Quality and Health Risk Assessment of Groundwaters in the Protected Area of Tisa River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Location
2.2. Sampling and Preservation
2.3. Experimental Methods
2.4. Statistics and Water Typology
2.5. Pollution Indices
2.5.1. Pollution Index (PI)
2.5.2. Heavy Metal Evaluation Index
2.5.3. Health Risk Assessment
3. Results and Discussion
3.1. Water Quality Characterization and Effect on Human Health
3.2. Water Typology
3.2.1. Piper and Gibbs Diagrams
3.2.2. Stiff and Schoeller Diagrams
3.2.3. Correlations between the Metal Content and the Pollution Indices
3.3. Pollution Indices
3.4. Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krisham, G.; Taloor, A.K.; Sudarsan, N.; Bhattacharya, P.; Kumar, S.; Ghosh, N.C.; Singh, S.; Sharma, A.; Rao, M.S.; Mittal, S.; et al. Occurrences of potentially toxic trace metals in groundwater of the state of Punjab in northern India. Groundw. Sustain. Dev. 2021, 15, 100655. [Google Scholar]
- Sila, O.N. Physico-chemical and bacteriological quality of water sources in rural settings, Kenya, Africa. Sci. Afr. 2019, 2, e00018. [Google Scholar]
- Klove, B.; Pretti, A.; Bertrand, G.; Boukalova, Z.; Ertu, A.; Goldscheider, N. Groundwater dependent ecosystems. Part I: Hydroecological status and trends. Environ. Sci. Policy 2011, 14, 770–781. [Google Scholar]
- Zhang, Z.; Wang, J.J.; Ali, A.; DeLaune, R.D. Physico-chemical forms of copper in water and sediments of Lake Pontchartrain basin, USA. Chemosphere 2018, 195, 448–454. [Google Scholar]
- Vasistha, P.; Ganguly, R. Water quality assessment of natural lakes and its importance: An overview. Mater. Today Proc. 2020, 32, 544–552. [Google Scholar]
- Loucif, K.; Neffard, S.; Menasria, T.; Maazi, M.C.; Houhamdi, M.; Chenchouni, H. Physico-chemical and bacteriological quality assessment of surface water at Lake Tonga in Algeria. Environ. Nanotechnol. Monit. Manag. 2020, 13, 100284. [Google Scholar]
- Scrădeanu, D.; Gheorghe, A. Hidrogeologie Generală; Universității din Bucuresti: Bucharest, Romania, 2007; ISBN 978-973-737-367-0. [Google Scholar]
- Masoud, A.A.; Ali, M.H. Coupled multivariate statistical analysis and WQI approaches for groundwater quality assessment in Wadi El-Assiuty downstream area, Eastern Desert, Egypt. J. Afr. Earth Sci. 2020, 172, 103982. [Google Scholar]
- Adeyemi, A.A.; Ojekunle, Z.O. Concentrations and health risk assessment of industrial heavy metals pollution in groundwater in Ogun state, Nigeria. Sci. Afr. 2021, 11, e00666. [Google Scholar]
- Cadar, O.; Miclean, M.; Cadar, S.; Tanaselia, C.; Senila, L.; Senila, M. Assessment of heavy metals in cow’s milk in Rodnei mountains area, Romania. Environ. Eng. Manag. J. 2015, 14, 2523–2528. [Google Scholar]
- Alshehri, F.; Almadani, S.; El-Sorogy, A.S.; Alwaqdani, E.; Alfaifi, H.J.; Alhabri, T. Influence of seawater intrusion and heavy metals contamination on groundwater quality, Red Sea coast, Saudi Arabia. Mar. Pollut. Bull. 2021, 165, 112094. [Google Scholar]
