Effect of Digital-Based Self-Learned Educational Intervention about COVID-19 Using Protection Motivation Theory on Non-Health Students’ Knowledge and Self-Protective Behaviors at Saudi Electronic University
Abstract
:1. Introduction
1.1. Significance of the Study
1.2. Hypotheses
- The COVID-19 knowledge;
- The self-protective behaviors;
- The PMT components (perceived vulnerability, perceived severity, fear, intrinsic reward, extrinsic reward, response efficacy, self-efficacy, response cost, and protection intention).
2. Materials and Methods
2.1. Study Design and Setting
2.2. Participants
2.3. Survey Development
2.4. Instrument’s Validity and Reliability
2.5. Pilot Study
2.6. Fieldwork
2.7. Statistical Analysis
2.8. Ethical Considerations
3. Results
3.1. Participants’ Basic Data and Sources of Information about COVID-19
3.2. The PMT Constructs Scores Pre- and Post-Intervention for the Two Groups
3.3. The COVID-19 Knowledge Scores Pre- and Post-Intervention for the Two Groups
3.4. Self-Protective Behaviors Scores Pre- and Post-Intervention for the Two Groups
4. Discussion
Strengths, Limitations, and Future Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halaji, M.; Farahani, A.; Ranjbar, R.; Heiat, M.; Dehkordi, F.S. Emerging coronaviruses: First SARS, second MERS and third SARS-CoV-2: Epidemiological updates of COVID-19. Infez. Med. 2020, 28 (Suppl. S1), 6–17. [Google Scholar]
- Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [Google Scholar] [CrossRef] [PubMed]
- Gralinski, L.E.; Menachery, V.D. Return of the Coronavirus: 2019-nCoV. Viruses 2020, 12, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Emergencies. Coronavirus Disease (COVID-19) Pandemic. Available online: https://www.who.int/europe/emergencies/situations/covid-19 (accessed on 14 October 2022).
- World Health Organization (WHO). Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 9 January 2022).
- Centres for Disease Control and Prevention. Post-COVID Conditions: Information for Healthcare Providers. 2021. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/post-covid-conditions.html (accessed on 7 August 2021).
- Khot, W.Y.; Nadkar, M.Y. The 2019 Novel Coronavirus Outbreak—A Global Threat. J. Assoc. Physicians India 2020, 68, 67–71. [Google Scholar]
- World Health Organization (WHO). Risk Communication and Community Engagement (RCCE) Action Plan Guidance COVID-19 Preparedness and Response. Available online: www.who.int/publications-detail/risk-communication-and-communityengagement-(rcce)-action-plan-guidance\ (accessed on 7 August 2021).
- Centres for Disease Control and Prevention (CDC). Corona Virus 2019 (COVID-19). Available online: https://www.cdc.gov/coronavirus/2019-ncov/community/index.html (accessed on 7 August 2021).
- Kowalski, R.M.; Black, K.J. Protection Motivation and the COVID-19 Virus. Health Commun. 2021, 36, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.W. A Protection Motivation Theory of Fear Appeals and Attitude Change1. J. Psychol. 1975, 91, 93–114. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.W. Cognitive and Physiological Processes in Fear Appeals and Attitude Change: A Revised Theory of Protection Motivation. In Social Psychophysiology: A Sourcebook; Cacioppo, J.T., Petty, R.E., Eds.; Guilford Press: New York, NY, USA, 1983; pp. 153–176. [Google Scholar]
