Impact of Digital Economy Development on Carbon Emission Efficiency: A Spatial Econometric Analysis Based on Chinese Provinces and Cities
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. The Digital Economy Development and Carbon Emission Efficiency
2.2. Spatial Spillover Effects of the Digital Economy Development
3. Variable Selection and Data Description
3.1. Variable Definition
3.1.1. Explained Variable Carbon Emission Efficiency (CEE)
3.1.2. Explanatory Variable the Digital Economy Development Level (Digital)
3.1.3. Control Variables
3.2. Model Construction
3.2.1. Super-SBM-Undesirable Model
3.2.2. Econometric Model Construction
3.3. Spatial Weight Matrix
4. Spatial Econometric Regression
4.1. Spatial Dependence Test
4.2. Analysis of Regression Results
4.2.1. Baseline Model Selection
4.2.2. Spatial Econometric Regression Results
4.2.3. Decomposition of Spatial Spillover Effects
4.2.4. Regression Results of Different Digital Economy Development Dimensions
4.3. Robustness Test
4.4. Further Research
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campisi, T.; Mądziel, M.; Nikiforiadis, A.; Basbas, S.; Tesoriere, G. In an Estimation of Emission Patterns from Vehicle Traffic Highlighting Decarbonisation Effects from Increased e-fleet in Areas Surrounding the City of Rzeszow (Poland). In Proceedings of the International Conference on Computational Science and Its Applications, Cagliari, Italy, 13–16 September 2021; pp. 683–698. [Google Scholar] [CrossRef]
- Notice of the State Council on the issuance of the “14th Five-Year Plan” for the development of the digital economy. Peoples Repub. China State Counc. Gaz. 2022, 5–18.
- China Academy of Information and Communications Technology (CAICT). White Book of Digital Carbon Neutrality. “Digital Empowerment Carbon Dafeng Carbon Neutral Sub-forum”. In Proceedings of the 2022 CAICT’s ICT+ In-Depth Observation Report Conference, Beijing, China, 20 December 2021. [Google Scholar]
- Chen, Y. Improving market performance in the digital economy. China Econ. Rev. 2020, 62, 101482. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Ran, Q.; Wu, H.; Irfan, M.; Ahmad, M. Energy structure, digital economy, and carbon emissions: Evidence from China. Environ. Sci. Pollut. Res. 2021, 28, 64606–64629. [Google Scholar] [CrossRef] [PubMed]
- Shobande, O.A. Decomposing the persistent and transitory effect of information and communication technology on environmental impacts assessment in Africa: Evidence from Mundlak Specification. Sustainability 2021, 13, 4683. [Google Scholar] [CrossRef]
- Salahuddin, M.; Gow, J.; Ozturk, I. Is the long-run relationship between economic growth, electricity consumption, carbon dioxide emissions and financial development in Gulf Cooperation Council Countries robust? Renew. Sustain. Energy Rev. 2015, 51, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Wang, Y.; Dong, X. Effects of smart city construction on energy saving and CO2 emission reduction: Evidence from China. Appl. Energy 2022, 313, 118879. [Google Scholar] [CrossRef]
- Brannlund, R.; Persson, L. To tax, or not to tax: Preferences for climate policy attributes. Clim. Policy 2012, 12, 704–721. [Google Scholar] [CrossRef]
- Guo, F.; Sun, R.; Meng, S. Digital Economy, Technological Innovation and Carbon Productivity. World Surv. Res. 2022, 12–19. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. The race between man and machine: Implications of technology for growth, factor shares, and employment. Am. Econ. Rev. 2018, 108, 1488–1542. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y. The Effect and Mechanism of Digital Economy on Regional Carbon Emission Intensity. Contemp. Econ. Manag. 2022, 44, 68–78. [Google Scholar] [CrossRef]
