emission trading promote carbon emission reduction? J. Clean. Prod. 2020, 270, 122383. [Google Scholar] [CrossRef]
- Kim, P.; Bae, H. Do firms respond differently to the carbon pricing by industrial sector? How and why? A comparison between manufacturing and electricity generation sectors using firm-level panel data in Korea. Energy Policy 2022, 162, 112773. [Google Scholar] [CrossRef]
- Engström, G.; Gars, J.; Krishnamurthy, C.; Spiro, D.; Calel, R.; Lindahl, T.; Narayanan, B. Carbon pricing and planetary boundaries. Nat. Commun. 2020, 11, 4688. [Google Scholar] [CrossRef] [PubMed]
- González, P.F.; Landajo, M.; Presno, M. The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010. Energy 2013, 58, 340–349. [Google Scholar] [CrossRef]
- Zhang, X.; Su, B.; Yang, J.; Cong, J. Index decomposition and attribution analysis of aggregate energy intensity in Shanxi Province (2000–2015). J. Clean. Prod. 2019, 238, 117897. [Google Scholar] [CrossRef]
- Liu, N.; Ma, Z.; Kang, J. Changes in carbon intensity in China’s industrial sector: Decomposition and attribution analysis. Energy Policy 2015, 87, 28–38. [Google Scholar] [CrossRef]
- Wang, Q.; Hang, Y.; Zhou, P.; Wang, Y. Decoupling and attribution analysis of industrial carbon emissions in Taiwan. Energy 2016, 113, 728–738. [Google Scholar] [CrossRef]
- Xing, Z.; Wang, J.; Feng, K.; Hubacek, K. Decline of net SO2 emission intensity in China’s thermal power generation: Decomposition and attribution analysis. Sci. Total Environ. 2020, 719, 137367. [Google Scholar] [CrossRef]
- Liu, N.; Ma, Z.; Kang, J. A regional analysis of carbon intensities of electricity generation in China. Energy Econ. 2017, 67, 268–277. [Google Scholar] [CrossRef]
- Ang, B.W. LMDI decomposition approach: A guide for implementation. Energy Policy 2015, 86, 233–238. [Google Scholar] [CrossRef]
- Ang, B.W. Decomposition analysis for policymaking in energy. Energy Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- Choi, K.-H.; Ang, B.W. Attribution of changes in Divisia real energy intensity index—An extension to index decomposition analysis. Energy Econ. 2012, 34, 171–176. [Google Scholar] [CrossRef]
- Kaya, Y. Impact of Carbon Dioxide Emission Control on GNP Growth: Interpretation of Proposed Scenarios. IPCC Energy and Industry Subgroup, Response Strategies Working Group: Paris, France, 1989. [Google Scholar]
- Leal, P.A.; Marques, A.C.; Fuinhas, J.A. Decoupling economic growth from GHG emissions: Decomposition analysis by sectoral factors for Australia. Econ. Anal. Policy 2019, 62, 12–26. [Google Scholar] [CrossRef]
- Roinioti, A.; Koroneos, C. The decomposition of CO2 emissions from energy use in Greece before and during the economic crisis and their decoupling from economic growth. Renew. Sustain. Energy Rev. 2017, 76, 448–459. [Google Scholar] [CrossRef]
- Raza, M.Y.; Wu, R.; Lin, B. A decoupling process of Pakistan’s agriculture sector: Insights from energy and economic perspectives. Energy 2022, 263, 125658. [Google Scholar] [CrossRef]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.; Shan, Y.; Huang, Q.; Chen, H.; Wang, D.; Hubacek, K. Assessment to China’s recent emission pattern shifts. Earth Future 2021, 9, e2021EF002241. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; Zheng, H.; Ou, J.; Li, Y.; Meng, J.; Mi, Z.; Liu, Z.; Zhang, Q. China CO2 emission accounts 1997–2015. Sci. Data 2018, 5, 170201. [Google Scholar] [CrossRef] [Green Version]
- Shan, Y.L.; Huang, Q.; Guan, D.B.; Hubacek, K. China CO2 emission accounts 2016–2017. Sci. Data 2020, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2010.