- Sommestad, T.; Karlzén, H.; Hallberg, J. A meta-analysis of studies on protection motivation theory and information security behaviour. Int. J. Inf. Secur. Priv. 2015, 9, 26–46. [Google Scholar] [CrossRef] [Green Version]
- Adunlin, G.; Adedoyin, A.C.A.; Adedoyin, O.O.; Njoku, A.; Bolade-Ogunfodun, Y.; Bolaji, B. Using the protection motivation theory to examine the effects of fear arousal on the practice of social distancing during the COVID-19 outbreak in rural areas. J. Hum. Behav. Soc. Environ. 2021, 1, 1–4. [Google Scholar] [CrossRef]
- Yehudai, M.; Bender, S.; Gritsenko, V.; Konstantinov, V.; Reznik, A.; Isralowitz, R. COVID-19 Fear, Mental Health, and Substance Misuse Conditions Among University Social Work Students in Israel and Russia. Int. J. Ment. Health Addict. 2022, 20, 316–323. [Google Scholar] [CrossRef]
- Sayed, S.H.; Elsayed, E.A.; Zedan, H.S.; Mossad, A.A. Impact of social media on Risk Perception and Preventive Behaviors Toward Covid-19 In Saudi Arabia. Majmaah. J. Health Sci. 2021, 9, 41–56. [Google Scholar] [CrossRef]
- Wang, P.W.; Ahorsu, D.K.; Lin, C.Y.; Chen, I.H.; Yen, C.F.; Kuo, Y.J.; Griffiths, M.D.; Pakpour, A.H. Motivation to Have COVID-19 Vaccination Explained Using an Extended Protection Motivation Theory among University Students in China: The Role of Information Sources. Vaccines 2021, 9, 380. [Google Scholar] [CrossRef]
- Sharma, M.; Batra, K.; Davis, R.E.; Wilkerson, A.H. Explaining Handwashing Behavior in a Sample of College Students during COVID-19 Pandemic Using the Multi-Theory Model (MTM) of Health Behavior Change: A Single Institutional Cross-Sectional Survey. Healthcare 2021, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Madian, A.; Sayed, S. Effect of Interactive Digital-Based Educational Intervention on knowledge, Misconceptions, and Preventive Practices of COVID-19 among Damanhour University Students. EJHC 2021, 12, 1136–1154. [Google Scholar] [CrossRef]
- Kaim, A.; Jaffe, E.; Siman-Tov, M.; Khairish, E.; Adini, B. Impact of a Brief Educational Intervention on Knowledge, Perceived Knowledge, Perceived Safety, and Resilience of the Public During COVID-19 Crisis. Int. J. Environ. Res. Public Health 2020, 17, 5971. [Google Scholar] [CrossRef] [PubMed]
- Donner, A.; Birkett, N.; Buck, C. Randomization by cluster. Sample size requirements and analysis. Am. J. Epidemiol. 1981, 114, 906–914. [Google Scholar] [CrossRef]
- Chow, S.C.; Shao, J.; Wang, H. Sample Size Calculations in Clinical Research, 3rd ed.; Section 3.2.1; Chapman & Hall/CRC: New York, NY, USA; Boca Raton, FL, USA, 2017; p. 58. [Google Scholar] [CrossRef]
- Bashirian, S.; Jenabi, E.; Khazaei, S.; Barati, M.; Karimi-Shahanjarini, A.; Zareian, S.; Rezapur-Shahkolai, F.; Moeini, B. Factors associated with preventive behaviours of COVID-19 among hospital staff in Iran in 2020: An application of the Protection Motivation Theory. J. Hosp. Infect. 2020, 105, 1–4. [Google Scholar] [CrossRef]
- Ezati, R.; Mohseni, S.; Kamalzadeh, H.; Hassani, M.; Shahabi, N.; Aghamolaei, T.; Norozian, F. Application of the protection motivation theory for predicting COVID-19 preventive behaviors in Hormozgan, Iran: A cross-sectional study. BMC Public Health 2021, 21, 466. [Google Scholar] [CrossRef]