- Ali, M.M.; Islam, M.S.; Islam, A.R.M.T.; Bhuyan, M.S.; Ahmed, A.S.S.; Rahman, M.Z.; Rahman, M.M. Toxic metal pollution and ecological risk assessment in water and sediment at ship breaking sites in the Bay of Bengal Coast, Bangladesh. Mar. Pollut. Bull. 2020, 175, 113274. [Google Scholar]
- Adimalla, N.; Qian, H. Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, south India. Ecotoxicol. Environ. Saf. 2019, 176, 153–161. [Google Scholar]
- Moldovan, A.; Hoaghia, M.A.; Kovacs, E.; Mirea, I.C.; Kenesz, M.; Arghir, R.A.; Petculescu, A.; Levei, E.A.; Moldovan, O.T. Quality and health risk assessment associated with water consumption—A case study on karstic springs. Water 2020, 12, 1–23. [Google Scholar]
- Yin, H.; Chi, Z.; Shang, Z.; Qaitoon, A.; Yu, J.; Meng, Q.; Zhang, Z.; Jia, H.; Zhang, R. Development of a new water-soluble fluorescence probe for hypochlorous acid detection in drinking water. Food Chem. Mol. Sci. 2021, 2, 100027. [Google Scholar]
- Dauda, M.; Habib, G.A. Graphical techniques of hydro-chemical data. J. Environ. Earth Sci. 2015, 4, 65–75, ISSN: 2225-0948. [Google Scholar]
- Marandi, A.; Shand, P. Groundwater chemistry and Gibbs diagram. Appl. Geochem. 2018, 97, 209–212. [Google Scholar]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1090. [Google Scholar]
- Lyu, M.; Pang, Z.; Yin, L.; Zhang, J.; Huang, T.; Yang, S.; Li, Z.; Wang, X.; Gulbostan, T. The control of the groundwater flow system and geochemical processes on groundwater chemistry: A study case in Wushenzhao Basin, NW China. Water 2019, 11, 790. [Google Scholar]
- Hoaghia, M.A.; Moldovan, A.; Kovacs, E.; Mirea, I.C.; Kenesz, M.; Brad, T.; Cadar, O.; Micle, V.; Levei, E.A.; Moldovan, O.T. Water quality and hydrogeochemical characteristics of some karst water sources in Apuseni Mountains, Romania. Water 2021, 13, 857. [Google Scholar]
- Shah, B.; Kansara, B.; Shankar, J.; Soni, M.; Bhimjiyani, P.; Bhanushali, T.; Shah, M.; Sircar, A. Reckoning of water quality for irrigation and drinking purposes in the konkan geothermal provinces, Maharashtra, India. Groundw. Sustain. Dev. 2019, 9, 100247. [Google Scholar]
- Edet, A.E.; Offiong, O.E. Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). GeoJurnal 2020, 57, 295–304. [Google Scholar]
- Appiah-Opong, R.; Ofori, A.; Ofosuhene, M.; Ofori-Attah, E.; Nunoo, F.K.E.; Tuffour, I.; Gordon, C.; Arhinful, D.K.; Nyarko, A.K.; Fosu-Mensah, B.Y. Heavy metals concentration and pollution index (HPI) in drinking water along the southwest coast of Ghana. Appl. Water Sci. 2021, 11, 57. [Google Scholar]
- Ghaderpoori, M.; Kamarehie, B.; Jafari, A.; Ghaderpoury, A.; Karami, M. Heavy metals analysis and quality assessment in drinking water—Khorramabad city, Iran. Data Brief 2018, 16, 685–692. [Google Scholar]
- World Health Organization (WHO). Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Law 311 from 6rd June 2004 that improves and complements Law 458 from 29 July 2002 regarding the quality of drinking water. Official Gazette. Part I, No. 582/30.06.2004. (In Romanian). Available online: https://www.lege-online.ro/lr-LEGE-311%20-2004-(53106)-(1).html (accessed on 25 August 2021).