- Wen, H.; Chen, Z.; Yang, Q.; Liu, J.; Nie, P. Driving forces and mitigating strategies of CO2 emissions in China: A decomposition analysis based on 38 industrial sub-sectors. Energy 2022, 245, 123262. [Google Scholar] [CrossRef]
- Jiang, M.H.; An, H.Z.; Gao, X.Y.; Liu, S.Y.; Xi, X. Factors driving global carbon emissions: A complex network perspective. Resour. Conserv. Recycl. 2019, 146, 431–440. [Google Scholar] [CrossRef]
- Faridzad, A.; Banouei, A.A.; Banouei, J.; Golestan, Z. Identifying energy-intensive key sectors in Iran: Evidence from decomposed input-output multipliers. J. Clean. Prod. 2020, 243, 118653. [Google Scholar] [CrossRef]
△C/C | △Y/Y | γ | Decoupling State |
---|---|---|---|
<0 | >0 | γ < 0 | Strong decoupling |
>0 | >0 | 0.8 > γ ≥ 0 | Weak decoupling |
>0 | >0 | 1.2 ≥ γ ≥ 0.8 | Expansive coupling |
>0 | >0 | γ > 1.2 | Expansive negative decoupling |
>0 | <0 | γ < 0 | Strong negative decoupling |
<0 | <0 | 0.8 > γ ≥ 0 | Weak negative decoupling |
<0 | <0 | 1.2 ≥ γ ≥ 0.8 | Recessive coupling |
<0 | <0 | γ > 1.2 | Recessive decoupling |
Code | Sector | Abbreviation |
---|---|---|
1 | Coal Mining and Dressing | CMD |
2 | Petroleum and Natural Gas Extraction | PNGE |
3 | Ferrous Metals Mining and Dressing | FMMD |
4 | Nonmetal Minerals Mining and Dressing | NMMD |
5 | Food Processing | FPS |
6 | Food Production | FP |
7 | Beverage Production | BP |
8 | Tobacco Processing | TP |
9 | Textile Industry | TI |
10 | Garments and Other Fiber Products | GOFP |
11 | Leather, Furs, Down and Related Product | LFDRP |
12 | Timber Processing, Bamboo, Cane, Palm Fiber, and Straw Products | TPBCP |
13 | Furniture Manufacturing | FM |
14 | Papermaking and Paper Products | PPP |
15 | Printing and Record Medium Reproduction | PRMR |
16 | Cultural, Educational and Sports Articles | CESA |
17 | Petroleum Processing and Coking | PPC |
18 | Raw Chemical Materials and Chemical Products | RCMCP |
19 | Medical and Pharmaceutical Products | MPP |
20 | Chemical Fiber | CF |
21 | Rubber and Plastic Products | RPP |
22 | Nonmetal Mineral Products | NMP |
23 | Smelting and Pressing of Ferrous Metals | SPFM |
24 | Smelting and Pressing of Nonferrous Metals | SPNM |
25 | Metal Products | MP |
26 | Ordinary Machinery | OM |
27 | Equipment for Special Purposes | ESP |
28 | Transportation Equipment | TE |
29 | Electric Equipment and Machinery | EEM |
30 | Electronic and Telecommunications Equipment | ETE |
31 | Instruments, Meters, Cultural and Office Machinery | IMCOM |
32 | Other Manufacturing Industry | OMI |
33 | Scrap and waste | SW |
34 | Production and Supply of Power and Heat | PSPH |
35 | Production and Supply of Gas | PSG |
36 | Production and Supply of Tap Water | PSTW |
Coal Mining and Dressing | Petroleum Processing and Coking | Nonmetal Mineral Products | Smelting and Pressing of Ferrous Metals | Smelting and Pressing of Nonferrous Metals | Production and Supply of Power and Heat | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group 1 | Anhui | RC | ○ | WD | x | WD | x | ||||||
Chongqing | WND | ○ | WD | ○ | WD | x | |||||||
Fujian | WD | x | SD | ○ | SD | x | |||||||
Guangxi | WD | x | SND | x | SD | x | |||||||
Jilin | EC | ○ | SD | x | SND | x | |||||||
Jiangsu | WD | x | WD | x | |||||||||
Shandong | SD | x | WD | x | |||||||||
Shaanxi | END | ○ | WD | x | |||||||||
Shanghai | SD | x | RD | ○ | SD | ○ | |||||||
Sichuan | RD | ○ | SD | x | SD | ○ | |||||||
Tianjin | SD | x | SD | x | SD | x | |||||||
Yunnan | RD | x | SD | x | SD | x | |||||||
Group 2 | Guangdong | SD | x | ||||||||||
Guizhou | SD | ○ | WD | x | |||||||||
Hebei | WD | x | WND | x | |||||||||
Henan | RC | ○ | WD | ○ | SD | x | |||||||
Hubei | SD | ○ | WND | x | SD | x | |||||||
Hunan | RC | ○ | SD | x | SD | x | |||||||
Jiangxi | WD | ○ | WD | x | WD | x | |||||||
Inner Mongolia | SD | x | END | x | |||||||||
Ningxia | SD | x | WD | x | WD | x | |||||||
Shanxi | SD | ○ | SD | x | WD | x | |||||||
Group 3 | Hainan | WD | x | ||||||||||
Liaoning | RD | x | RC | x | WD | x | |||||||
Xinjiang | RD | x | EC | x | |||||||||
Zhejiang | WD | x | |||||||||||
Group 4 | Beijing | SD | ○ | ||||||||||
Gansu | SD | x | |||||||||||
Group 5 | Heilongjiang | RD | ○ | WD | x | ||||||||
Group 6 | Qinghai | WD | ○ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Hu, T.; Song, J.; Duan, H. Tracking Key Industrial Sectors for CO2 Mitigation through the Driving Effects: An Attribution Analysis. Int. J. Environ. Res. Public Health 2022, 19, 14561. https://doi.org/10.3390/ijerph192114561
Wang X, Hu T, Song J, Duan H. Tracking Key Industrial Sectors for CO2 Mitigation through the Driving Effects: An Attribution Analysis. International Journal of Environmental Research and Public Health. 2022; 19(21):14561. https://doi.org/10.3390/ijerph192114561
Chicago/Turabian StyleWang, Xian’en, Tingyu Hu, Junnian Song, and Haiyan Duan. 2022. "Tracking Key Industrial Sectors for CO2 Mitigation through the Driving Effects: An Attribution Analysis" International Journal of Environmental Research and Public Health 19, no. 21: 14561. https://doi.org/10.3390/ijerph192114561
APA StyleWang, X., Hu, T., Song, J., & Duan, H. (2022). Tracking Key Industrial Sectors for CO2 Mitigation through the Driving Effects: An Attribution Analysis. International Journal of Environmental Research and Public Health, 19(21), 14561. https://doi.org/10.3390/ijerph192114561