- Cohen, J.A. Power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Hassounah, M.; Raheel, H.; Alhefzi, M. Digital Response During the COVID-19 Pandemic in Saudi Arabia. J. Med. Internet. Res. 2020, 22, e19338. [Google Scholar] [CrossRef]
- Elgzar, W.T.; Al-Qahtani, A.M.; Elfeki, N.K.; Ibrahim, H.A. COVID-19 Outbreak: Effect of an Educational Intervention Based on Health Belief Model on Nursing Students’ Awareness and Health Beliefs at Najran University, Kingdom of Saudi Arabia. Afr. J. Reprod. Health 2020, 24, 78–86. [Google Scholar] [CrossRef]
- Fan, K.S.; Ghani, S.A.; Machairas, N.; Lenti, L.; Fan, K.H.; Richardson, D.; Scott, A.; Raptis, D.A. COVID-19 prevention and treatment information on the internet: A systematic analysis and quality assessment. BMJ Open 2020, 10, e040487. [Google Scholar] [CrossRef] [PubMed]
- Lep, Z.; Babnik, K.; Hacin, K. Emotional Responses and Self-Protective Behavior Within Days of the COVID-19 Outbreak: The Promoting Role of Information Credibility. Front. Psychol. 2020, 11, 1846. [Google Scholar] [CrossRef]
- Lahiri, A.; Jha, S.S.; Chakraborty, A.; Dobe, M.; Dey, A. Role of Threat and Coping Appraisal in Protection Motivation for Adoption of Preventive Behavior During COVID-19 Pandemic. Front. Public Health 2021, 9, 678566. [Google Scholar] [CrossRef] [PubMed]
- Morowatisharifabad, M.A.; Asadpour, M.; Zakeri, M.A.; Abdolkarimi, M. The Effect of Integrated Intervention Based on Protection Motivation Theory and Implementation Intention to Promote Physical Activity and Physiological Indicators of Patients with Type 2 Diabetes. Biomed. Res. Int. 2021, 2021, 6637656. [Google Scholar] [CrossRef] [PubMed]
- Malmir, S.; Barati, M.; Khani, A.; Bashirian, S.; Hazavehei, S.M. Effect of an Educational Intervention Based on Protection Motivation Theory on Preventing Cervical Cancer among Marginalized Women in West Iran. Asian Pac. J. Cancer Prev. 2018, 19, 755–761. [Google Scholar] [CrossRef]
- Khani, A.; Bashti, S.; Erfanian, B.; Ostovarfar, J.; Afzali, P. Application of protection motivation theory (PMT) on skin cancer preventive behaviors amongst primary school students in rural areas of Fasa city-Iran. BMC Cancer 2022, 22, 21. [Google Scholar] [CrossRef]
- Mehtari, A.; Mohebi, S.; Gharlipour, Z. Effect of Educational Program-Based Protection Motivation Theory on Preventive Behaviors of Skin Cancer Among Farmers in Kashan. Int. J. Cancer Manag. 2019, 12, e85944. [Google Scholar] [CrossRef]
- Mirkarimi, K.; Mostafavi, F.; Eshghinia, S.; Vakili, M.A.; Ozouni-Davaji, R.B.; Aryaie, M. Effect of Motivational Interviewing on a Weight Loss Program Based on the Protection Motivation Theory. Iran Red. Crescent. Med. J. 2015, 17, e23492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maseudi, G.R.; Hosseini, E.; Mirzaei, R.; Shahrakipour, M.; Hosseini, S.A. The Effect of Education Based on Protection Motivation Theory on The Harmful Effects of Solar Rays on Male Students. Iran J. Health Educ. Health Promot. 2014, 2, 322–330. Available online: http://journal.ihepsa.ir/article-1-180-en.html (accessed on 25 March 2021).