- U.S. EPA. Health Effect Assessments Summary Tables (HEAST) and User’s Guide; Office of Emergency and Remedial Response, United States Environmental Protection Agency: Washington, DC, USA, 1989. [Google Scholar]
- Das, A.; Das, S.S.; Chowdhury, N.R.; Joardar, M.; Ghosh, B.; Roychowdhury, T. Quality and health risk evaluation for groundwater in Nadia district, West Bengal: An approach on its suitability for drinking and domestic purpose. Groundw. Sustain. Dev. 2020, 10, 100351. [Google Scholar]
- Qiao, J.; Zhu, Y.; Jia, X.; Shao, M.; Niu, X.; Liu, J. Distributions of arsenic and other heavy metals, and health risk assessment for groundwater in the Guanzhong Plain region of China. Environ. Res. 2020, 181, 108957. [Google Scholar]
- U.S. EPA. IRIS (Integrated Risk Information System). A–Z List of Substances; United States Environmental Protection Agency: Washington, DC, USA, 1987. [Google Scholar]
- Arulnangai, R.; Sihabudeen, M.M.; Vivekanand, P.A.; Kamaraj, P. Influence of physico chemical parameters on potability of ground water in ariyalur area of Tamil Nadu, India. Mater. Today Proc. 2021, 36, 923–928. [Google Scholar]
- Mohammed, I.; Al-Khalaf, S.K.H.; Alwan, H.H.; Naje, A.S. Environmental assessment of Karbala water treatment plant using water quality index (WQI). Mater. Today Proc. 2022, 60, 1554–1560. [Google Scholar]
- Udhayakumar, R.; Manivannan, P.; Raghu, K.; Vaideki, S. Assessment of physico-chemical characteristics of water in Tamilnadu. Ecotoxicol. Environ. Saf. 2016, 134, 474–477. [Google Scholar]
- Adesakin, T.A.; Oyewale, A.T.; Bayero, U.; Mohammed, A.N.; Aduwo, I.A.; Ahmed, P.Z.; Abubakar, N.D.; Barje, I.B. Assessment of bacteriological quality and physico-chemical parameters of domestic water sources in Samaru community, Zaria, Northwest Nigeria. Heliyon 2020, 6, E04773. [Google Scholar]
- Jain, N.; Yevatikar, R.; Raxamwar, T.S. Comparative study of physico-chemical parameters and water quality index of river. Mater. Today Proc. 2022, 60, 859–867. [Google Scholar]
- Chabukdhara, M.; Gupta, S.K.; Kotecha, Y.; Nema, A.K. Groundwater quality in Ghaziabad district, Uttar Pradesh, India: Multivariate and health risk assessment. Chemosphere 2017, 179, 167–178. [Google Scholar]
- Rupias, O.J.B.; Pereira, S.Y.; Silva de Abreu, A.E. Hydrogeochemistry and groundwater quality assessment using the water quality index and heavy-metal pollution index in the alluvial plain of Atibaia river—Campinas/SP, Brazil. Groundw. Sustain. Dev. 2020, 15, 100661. [Google Scholar]