- Shvakov, E.E.; Petrova, E.A. Newest trends and future scenarios for a sustainable digital economy development. In Proceedings of the Institute of Scientific Communications Conference, Vladimir, Russia, 17–19 April 2019; pp. 1378–1385. [Google Scholar] [CrossRef]
- Salahuddin, M.; Alam, K. Internet usage, electricity consumption and economic growth in Australia: A time series evidence. Telemat. Inform. 2015, 32, 862–878. [Google Scholar] [CrossRef]
- Yu, H.; Zhu, Q. Impact and mechanism of digital economy on China’s carbon emissions: From the perspective of spatial heterogeneity. Environ. Sci. Pollut. Res. 2022, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Deng, Y.; Zhou, J.; Wu, J.; Pang, Q. Spatial spillover effect of carbon emission efficiency in the construction industry of China. Environ. Sci. Pollut. Res. 2022, 29, 2466–2479. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Liu, S.; Zhu, Z. Has the Digital Economy Reduced Carbon Emissions? Analysis Based on Panel Data of 278 Cities in China. Int. J. Environ. Res. Public Health 2022, 19, 11814. [Google Scholar] [CrossRef]
- Zhang, R.; Fu, W.; Kuang, Y. Can Digital Economy Promote Energy Conservation and Emission Reduction in Heavily Polluting Enterprises? Empirical Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 9812. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, B.; Yu, Z.; Cao, J. Effects of the Digital Economy on Carbon Emissions: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 9450. [Google Scholar] [CrossRef]
- Ma, Q.; Tariq, M.; Mahmood, H.; Khan, Z. The nexus between digital economy and carbon dioxide emissions in China: The moderating role of investments in research and development. Technol. Soc. 2022, 68, 101910. [Google Scholar] [CrossRef]
- Jaworski, A.; Mądziel, M.; Kuszewski, H. Sustainable Public Transport Strategies—Decomposition of the Bus Fleet and Its Influence on the Decrease in Greenhouse Gas Emissions. Energies 2022, 15, 2238. [Google Scholar] [CrossRef]
- Mądziel, M.; Jaworski, A.; Kuszewski, H.; Woś, P.; Campisi, T.; Lew, K. The Development of CO2 Instantaneous Emission Model of Full Hybrid Vehicle with the Use of Machine Learning Techniques. Energies 2021, 15, 142. [Google Scholar] [CrossRef]
- Li, Y.; Lim, M.K.; Tan, Y.; Lee, Y.; Tseng, M.-L. Sharing economy to improve routing for urban logistics distribution using electric vehicles. Resour. Conserv. Recycl. 2020, 153, 104585. [Google Scholar] [CrossRef]
- Palomeque-Mangut, S.; Meléndez, F.; Gómez-Suárez, J.; Frutos-Puerto, S.; Arroyo, P.; Pinilla-Gil, E.; Lozano, J. Wearable system for outdoor air quality monitoring in a WSN with cloud computing: Design, validation and deployment. Chemosphere 2022, 307, 135948. [Google Scholar] [CrossRef]
- Hemamalini, R.R.; Vinodhini, R.; Shanthini, B.; Partheeban, P.; Charumathy, M.; Cornelius, K. Air quality monitoring and forecasting using smart drones and recurrent neural network for sustainable development in Chennai city. Sustain. Cities Soc. 2022, 85, 104077. [Google Scholar] [CrossRef]
- Wang, J.; Wang, B.; Dong, K.; Dong, X. How does the digital economy improve high-quality energy development? The case of China. Technol. Forecast. Soc. Chang. 2022, 184, 121960. [Google Scholar] [CrossRef]