- Chen, X.; Lunn, S.; Deveaux, L. A cluster randomized controlled trial of an adolescent HIV prevention program among Bahamian youth: Effect at 12 months post-intervention. AIDS Behav. 2009, 13, 499–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, M.A.; Gharlipour, Z.; Mohebi, S.; Sharifirad, G.H.; Rahbar, A. Effect of education based on the protection motivation theory on preventive behaviors of Influenza A among high school students in Qom City, (Iran). Qom Univ. Med. Sci. J. 2019, 13, 22–33. [Google Scholar] [CrossRef]
- Tan, J.; Yoshida, Y.; Ma, K.S.; Mauvais-Jarvis, F. Gender Differences in Health Protective Behaviors During the COVID-19 Pandemic in Taiwan: An Empirical Study. medRxiv 2021, medRxiv:2021.04.14.21255448. [Google Scholar] [CrossRef]
- Dehdari, T.; Hassani, L.; Hajizadeh, E.; Shojaeizadeh, D.; Nedjat, S.; Abedini, M. Effects of an educational intervention based on the protection motivation theory and implementation intentions on first and second pap test practice in Iran. Asian Pac. J. Cancer Prev. 2014, 15, 7257–7261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wise, T.; Zbozinek, T.D.; Michelini, G.; Hagan, C.C.; Mobbs, D. Changes in risk perception and self-reported protective behaviour during the first week of the COVID-19 pandemic in the United States. R. Soc. Open Sci. 2020, 7, 200742. [Google Scholar] [CrossRef]
- Vieites, Y.; Ramos, G.A.; Andrade, E.B.; Pereira, C.; Medeiros, A. Can self-protective behaviors increase unrealistic optimism? Evidence from the COVID-19 pandemic. J. Exp. Psychol. Appl. 2021, 27, 621–631. [Google Scholar] [CrossRef] [PubMed]
Experimental Group N (112) | Control Group N (107) | X2/FET/t | df | p | |
---|---|---|---|---|---|
N (%) | N (%) | ||||
Sex | |||||
Male | 41 (36.6) | 28 (26.2) | X2 = 2.763 | 1 | 0.96 |
Female | 71 (63.4) | 79 (73.8) | |||
Marital status | |||||
Married | 59 (52.7) | 47 (43.9) | FET = 2.999 | 3 | 0.392 |
Divorced | 5 (4.4) | 6 (5.6) | |||
Single | 48 (42.9) | 54 (50.5) | |||
Academic level | |||||
1–4 | 20 (17.85) | 26 (24.29) | X2 = 8.568 | 1 | 0.130 |
5–8 | 92 (82.15) | 81 (75.21) | |||
Occupation | |||||
Governmental | 47 (42) | 37 (34.6) | FET = 5.222 | 3 | 0.156 |
Private | 9 (8) | 4 (3.7) | |||
Free business | 3 (2.7) | 1 (0.9) | |||
Not working | 53 (47.3) | 65 (60.7) | |||
Residence | |||||
Riyadh | 44 (39.3) | 37 (34.6) | FET = 2.045 | 3 | 0.359 |
Dammam | 43 (38.4) | 37 (34.6) | |||
Jeddah | 25 (22.3) | 33 (30.8) | |||
Previous work in health institutions | |||||
Yes | 57 (50.9) | 43 (40.2) | X2 = 2.528 | 1 | 0.112 |
No | 55 (49.1) | 64 (59.8) | |||
Direct contact with confirmed COVID-19 patient | |||||
Yes | 88 (78.6) | 74 (69.2) | X2 = 2.518 | 1 | 0.113 |
No | 24 (21.4) | 33 (30.8) | |||
Age in years-Mean (SD) | 28.94 (6.719) | 27.80 (7.256) | t = 1.2 | 217 | 0.231 |
Sources of information about COVID-19 pre-intervention # | |||||
| 98 (87.5) | 97 (90.7) | |||
| 82 (73.2) | 81 (75.7) | X2 = 6.564 | 1 | 0.195 |
| 77 (68.8) | 76 (71.0) | |||
| 66 (58.9) | 60 (56.1) | |||
| 43 (38.4) | 35 (32.7) | |||
| 36 (32.1) | 38 (35.5) | |||
| 35 (31.3) | 39 (36.4) | |||
| 29 (25.9) | 32 (29.9) |