- Petrović, T.; Zlokolica-Mandić, M.; Veljković, N.; Vidojević, D. Hydrogeological conditions for the forming and quality of mineral waters in Serbia. J. Geochem. Explor. 2010, 107, 373–381. [Google Scholar]
- Devic, G.; Djordjevic, D.; Sakan, S. Natural and anthropogenic factors affecting the groundwater quality in Serbia. Sci. Total Environ. 2014, 468–469, 933–942. [Google Scholar]
- Zhang, H.; Huo, S.; Wang, R.; Xiao, Z.; Li, X.; Wu, F. Hydrologic and nutrient-driven regime shifts of cyanobacterial and eukaryotic algal communities in a large shallow lake: Evidence from empirical state indicator and ecological network analyses. Sci. Total Environ. 2021, 783, 147059. [Google Scholar]
- Amorim, C.A.; Do Nascimento Moura, A. Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure, and ecosystem functioning. Sci. Total Environ. 2020, 758, 143605. [Google Scholar]
- Varol, M. Spatio-temporal changes in surface water quality and sediment phosphorus content of large reservoir in Turkey. Environ. Pollut. 2020, 259, 113860. [Google Scholar]
- Belkhiri, L.; Mouni, L.; Narany, T.S.; Tiri, A. Evaluation of potential health risk of heavy metals in groundwater using the integration of indicator kriging and multivariate statistical methods. Groundw. Sustain. Dev. 2017, 4, 12–22. [Google Scholar]
- Deeba, F.; Abbas, N.; Butt, M.T.; Irfan, M. Ground water quality of selected areas of Punjab and Sind Provinces, Pakistan: Chemical and microbiological aspects. Chem. Int. 2019, 5, 241–246. [Google Scholar]
- Matveeva, V.A.; Alekseenko, A.V.; Karthe, D.; Puzanov, A.V. Manganese Pollution in Mining-Influenced Rivers and Lakes: Current State and Forecast under Climate Change in the Russian Arctic. Water 2022, 14, 1091. [Google Scholar]
- Ramachandran, A.; Sivakumar, K.; Shanmugasundharam, A.; Sangunathan, U.; Krishnamurthy, R.R. Evaluation of potable groundwater zones identification based on WQI and GIS techniques in Adyar River basin, Chennai, Tamilnadu, India. Acta Ecol. Sin. 2021, 41, 285–295. [Google Scholar]
- Geng, M.; Wang, K.; Yang, N.; Li, F.; Zou, Y.; Chen, X.; Deng, Z.; Xie, Y. Spatiotemporal water quality variations and their relationship with hydrological conditions in Dongting Lake after the operation of the Three Gorges Dam, China. J. Clean. Prod. 2021, 283, 124644. [Google Scholar]
- Phan, K.; Sthiannopkao, S.; Kim, K.-W.; Wong, M.H.; Sao, V.; Hashim, J.H.; Yasin, M.S.M.; Aljunid, S.M. Health risk assessment of inorganic arsenic intake of Cambodia residents through groundwater drinking pathway. Water Res. 2010, 44, 5777–5788. [Google Scholar]