- Shahbaz, M.; Wang, J.; Dong, K.; Zhao, J. The impact of digital economy on energy transition across the globe: The mediating role of government governance. Renew. Sustain. Energy Rev. 2022, 166, 112620. [Google Scholar] [CrossRef]
- Wang, J.; Wang, K.; Dong, K.; Shahbaz, M. How does the digital economy accelerate global energy justice? Mechanism discussion and empirical test. Energy Econ. 2022, 114, 106315. [Google Scholar] [CrossRef]
- Xue, Y.; Tang, C.; Wu, H.; Liu, J.; Hao, Y. The emerging driving force of energy consumption in China: Does digital economy development matter? Energy Policy 2022, 165, 112997. [Google Scholar] [CrossRef]
- Hou, J.; Wang, M.; Liu, P. Can sharing economy mode advance the transition of China’s energy sector effectively: A case of PV technology transition? Energy Rep. 2021, 7, 502–514. [Google Scholar] [CrossRef]
- Chien, F. The mediating role of energy efficiency on the relationship between sharing economy benefits and sustainable development goals (Case of China). J. Innov. Knowl. 2022, 7, 100270. [Google Scholar] [CrossRef]
- Paśko, Ł.; Mądziel, M.; Stadnicka, D.; Dec, G.; Carreras-Coch, A.; Solé-Beteta, X.; Pappa, L.; Stylios, C.; Mazzei, D.; Atzeni, D. Plan and Develop Advanced Knowledge and Skills for Future Industrial Employees in the Field of Artificial Intelligence, Internet of Things and Edge Computing. Sustainability 2022, 14, 3312. [Google Scholar] [CrossRef]
- Dec, G.; Stadnicka, D.; Paśko, Ł.; Mądziel, M.; Figliè, R.; Mazzei, D.; Tyrovolas, M.; Stylios, C.; Navarro, J.; Solé-Beteta, X. Role of Academics in Transferring Knowledge and Skills on Artificial Intelligence, Internet of Things and Edge Computing. Sensors 2022, 22, 2496. [Google Scholar] [CrossRef]
- Wu, K.; Zhu, M.; Yan, S. The impact of the level of development of the digital economy on the structure of labor force employment. Stat. Decis. Mak. 2022, 38, 106–111. [Google Scholar] [CrossRef]
- Yi, M.; Liu, Y.; Sheng, M.S.; Wen, L. Effects of digital economy on carbon emission reduction: New evidence from China. Energy Policy 2022, 171, 113271. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y. Research on the spatial distribution pattern and influencing factors of digital economy development in China. IEEE Access 2021, 9, 63094–63106. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, S.; Zhao, T.; Zhang, Y. The Influence of Digital Technology Innovation on Industrial Structure Upgrade and Its Spatial Effect—Evidence from the Yangtze River Economic Belt. Soft Sci. 2022, 1–16. [Google Scholar]
- Zhang, W.; Liu, X.; Wang, D.; Zhou, J. Digital economy and carbon emission performance: Evidence at China’s city level. Energy Policy 2022, 165, 112927. [Google Scholar] [CrossRef]
- Zhao, S.; Cacciolatti, L.; Lee, S.H.; Song, W. Regional collaborations and indigenous innovation capabilities in China: A multivariate method for the analysis of regional innovation systems. Technol. Forecast. Soc. Chang. 2015, 94, 202–220. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Lan, H.; Zhao, C.; Zhou, J. Haze Pollution Levels, Spatial Spillover Influence, and Impacts of the Digital Economy: Empirical Evidence from China. Sustainability 2021, 13, 9076. [Google Scholar] [CrossRef]
- Chen, P. Is the digital economy driving clean energy development?—New evidence from 276 cities in China. J. Clean. Prod. 2022, 372, 133783. [Google Scholar] [CrossRef]