PMT Constructs | Pre | Post | Reference (Control Group) | Reference (Pretest) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Experimental Mean (SD) | Control Mean (SD) | Experimental Mean (SD) | Control Mean (SD) | F | p Value | Partial η2 | F | p Value | Partial η2 | |
- Perceived vulnerability | 8.021 (2.493) | 7.22 (2.493) | 10.79 (1.807) | 8.98 (1.780) | F1 = 54.837 | <0.001 * | 0.202 | F1 = 2.689 | 0.675 | 0.013 |
- Perceived severity | 11.78 (2.074) | 11.29 (2.124) | 13.03 (1.896) | 11.69 (1.718) | F1 = 27.449 | <0.001 * | 0.113 | F9 = 5.109 | 0.030 * | 0.221 |
- Fear | 10.035 (3.048) | 9.336 (3.209) | 11.61 (2.170) | 10.29 (2.391) | F1 = 21.817 | <0.001 * | 0.092 | F2 = 9.442 | 0.002 * | 0.042 |
Total perceived threats | 29.812 (5.107) | 27.850 (6.104) | 35.428 (4.531) | 30.962 (4.076) | F1 = 58.998 | <0.001 * | 0.215 | F2 = 6.232 | 0.012 * | 0.442 |
- Intrinsic reward | 12.866 (1.398) | 13.1 (1.687) | 13.68 (1.520) | 12.50 (1.403) | F1 = 34.731 | <0.001 * | 0.139 | F2 = 12.688 | 0.039 * | 0.194 |
- Extrinsic reward | 12.258 (1.054) | 12.196 (1.598) | 13.40 (1.624) | 12.00 (1.732) | F1 = 38.012 | <0.001 * | 0.150 | F9 = 3.629 | 0.019 * | 0.262 |
Total reward appraisal | 25.125 (2.160) | 24.234 (3.048) | 28.080 (2.809) | 24.504 (2.199) | F1 = 56.405 | <0.001 * | 0.207 | F14 = 2.850 | 0.016 * | 0.365 |
- Response efficacy | 11.705 (1.305) | 11.320 (1.647) | 12.99 (1.872) | 11.52 (1.501) | F1 = 40.631 | <0.001 * | 0.158 | F1 = 2.180 | 0.141 | 0.010 |
- Self-efficacy | 11.883 (1.353) | 12.196 (1.538) | 12.99 (1.788) | 11.78 (1.803) | F1 = 25.841 | <0.001 * | 0.107 | F1 = 2.137 | 0.045 * | 0.025 |
Total efficacy appraisal | 23.589 (2.224) | 23.953 (2.991) | 26.982 (3.229) | 24.102 (2.381) | F1 = 47.952 | <0.001 * | 0.182 | F9 = 3.811 | 0.016 * | 0.030 |
Response cost | 7.848 (3.252) | 6.981 (3.135) | 8.53 (4.025) | 7.04 (3.555) | F1 = 8.102 | <0.001 * | 0.036 | F1 = 3.658 | 0.007 * | 0.312 |
Protection intention | 14.750 (0.729) | 13.59 (0.988) | 17.12 (2.636) | 14.47 (2.134) | F1 = 66.671 | <0.001 * | 0.236 | F1 = 5.873 | 0.020 * | 0.164 |
Total PMT score | 101.01 (9.255) | 99.25 (8.037) | 114.13 (13.373) | 100.27 (8.282) | F1 = 83.835 | <0.001 * | 0.280 | F1 = 11.658 | 0.000 * | 0.561 |
COVID-19 Knowledge | Pre | Post | Reference (Control Group) | Reference (Pretest) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Experimental Mean (SD) | Control Mean (SD) | Experimental Mean (SD) | Control Mean (SD) | F | p Value | Partial η2 | F | p Value | Partial η2 | |
Mode of transmission | 2.79 (0.473) | 2.81 (0.0.552) | 3.39 (0.543) | 2.91 (0.539) | F1 = 106.880 | <0.001 * | 0.331 | F1 = 77.248 | 0.000 * | 0.293 |
Signs and symptoms | 4.81 (0.456) | 4.65 (0.472) | 6.46 (0.747) | 4.88 (0.381) | F1 = 365.328 | <0.001 * | 0.647 | F2 = 5.472 | 0.020 * | 0.025 |
High-risk groups | 3.95 (0.837) | 4.07 (0.756) | 4.97 (0.788) | 4.16 (0.881) | F1 = 51.250 | <0.001 * | 0.191 | F2 = 4.865 | 0.029 * | 0.032 |
Preventive measures | 4.25 (0.511) | 4.28 (0.491) | 5.55 (0.627) | 4.57 (0.585) | F1 = 145.978 | <0.001 * | 0.403 | F2 = 2.744 | 0.099 | 0.013 |
Emergency signs | 2.84 (0.393) | 2.94 (0.231) | 3.95 (0.263) | 2.67 (0.510) | F1 = 527.223 | <0.001 * | 0.709 | F1 = 10.81 | 0.002 * | 0.060 |
Vaccination | 2.78 (0.447) | 0.2.93 (0.521) | 4.34 (0.652) | 3.10 (0.614) | F1 = 473.642 | <0.001 * | 0.687 | F1 = 3.368 | 0.037 * | 0.041 |