- Bhattacharjee, S.; Chakravarty, S.; Maity, S.; Dureja, V.; Gupta, K.K. Metal contents in the groundwater of Sahebgunj district, Jharkhand, India, with special reference to arsenic. Chemosphere 2005, 58, 1203–1217. [Google Scholar]
- Eslami, H.; Esmaeili, A.; Razaeian, M.; Salari, M.; Hosseini, A.N.; Mobini, M.; Barani, A. Potentially toxic metal concentration, spatial distribution, and health risk assessment in drinking groundwater resources of southeast Iran. Geosci. Front. 2022, 13, 101276. [Google Scholar]
- Peng, H.; Yang, W.; Ferrer, A.S.N.; Xiong, S.; Li, X.; Niu, G.; Lu, T. Hydrochemical characteristics and health risk assessment of groundwater in karst areas of southwest China: A case study of Bama, Guangxi. J. Clean. Prod. 2022, 341, 130872. [Google Scholar]
- Wei, J.; Hu, K.; Xu, J.; Liu, R.; Gong, Z.; Cai, Y. Determining heavy metal pollution in sediments from the largest impounded lake in the eastern route of China’s South-to-North Water Diversion Project: Ecological risks, sources, and implications for lake management. Environ. Res. 2022, 24, 114118. [Google Scholar]
- Manoj, K.; Ghosh, S.; Padhy, P.K. Characterization and classification of hydrochemistry using multivariate graphical and hydrostatistical techniques. Res. J. Chem. Sci. 2013, 3, 32–42. [Google Scholar]
- Reza, R.; Singh, G.; Jain, M.K. Application of heavy metal pollution index for ground water quality assessment in Angul District of Orissa, India. Int. J. Res. Chem. Environ. 2021, 1, 118–122. [Google Scholar]
- Dippong, T.; Mihali, C.; Hoaghia, M.A.; Cical, E.; Cosma, A. Chemical modeling of groundwater quality in the aquifer of Seini town –Someș Plain, Northwestern Romania. Ecotoxicol. Environ. Saf. 2019, 168, 88–101. [Google Scholar]
- Dippong, T.; Hoaghia, M.A.; Senila, M. Appraisal of heavy metal pollution in alluvial aquifers. Study case on the protected area of Ronișoara Forest, Romania. Ecol. Indic. 2022, 143, 109347. [Google Scholar]
Sample | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | MAC * |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 7.94 ± 0.45 | 7.35 ± 0.28 | 7.42 ± 0.26 | 7.82 ± 0.39 | 7.43 ± 0.35 | 7.23 ± 0.21 | 7.19 ± 0.18 | 7.27 ± 0.23 | 7.25 ± 0.21 | 7.70 ± 0.34 | 7.65 ± 0.33 | 7.52 ± 0.31 | 6.5–9.5 |
ORP [mV] | 157 ± 22 | 191 ± 29 | 51.1 ± 10 | 202 ± 31 | 233 ± 35 | 219 ± 33 | 215 ± 32 | 195 ± 30 | 175 ± 26 | 178 ± 27 | 279 ± 25 | 100 ± 16 | - |