- Gu, B.; Liu, J.; Ji, Q. The effect of social sphere digitalization on green total factor productivity in China: Evidence from a dynamic spatial Durbin model. J. Environ. Manag. 2022, 320, 115946. [Google Scholar] [CrossRef]
- Yu, S.; Fan, X.; Jiang, H. Research on the Impact of Digital Economy Development on Carbon Productivity Improvement. J. Stat. Inf. 2022, 37, 26–35. [Google Scholar]
- Liu, J.; Chen, Y. Digital technology development, temporal and spatial effects, regional carbon emissions. Stud. Sci. Sci. 2020, 3, 1–17. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J. The Dynamic Impact of Digital Economy on Carbon Emission Reduction: Evidence City-level Empirical Data in China. J. Clean. Prod. 2022, 351, 131570. [Google Scholar] [CrossRef]
- Shan, H. Reestimating the Capital Stock of China: 1952–2006. J. Quant. Tech. Econ. 2008, 25, 17–31. [Google Scholar]
- Xie, W.; Gao, K.; Yu, J. Digital Economy, Industrial Structure Upgrading and Carbon Emissions. Stat. Decis. 2022, 38, 114–118. [Google Scholar] [CrossRef]
- Ge, L.; Mo, L.; Huang, N. Development of Digital Economy, Upgrading of Industrial Structure and Urban Carbon Emission. Mod. Financ. Econ. J. Tianjin Univ. Financ. Econ. 2022, 42, 20–37. [Google Scholar] [CrossRef]
- Zhao, R.; Min, N.; Geng, Y.; He, Y. Allocation of carbon emissions among industries/sectors: An emissions intensity reduction constrained approach. J. Clean. Prod. 2017, 142, 3083–3094. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Liu, Z.; Zhang, H.; Tan, T.-D. The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China. Nat. Hazards 2014, 73, 579–595. [Google Scholar] [CrossRef]
- Wang, Z.; Cui, C.; Peng, S. How do urbanization and consumption patterns affect carbon emissions in China? A decomposition analysis. J. Clean. Prod. 2019, 211, 1201–1208. [Google Scholar] [CrossRef]
- Chen, W.; Jin, X. Carbon Emissions and Regional Economic Growth—An Empirical Analysis Based on Inter-Provincial Panel Data from 2000–2012. Macroeconomics 2016, 10, 121–132+154. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, Y.; Zhang, Y. Study on the Mechanism and Spatial Characteristics of Technological Progress on Industrial Carbon Emission Intensity—An Empirical Analysis Based on Panel Quantile Regression. Bus. Econ. 2020, 39, 71–78. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Anselin, L. Thirty years of spatial econometrics. Pap. Reg. Sci. 2010, 89, 3–25. [Google Scholar] [CrossRef]
- Wu, G.; Sun, X.; Yu, F.; Yang, L. Spatial correlation pattern and influencing factors of China’s crop production carbon productivity. China Popul. Resour. Environ. 2020, 30, 46–57. [Google Scholar]
- Anselin, L.; Bera, A.K.; Florax, R.; Yoon, M.J. Simple diagnostic tests for spatial dependence. Reg. Sci. Urban Econ. 1996, 26, 77–104. [Google Scholar] [CrossRef]
- Jin, C.; Cheng, H. Is there a spatial spillover effect between manufacturing industry agglomeration and regional specialization in China?—Empirical evidence from a spatial Durbin model. Quant. Econ. 21st Century 2013, 13, 506–527. [Google Scholar]
- Cardona, M.; Kretschmer, T.; Strobel, T. ICT and productivity: Conclusions from the empirical literature. Inf. Econ. Policy 2013, 25, 109–125. [Google Scholar] [CrossRef]
- Corredoira, R.A.; McDermott, G.A. Adaptation, bridging and firm upgrading: How non-market institutions and MNCs facilitate knowledge recombination in emerging markets. J. Int. Bus. Stud. 2014, 45, 699–722. [Google Scholar] [CrossRef]
- Han, F.; Xie, R. Does the Agglomeration of Producer Services Reduce Carbon Emissions? J. Quant. Tech. Econ. 2017, 34, 40–58. [Google Scholar] [CrossRef]