Total knowledge score | 18.63 (1.433) | 18.93 (1.226) | 24.33 (1.747) | 18.92 (1.388) | F1 = 630.547 | <0.001 * | 0.745 | F1 = 8.585 | 0.000 * | 0.268 |
Self-Protective Behaviors | Pre | Post | Reference (Control Group) | Reference (Pretest) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Experimental Mean (SD) | Control Mean (SD) | Experimental Mean (SD) | Control Mean (SD) | F | p Value | Partial η2 | F | p Value | Partial η2 | |
| 2.01 (0.094) | 1.989 (0.168) | 2.52 (0.502) | 2.03 (0.166) | F1 = 37.504 | <0.001 * | 0.130 | F1 = 0.528 | 0.468 | 0.002 |
| 2 (0.232) | 1.99 (0.217) | 2.38 (0.486) | 2.04 (0.191) | F1 = 45.479 | <0.001 * | 0.174 | F9 = 4.223 | 0.020 * | 0.135 |
| 2.035 (0.186) | 2 (0.130) | 2.54 (0.500) | 2.04 (0.121) | F1 = 124.568 | <0.001 * | 0.366 | F2 = 6.112 | 0.004 * | 0.072 |
| 2 (0.355) | 2 (0.275) | 2.52 (0.502) | 1.95 (0.212) | F1 = 118.304 | <0.001 * | 0.354 | F2 = 3.173 | 0.007 * | 0.052 |
| 2 (0.002) | 2 (10.001) | 2.57 (0.497) | 2.03 (0.097) | F1 = 43.106 | <0.001 * | 0.180 | F2 = 5.688 | 0.042 * | 0.014 |
| 1.95 (0.351) | 1.79 (0.347) | 2.54 (0.510) | 1.90 (0.362) | F1 = 120.006 | <0.001 * | 0.357 | F9 = 4.629 | 0.039 * | 0.027 |
| 2.13 (0.332) | 1.96 (0.317) | 2.47 (0.376) | 2.08 (0.132) | F1 = 65.705 | <0.001 * | 0.227 | F14 = 2.944 | 0.040 * | 0.024 |
| 1.35 (0.551) | 1.46 (0.447) | 2.13 (0.432) | 1.731 (0.372) | F1 = 37.742 | <0.001 * | 0.231 | F1 = 0.337 | 0.562 | 0.002 |
Total self-protective behaviors | 14.750 (0.729) | 13.59 (0.988) | 17.12 (2.636) | 14.47 (2.134) | F1 = 66.671 | <0.001 * | 0.236 | F1 = 5.873 | 0.020 * | 0.164 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayed, S.H.; Al-Mohaithef, M.; Elgzar, W.T. Effect of Digital-Based Self-Learned Educational Intervention about COVID-19 Using Protection Motivation Theory on Non-Health Students’ Knowledge and Self-Protective Behaviors at Saudi Electronic University. Int. J. Environ. Res. Public Health 2022, 19, 14626. https://doi.org/10.3390/ijerph192214626
Sayed SH, Al-Mohaithef M, Elgzar WT. Effect of Digital-Based Self-Learned Educational Intervention about COVID-19 Using Protection Motivation Theory on Non-Health Students’ Knowledge and Self-Protective Behaviors at Saudi Electronic University. International Journal of Environmental Research and Public Health. 2022; 19(22):14626. https://doi.org/10.3390/ijerph192214626
Chicago/Turabian StyleSayed, Samiha Hamdi, Mohammed Al-Mohaithef, and Wafaa Taha Elgzar. 2022. "Effect of Digital-Based Self-Learned Educational Intervention about COVID-19 Using Protection Motivation Theory on Non-Health Students’ Knowledge and Self-Protective Behaviors at Saudi Electronic University" International Journal of Environmental Research and Public Health 19, no. 22: 14626. https://doi.org/10.3390/ijerph192214626
APA StyleSayed, S. H., Al-Mohaithef, M., & Elgzar, W. T. (2022). Effect of Digital-Based Self-Learned Educational Intervention about COVID-19 Using Protection Motivation Theory on Non-Health Students’ Knowledge and Self-Protective Behaviors at Saudi Electronic University. International Journal of Environmental Research and Public Health, 19(22), 14626. https://doi.org/10.3390/ijerph192214626