EC [μS/cm] | 360 ± 35 | 390 ± 38 | 300 ± 29 | 351 ± 33 | 329 ± 36 | 269 ± 29 | 249 ± 31 | 118 ± 17 | 844 ± 92 | 287 ± 22 | 528 ± 48 | 528 ± 56 | 2500 |
DO [mg/L] | 6.99 ± 3.21 | 4.79 ± 2.82 | 6.10 ± 3.16 | 7.76 ± 2.85 | 3.70 ± 1.86 | 5.62 ± 2.45 | 5.71 ± 2.38 | 6.63 ± 2.95 | 7.51 ± 2.46 | 10.3 ± 4.2 | 8.15 ± 2.58 | 9.93 ± 3.34 | - |
SO [%] | 50.9 ± 3.5 | 40.1 ± 3.1 | 49.6 ± 3.5 | 62.7 ± 3.0 | 30.4 ± 2.1 | 45.8 ± 2.6 | 54.4 ± 2.6 | 57.8 ± 3.2 | 63.7 ± 2.7 | 84.7 ± 3.9 | 60.3 ± 2.64 | 83.1 ± 3.8 | - |
T (NTU) | 0.36 ± 0.14 | 1.07 ± 0.11 | 2.75 ± 0.65 | 10.70 ± 1.12 | 2.71 ± 0.75 | 2.16 ± 0.36 | 0.48 ± 0.16 | 0.77 ± 0.24 | 0.53 ± 0.16 | 0.80 ± 0.24 | 1.85 ± 0.64 | 0.63 ± 0.16 | <5 |
NH4+ [mg/L] | 2.18 ± 0.35 | 3.71 ± 0.72 | 0.94 ± 0.22 | 0.59 ± 0.15 | 0.85 ± 0.22 | 2.79 ± 1.12 | 1.65 ± 0.36 | 1.68 ± 0.28 | 2.45 ± 0.47 | 2.10 ± 0.42 | 0.74 ± 0.13 | 0.50 ± 0.08 | 0.5 |
NO3− [mg/L] | 0.89 ± 0.13 | 0.75 ± 0.11 | 1.09 ± 0.23 | 0.32 ± 0.06 | 1.24 ± 0.26 | 1.75 ± 0.32 | 1.24 ± 0.27 | 5.78 ± 1.12 | 6.50 ± 1.21 | 2.68 ± 0.56 | 15.4 ± 1.76 | 2.84 ± 0.46 | 50 |
NO2− [mg/L] | 0.002 ± 0.001 | 0.002 ± 0.001 | 0.015 ± 0.002 | 0.003 ± 0.001 | 0.002 ± 0.001 | 0.002 ± 0.001 | 0.002 ± 0.001 | 0.006 ± 0.001 | 0.002 ± 0.001 | 0.006 ± 0.001 | 0.025 ± 0.004 | 0.003 ± 0.001 | 0.5 |
Ht [oG] | 3.86 ± 0.42 | 16.8 ± 0.2 | 3.20 ± 0.07 | 11.3 ± 0.1 | 8.74 ± 0.09 | 19.3 ± 0.3 | 7.56 ± 0.11 | 5.90 ± 0.33 | 11.4 ± 0.1 | 5.71 ± 0.28 | 5.40 ± 0.29 | 8.70 ± 0.14 | >5 |
Cl− [mg/L] | 98 ± 6 | 561 ± 43 | 194 ± 12 | 39 ± 6 | 34 ± 5 | 606 ± 56 | 23 ± 3 | 35 ± 5 | 140 ± 15 | 22 ± 3 | 55 ± 8 | 41 ± 5 | 250 |
PO43− [mg/L | 0.05 ± 0.01 | 0.07 ± 0.02 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.05 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.12 ± 0.03 | 0.25 ± 0.04 | 0.02 ± 0.01 | 0.22 ± 0.05 | 0.5 |
HCO3− [mg/L] | 354 ± 16 | 305 ± 13 | 146 ± 11 | 122 ± 12 | 97.6 ± 7.5 | 305 ± 16 | 171 ± 15 | 512 ± 23 | 244 ± 19 | 268 ± 32 | 85.4 ± 0.8 | 525 ± 27 | 200 |
CO32− [mg/L] | 174 ± 15 | 144 ± 11 | 56.0 ± 1.6 | 173 ± 19 | 155 ± 13 | 172 ± 19 | 110 ± 13 | 178 ± 18 | 207 ± 22 | 109 ± 15 | 10.0 ± 1.7 | 221 ± 24 | - |
SO42− [mg/L] | 26.6 ± 1.8 | 34.1 ± 2.6 | 16.4 ± 1.1 | 7.00 ± 0.46 | 7.90 ± 0.23 | 15.0 ± 1.7 | 14.0 ± 1.9 | 4.67 ± 0.22 | 20.6 ± 2.3 | 11.7 ± 3.1 | 8.90 ± 1.9 | 23.8 ± 2.6 | 250 |
TDS [mg/L] | 230 ± 20 | 250 ± 23 | 192 ± 18 | 225 ± 21 | 210 ± 29 | 172 ± 19 | 159 ± 14 | 75.5 ± 8.9 | 540 ± 43 | 184 ± 19 | 338 ± 28 | 338 ± 35 | - |
Sample [μg/L] | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | MAC * |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ag | 0.02 ± 0.01 | 0.02 ± 0.01 | 5.04 ± 1.04 | 0.05 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.41 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | - |
Al | 22.3 ± 3.1 | 3.45 ± 0.38 | 20.3 ± 2.8 | 19.9 ± 1.5 | 119 ± 11 | 24.2 ± 1.4 | 4.04 ± 0.18 | 4.80 ± 0.25 | 43.2 ± 3.8 | 99.3 ± 6.5 | 20.6 ± 1.3 | 5.27 ± 0.62 | 200 |
As | 9.23 ± 2.62 | 10.9 ± 3.4 | 5.93 ± 2.1 | 0.43 ± 0.13 | 0.39 ± 0.10 | 7.26 ± 3.13 | 0.19 ± 0.06 | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.25 ± 0.06 | 0.13 ± 0.02 | 1.54 ± 0.08 | 10 |
Au | 0.02 ± 0.01 | 0.34 ± 0.05 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.16 ± 0.03 | 0.06 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.01 | - |
Ba | 22.4 ± 2.5 | 75.4 ± 11.1 | 28.5 ± 3.3 | 24.7 ± 2.6 | 28.1 ± 2.7 | 91.2 ± 14.3 | 25.3 ± 2.1 | 89.0 ± 15.2 | 92.7 ± 20.1 | 109 ± 25.3 | 22.9 ± 2.2 | 41.7 ± 8.3 | 700 |
Bi | 0.02 ± 0.01 | 0.10 ± 0.02 | 0.14 ± 0.03 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | - |
Ca | 3760 ± 355 | 9520 ± 768 | 2670 ± 249 | 3950 ± 436 | 4490 ± 598 | 9430 ± 875 | 2540 ± 206 | 2990 ± 309 | 4890 ± 572 | 6310 ± 655 | 3830 ± 394 | 6220 ± 786 | 100,000 |
Cd | 0.10 ± 0.03 | 0.10 ± 0.02 | 0.17 ± 0.04 | 1.47 ± 0.37 | 0.09 ± 0.02 | 0.25 ± 0.08 | 0.13 ± 0.03 | 0.18 ± 0.04 | 0.07 ± 0.02 | 0.08 ± 0.03 | 0.15 ± 0.03 | 0.15 ± 0.04 | 5 |
Co | 0.24 ± 0.09 | 0.07 ± 0.02 | 0.10 ± 0.02 | 0.20 ± 0.05 | 0.36 ± 0.13 | 0.15 ± 0.06 | 0.07 ± 0.01 | 0.16 ± 0.04 | 0.13 ± 0.03 | 0.24 ± 0.04 | 0.25 ± 0.05 | 0.64 ± 0.12 | - |
Cr | 11.9 ± 1.7 | 1.07 ± 0.13 | 1.81 ± 0.08 | 1.05 ± 0.18 | 3.88 ± 0.45 | 5.07 ± 0.62 | 0.91 ± 0.18 | 1.72 ± 0.21 | 1.83 ± 0.42 | 2.37 ± 0.58 | 4.98 ± 0.46 | 1.37 ± 0.19 | 50 |
Cs | 0.04 ± 0.01 | 0.07 ± 0.02 | 0.06 ± 0.02 | 0.03 ± 0.01 | 0.13 ± 0.03 | 0.07 ± 0.02 | 0.06 ± 0.03 | 0.21 ± 0.08 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.07 ± 0.02 | - |
Cu | 3.74 ± 1.05 | 1.88 ± 0.76 | 4.87 ± 1.34 | 5.45 ± 1.82 | 3.25 ± 1.02 | 8.24 ± 2.31 | 2.21 ± 0.64 | 88.4 ± 11.1 | 5.83 ± 0.01 | 7.71 ± 1.04 | 10.8 ± 1.49 | 3.01 ± 0.51 | 100 |
Fe | 80 ± 18 | 180 ± 20 | 120 ± 35 | 140 ± 51 | 680 ± 84 | 380 ± 63 | 80 ± 21 | 70 ± 17 | 110 ± 42 | 90 ± 23 | 160 ± 37 | 80 ± 15 | 200 |
Ga | 8.95 ± 0.75 | 29.5 ± 3.14 | 13.0 ± 0.27 | 10.1 ± 0.28 | 11.2 ± 0.35 | 36.1 ± 4.8 | 10.7 ± 1.1 | 38.6 ± 4.6 | 38.8 ± 3.9 | 45.4 ± 5.2 | 9.24 ± 1.07 | 17.0 ± 1.78 | - |
Ge | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.05 ± 0.02 | 0.05 ± 0.01 | 0.04 ± 0.02 | 0.04 ± 0.03 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.04 ± 0.02 | 0.04 ± 0.01 | - |