- Long, R.; Gan, X.; Chen, H.; Wang, J.; Li, Q. Spatial econometric analysis of foreign direct investment and carbon productivity in China: Two-tier moderating roles of industrialization development. Resour. Conserv. Recycl. 2020, 155, 104677. [Google Scholar] [CrossRef]
- You, W.; Li, Y.; Guo, P.; Guo, Y. Income inequality and CO2 emissions in belt and road initiative countries: The role of democracy. Environ. Sci. Pollut. Res. 2020, 27, 6278–6299. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Li, M.; Zhao, Y.; Gong, X.; Jin, R.; Zhang, Y.; Li, X.; Liu, L. Does Environmental Regulation Improve Carbon Emission Efficiency? Inspection of Panel Data from Inter-Provincial Provinces in China. Sustainability 2022, 14, 10448. [Google Scholar] [CrossRef]
- Xie, N.Y.; Zhang, Y. The Impact of Digital Economy on Industrial Carbon Emission Efficiency: Evidence from Chinese Provincial Data. Math. Probl. Eng. 2022, 2022, 6583809. [Google Scholar] [CrossRef]
- Xu, W.; Zhou, J.; Liu, C. The impact of digital economy on urban carbon emissions: Based on the analysis of spatial effects. Geogr. Res. 2022, 41, 111–129. [Google Scholar]
Variables | Variable Definitions | Unit | |
---|---|---|---|
Input | Labor Input | The number of employees | Million |
Capital Input | Capital stock calculated using 2011 as the base period | Billion Yuan | |
Energy Input | The total energy consumption | Million Tons of Standard Coal | |
Desired Output | Economic Output | The real GDP calculated using 2011 as the base period | Billion Yuan |
Undesired Output | Carbon Output | The total carbon dioxide emissions from all energy sources | Million Tons |
Primary Indicators | Secondary Indicators | Tertiary Indicators | Weights | Indicator Direction |
---|---|---|---|---|
Digital Economy | Digital Infrastructure (Infras) | Length of fiber optic cable lines per capita | 2.80% | + |
Number of Internet broadband access ports | 3.78% | + | ||
Number of cell phone base stations | 3.64% | + | ||
Number of Internet domain names | 9.25% | + | ||
Internet Development (IntDev) | Mobile Phone Penetration Rate | 1.70% | + | |
Internet broadband access users | 3.87% | + | ||
Digital Industry Development (IndusDev) | The output value of the information service industry | 8.85% | + | |
Total telecom business per capita | 7.04% | + | ||
The total turnover of technology contracts | 11.80% | + | ||
Software industry revenue | 11.39% | + | ||
Percentage of employed persons in urban units of information transmission, software, and information technology service industry | 5.56% | + | ||
Digital Finance (DF) | The breadth of digital financial coverage | 25.27% | + | |
Depth of digital finance usage | 1.42% | + | ||
Digitalization of digital finance | 1.78% | + | ||
Level of online mobile payment | 1.85% | + |
Variable Type | Variables | Variable Definitions |
---|---|---|
Explained variable | Carbon Emission Efficiency (CEE) | Carbon emission efficiency calculated based on the Super-SBM-Undesirable Model |
Explanatory variable | Digital Economy (Digital) | The digital economy development index calculated based on the entropy method |
Control variable | Population Density (PopuD) | The number of people per unit area |
Economic Development (PGDP) | dRegional GDP per capita | |
Technological Innovation (RD) | Total internal expenditure on R&D | |
Industry Structure (Indus) | The ratio of tertiary industry output to secondary industry | |
Urbanization (Urban) | The ratio of the non-agricultural population to the total population |
Variable Type | Variables | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|---|
Explained variable | CEE | 270 | 0.4505 | 0.2218 | 0.2281 | 1.2880 |
Explanatory variable | Digital | 270 | 0.1156 | 0.0991 | 0.0104 | 0.5844 |
Control variable | PopuD | 270 | 2864.2 | 1152.1 | 764.00 | 5821.0 |
PGDP | 270 | 54,717 | 26,320 | 16,413 | 164,220 | |
RD | 270 | 872,444 | 1,667,339 | 196.00 | 1.20 × 107 | |
Indus | 270 | 1.1739 | 0.6664 | 0.5180 | 5.1692 | |
Open | 270 | 178.53 | 264.83 | 0.1612 | 1522.9 | |
Urban | 270 | 0.5764 | 0.1218 | 0.3496 | 0.8960 |
Year | Wbinary | Wdistance | Wdistance2 | Wdis&eco | ||||
---|---|---|---|---|---|---|---|---|
Moran’s I | p Value | Moran’s I | p Value | Moran’s I | p Value | Moran’s I | p Value | |
2011 | 0.237 | 0.014 ** | 0.033 | 0.037 ** | 0.164 | 0.021 ** | 0.663 | 0.000 *** |
2012 | 0.250 | 0.010 *** | 0.039 | 0.025 ** | 0.168 | 0.019 ** | 0.660 | 0.000 *** |
2013 | 0.214 | 0.024 ** | 0.028 | 0.052 * | 0.138 | 0.044 ** | 0.647 | 0.000 *** |
2014 | 0.232 | 0.016 ** | 0.035 | 0.033 ** | 0.151 | 0.030 ** | 0.638 | 0.000 *** |
2015 | 0.215 | 0.024 ** | 0.030 | 0.047 ** | 0.138 | 0.044 ** | 0.630 | 0.000 *** |
2016 | 0.212 | 0.025 ** | 0.031 | 0.045 ** | 0.139 | 0.042 ** | 0.629 | 0.000 *** |
2017 | 0.218 | 0.021 ** | 0.034 | 0.034 ** | 0.148 | 0.031 ** | 0.634 | 0.000 *** |
2018 | 0.230 | 0.017 ** | 0.038 | 0.025 ** | 0.160 | 0.024 ** | 0.631 | 0.000 *** |
2019 | 0.241 | 0.016 ** | 0.045 | 0.018 ** | 0.179 | 0.015 ** | 0.624 | 0.000 *** |
(1) | (2) | |
---|---|---|
Variables | OLS | Spatial Fixed Effect |
Digital | 0.212 *** | 0.212 *** |
(4.52) | (4.52) | |
PopuD | 1.81 × 10−5 *** | 1.81 × 10−5 *** |
(4.56) | (4.56) | |
PGDP | 1.96 × 10−7 | 1.96 × 10−7 |
(0.74) | (0.74) | |
RD | −2.27 × 10−9 | −2.27 × 10−9 |
(−0.50) | (−0.50) | |
Indus | 0.0139 | 0.0139 |
(1.56) | (1.56) | |
Open | 1.56 × 10−4 *** | 1.56 × 10−4 *** |
(4.36) | (4.36) | |
Urban | 0.148 * | 0.148 * |
(1.84) | (1.84) | |
Constant | 0.891 *** | 0.236 *** |
(17.95) | (6.30) | |
Hausman Test | 44.92 (0.0000) | |
Spatial fixed | Yes | Yes |
R2 | 0.991 | 0.461 |
Observations | 270 | 270 |
LM-Error | R LM-Error | LM-Lag | R LM-Lag | Wald-Lag | Wald-Error | LR-Lag | LR-Error | |
---|---|---|---|---|---|---|---|---|
Wbinary | 185.92 *** | 161.67 *** | 25.477 *** | 1.245 | 5.56 | 23.79 *** | 24.42 *** | 30.36 *** |
(0.000) | (0.000) | (0.000) | (0.264) | (0.3512) | (0.0012) | (0.0004) | (0.0000) | |
Wdistance | 396.03 *** | 303.44 *** | 100.73 *** | 8.140 *** | 7.00 | 15.77 ** | 19.90 *** | 25.57 *** |
(0.000) | (0.000) | (0.000) | (0.004) | (0.2203) | (0.0273) | (0.0029) | (0.0003) | |
Wdistance2 | 255.13 *** | 113.61 *** | 155.87 *** | 14.35 *** | 5.21 | 24.51 *** | 24.39 *** | 31.10 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.3911) | (0.0009) | (0.0004) | (0.0000) | |
Wdis&eco | 62.216 *** | 34.301 *** | 32.019 *** | 4.104 ** | 45.47 *** | 45.59 *** | 44.44 *** | 47.68 *** |
(0.000) | (0.000) | (0.000) | (0.043) | (0.0000) | (0.0000) | (0.0000) | (0.0000) |
Variables | SDM-Wbinary | SAR-Wdistance | |
---|---|---|---|
x | W * x | ||
Digital | 0.161 *** | 0.124 * | 0.169 *** |
(3.64) | (1.90) | (3.74) | |
PopuD | 1.12 × 10−5 *** | 1.64 × 10−7 | 1.71 × 10−5 *** |
(3.02) | (0.02) | (4.76) | |
PGDP | 4.61 × 10−8 | 1.54 × 10−6 *** | 1.27 × 10−7 |
(0.18) | (3.64) | (0.53) | |
RD | 4.59 × 10−10 | −9.95 × 10−9 | −2.42 × 10−9 |
(0.11) | (−1.46) | (−0.59) | |
Indus | 0.0120 | 0.00758 | 0.00847 |
(1.23) | (0.47) | (0.99) | |
Open | 1.82 × 10−4 *** | 2.43 × 10−5 | 1.29 × 10−4 *** |
(4.38) | (0.35) | (3.89) | |
Urban | 0.144 | −0.558 *** | 0.209 ** |
(0.91) | (−2.66) | (2.55) | |
ρ | 0.195 ** | 0.454 *** | |
(2.48) | (3.54) | ||
sigma2 | 3.79 × 10−4 *** | 4.20 × 10−4 *** | |
(11.57) | (11.55) | ||
LogL | 679.0176 | 664.5960 | |
R2 | 0.521 | 0.257 | |
Observations | 270 | 270 |
Variables | SDM-Wbinary | SAR-Wdistance | ||||
---|---|---|---|---|---|---|
Direct | Indirect | Total | Direct | Indirect | Total | |
Digital | 0.169 *** | 0.182 ** | 0.351 *** | 0.166 *** | 0.131 ** | 0.297 *** |
(3.76) | (2.58) | (4.09) | (3.68) | (2.15) | (3.41) | |
PopuD | 1.12 × 10−5 *** | 2.95 × 10−6 | 1.41 × 10−5 | 1.69 × 10−5 *** | 1.36 × 10−5 ** | 3.05 × 10−5 *** |
(3.05) | (0.33) | (1.32) | (4.85) | (2.10) | (3.64) | |
PGDP | 1.42 × 10−7 | 1.88 × 10−6 *** | 2.02 × 10−6 *** | 1.44 × 10−7 | 1.12 × 10−7 | 2.56 × 10−7 |
(0.57) | (3.64) | (3.58) | (0.62) | (0.53) | (0.60) | |
RD | −6.72 × 10−11 | −1.19 × 10−8 | −1.20 × 10−8 | −1.61 × 10−9 | −1.28 × 10−9 | −2.89 × 10−9 |
(−0.02) | (−1.45) | (−1.16) | (−0.39) | (−0.33) | (−0.37) | |
Indus | 0.0126 | 0.0128 | 0.0254 | 0.00397 | 0.00232 | 0.00630 |
(1.35) | (0.67) | (1.24) | (0.49) | (0.34) | (0.44) | |
Open | 1.87 × 10−4 *** | 6.90 × 10−5 | 2.56 × 10−4 *** | 1.51 × 10−4 *** | 1.23 × 10−4 ** | 2.74 × 10−4 *** |
(4.60) | (0.92) | (3.25) | (4.61) | (2.01) | (3.43) | |
Urban | 0.116 | −0.644 *** | −0.528 *** | 0.0598 | 0.0425 | 0.102 |
(0.72) | (−2.84) | (−2.64) | (0.77) | (0.62) | (0.72) |
Variables | SDM-Wbinary | SAR-Wdistance | ||||||
---|---|---|---|---|---|---|---|---|
Infras | 0.163 *** | 0.140 *** | ||||||
(5.34) | (4.71) | |||||||
IntDev | 0.226 *** | 0.242 *** | ||||||
(5.56) | (6.66) | |||||||
IndusDev | −0.0355 | 0.0649 | ||||||
(−0.67) | (1.39) | |||||||
DF | 0.0277 * | 0.0276 * | ||||||
(1.70) | (1.69) | |||||||
W*Infras | 0.0618 | |||||||
(0.94) | ||||||||
W*IntDev | 0.0216 | |||||||
(0.34) | ||||||||
W*IndusDev | 0.219 *** | |||||||
(3.05) | ||||||||
W*DF | 0.00974 | |||||||
(0.38) | ||||||||
Controls | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
ρ | 0.221 *** | 0.189 ** | 0.192 ** | 0.274 *** | 0.483 *** | 0.384 *** | 0.467 *** | 0.536 *** |
(2.82) | (2.46) | (2.45) | (3.77) | (4.92) | (3.72) | (4.12) | (5.61) | |
Sigma2 | 3.62 × 10−4 *** | 3.55 × 10−4 *** | 3.89 × 10−4 *** | 3.96 × 10−4 *** | 3.99 × 10−4 *** | 3.72 × 10−4 *** | 4.29 × 10−4 *** | 4.25 × 10−4 *** |
(11.56) | (11.58) | (11.57) | (11.53) | (11.57) | (11.59) | (11.56) | (11.55) | |
LogL | 684.8198 | 688.0349 | 675.5984 | 671.8973 | 671.3763 | 681.4870 | 661.6433 | 662.0840 |
R2 | 0.540 | 0.552 | 0.511 | 0.482 | 0.500 | 0.540 | 0.453 | 0.438 |
Observations | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 |
Variables | SDM-Wbinary | SAR-Wdistance | ||||
---|---|---|---|---|---|---|
Direct | Indirect | Total | Direct | Indirect | Total | |
Infras | 0.169 *** | 0.117 * | 0.286 *** | 0.144 *** | 0.136 ** | 0.280 *** |
(5.42) | (1.67) | (3.62) | (4.66) | (2.24) | (3.60) | |
IntDev | 0.230 *** | 0.0706 | 0.301 *** | 0.246 *** | 0.156 ** | 0.401 *** |
(5.64) | (1.05) | (4.42) | (6.62) | (2.27) | (4.99) | |
IndusDev | −0.024 | 0.246 *** | 0.222 *** | 0.068 | 0.052 | 0.119 |
(−0.46) | (3.18) | (3.07) | (1.39) | (1.19) | (1.39) | |
DF | 0.029 * | 0.022 | 0.052 | 0.030 * | 0.034 | 0.063 |
(1.71) | (0.68) | (1.24) | (1.68) | (1.31) | (1.54) |
Variables | Replace the Spatial Weight Matrix | Explanatory Variables Lagged One Period | ||||
---|---|---|---|---|---|---|
SDM-Wdis&eco | SAR-Wdistance | SDM-Wdis&eco | SAR-Wdistance | |||
x | W*x | W*x | x | |||
Digital | 0.116 ** | 0.204 * | 0.182 *** | |||
(2.49) | (1.92) | (4.22) | ||||
LDigital | 0.127 ** | 0.0632 | 0.164 *** | |||
(2.29) | (0.67) | (3.09) | ||||
PopuD | 1.30 × 10−5 *** | −1.56 × 10−5 | 1.70 × 10−5 *** | 9.55 × 10−6 ** | 8.78 × 10−6 | 1.36 × 10−5 *** |
(3.67) | (−1.20) | (4.74) | (2.49) | (1.10) | (3.70) | |
PGDP | −5.77 × 10−7 ** | 1.24 × 10−6 ** | 1.04 × 10−7 | −2.92 × 10−7 | 1.68 × 10−6 *** | −1.69 × 10−7 |
(−2.01) | (2.17) | (0.43) | (−1.09) | (3.78) | (−0.68) | |
RD | 8.20 × 10−9 * | 6.17 × 10−9 | −2.31 × 10−9 | 1.12 × 10−10 | −9.12 × 10−9 | −4.14 × 10−10 |
(1.80) | (0.67) | (−0.56) | (0.02) | (−1.21) | (−0.09) | |
Indus | 0.0196 * | 0.0107 | 0.00531 | 0.0123 | 0.0222 | 0.00701 |
(1.91) | (0.58) | (0.63) | (1.20) | (1.28) | (0.80) | |
Open | 2.16 × 10−4 *** | 7.77 × 10−5 | 1.38 × 10−4 *** | 1.40 × 10−4 *** | 3.54 × 10−5 | 1.13 × 10−4 *** |
(6.20) | (1.26) | (4.23) | (3.23) | (0.49) | (3.26) | |
Urban | 0.788 *** | −1.171 *** | 0.101 | 0.116 | −0.325 | 0.141 * |
(4.74) | (−5.87) | (1.37) | (0.72) | (−1.47) | (1.71) | |
ρ | 0.234 ** | 0.289 *** | 0.203 ** | 0.497 *** | ||
(2.57) | (3.48) | (2.51) | (4.74) | |||
sigma2 | 3.59 × 10−4 *** | 4.17 × 10−4 *** | 3.26 × 10−4 *** | 3.52 × 10−4 *** | ||
(11.55) | (11.56) | (10.91) | (10.90) | |||
LogL | 686.1460 | 665.3780 | 621.5362 | 611.6252 | ||
R2 | 0.543 | 0.475 | 0.548 | 0.512 | ||
Observations | 270 | 270 | 240 | 240 |
Digital | SDM-Wbinary | SAR-Wdistance | ||||
---|---|---|---|---|---|---|
East | Middle | West | East | Middle | West | |
Direct | 0.199 *** | 0.108 *** | 0.097 | 0.252 *** | 0.161 *** | 0.047 |
(2.64) | (3.09) | (1.10) | (3.45) | (3.75) | (0.47) | |
Indirect | 0.105 | 0.089 * | 0.451 * | 0.104 | 0.041 | 0.010 |
(1.04) | (1.83) | (1.87) | (1.40) | (1.24) | (0.20) | |
Total | 0.304 ** | 0.197 *** | 0.547 * | 0.356 *** | 0.202 *** | 0.057 |
(2.21) | (3.00) | (1.84) | (2.91) | (3.81) | (0.40) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhang, Y.; Gong, X.; Li, M.; Li, X.; Ren, D.; Jiang, P. Impact of Digital Economy Development on Carbon Emission Efficiency: A Spatial Econometric Analysis Based on Chinese Provinces and Cities. Int. J. Environ. Res. Public Health 2022, 19, 14838. https://doi.org/10.3390/ijerph192214838
Liu L, Zhang Y, Gong X, Li M, Li X, Ren D, Jiang P. Impact of Digital Economy Development on Carbon Emission Efficiency: A Spatial Econometric Analysis Based on Chinese Provinces and Cities. International Journal of Environmental Research and Public Health. 2022; 19(22):14838. https://doi.org/10.3390/ijerph192214838
Chicago/Turabian StyleLiu, Liang, Yuhan Zhang, Xiujuan Gong, Mengyue Li, Xue Li, Donglin Ren, and Pan Jiang. 2022. "Impact of Digital Economy Development on Carbon Emission Efficiency: A Spatial Econometric Analysis Based on Chinese Provinces and Cities" International Journal of Environmental Research and Public Health 19, no. 22: 14838. https://doi.org/10.3390/ijerph192214838
APA StyleLiu, L., Zhang, Y., Gong, X., Li, M., Li, X., Ren, D., & Jiang, P. (2022). Impact of Digital Economy Development on Carbon Emission Efficiency: A Spatial Econometric Analysis Based on Chinese Provinces and Cities. International Journal of Environmental Research and Public Health, 19(22), 14838. https://doi.org/10.3390/ijerph192214838