Hf | 0.18 ± 0.04 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.10 ± 0.02 | 0.02 ± 0.01 | 2.39 ± 0.28 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 17.6 ± 2.8 | - |
Ir | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.11 ± 0.03 | 0.02 ± 0.01 | 0.27 ± 0.08 | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.02 | - |
K | 1930 ± 548 | 7440 ± 231 | 2660 ± 107 | 3180 ± 362 | 1370 ± 472 | 6110 ± 779 | 19,860 ± 2077 | 11,020 ± 1085 | 28,350 ± 2947 | 45,410 ± 4625 | 4200 ± 451 | 4460 ± 473 | 10,000 |
Li | 2.71 ± 1.12 | 5.40 ± 1.78 | 2.00 ± 0.47 | 4.41 ± 0.84 | 9.14 ± 2.39 | 11.2 ± 3.08 | 2.85 ± 0.75 | 4.21 ± 1.64 | 4.70 ± 1.89 | 7.84 ± 2.27 | 1.73 ± 0.47 | 4.34 ± 1.39 | 30 |
Mg | 19,720 ± 1645 | 48,860 ± 2185 | 7010 ± 545 | 13,660 ± 1245 | 15,050 ± 1657 | 21,570 ± 2378 | 8520 ± 795 | 9620 ± 1388 | 14,570 ± 1672 | 20,820 ± 2527 | 15,740 ± 1945 | 14,600 ± 2385 | 50,000 |
Mn | 2.46 ± 0.74 | 0.02 ± 0.01 | 0.02 ± 0.01 | 2.88 ± 1.03 | 273 ± 29 | 90.1 ± 12.4 | 3.04 ± 0.54 | 181 ± 20 | 5.47 ± 1.12 | 0.02 ± 0.01 | 5.71 ± 1.38 | 0.02 ± 0.01 | 50 |
Mo | 6.65 ± 1.04 | 2.69 ± 0.58 | 0.23 ± 0.04 | 0.47 ± 0.08 | 1.11 ± 0.37 | 0.91 ± 0.25 | 0.61 ± 0.18 | 0.19 ± 0.04 | 0.37 ± 0.12 | 0.24 ± 0.13 | 0.27 ± 0.11 | 0.64 ± 0.22 | - |
Na | 17,380 ± 2544 | 61,790 ± 7245 | 26,820 ± 3127 | 10,480 ± 1783 | 8800 ± 947 | 363,940 ± 71,253 | 17,300 ± 7582 | 16,380 ± 1752 | 26,870 ± 3038 | 52,810 ± 5461 | 28,950 ± 3017 | 36,410 ± 3816 | 200,000 |
Nb | 0.02 ± 0.01 | 0.05 ± 0.02 | 0.05 ± 0.03 | 0.04 ± 0.02 | 0.09 ± 0.02 | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.07 ± 0.03 | - |
Ni | 7.29 ± 2.16 | 3.16 ± 0.71 | 1.89 ± 0.32 | 5.14 ± 1.42 | 9.45 ± 2.38 | 3.44 ± 1.07 | 3.27 ± 1.12 | 6.42 ± 2.09 | 7.90 ± 3.15 | 3.21 ± 1.06 | 3.65 ± 0.89 | 5.98 ± 1.27 | 20 |
Pb | 8.72 ± 1.32 | 3.64 ± 0.42 | 7.89 ± 1.78 | 7.50 ± 1.62 | 2.96 ± 0.31 | 3.00 ± 0.33 | 2.90 ± 0.49 | 3.08 ± 0.27 | 2.94 ± 0.37 | 2.51 ± 0.39 | 4.83 ± 0.55 | 7.04 ± 1.34 | 10 |
Rb | 2.16 ± 0.22 | 3.24 ± 0.35 | 1.28 ± 0.14 | 0.52 ± 0.12 | 1.67 ± 0.46 | 0.49 ± 0.18 | 4.17 ± 0.77 | 1.70 ± 0.57 | 2.35 ± 0.72 | 1.52 ± 0.16 | 2.19 ± 0.24 | 0.65 ± 0.19 | - |
Sb | 3.36 ± 0.47 | 1.73 ± 0.22 | 1.09 ± 0.17 | 1.37 ± 0.23 | 1.34 ± 0.34 | 13.3 ± 2.3 | 0.25 ± 0.09 | 0.13 ± 0.03 | 1.12 ± 0.18 | 1.77 ± 0.23 | 0.16 ± 0.05 | 0.68 ± 0.29 | 5 |
Sn | 854 ± 127 | 79.2 ± 19.7 | 64.3 ± 15.1 | 0.09 ± 0.02 | 0.02 ± 0.01 | 10.1 ± 0.17 | 176 ± 21 | 0.40 ± 0.12 | 1.51 ± 0.32 | 0.02 ± 0.01 | 4.42 ± 0.54 | 50.3 ± 11.1 | - |
Sr | 140 ± 20 | 530 ± 61 | 120 ± 17 | 210 ± 34 | 200 ± 81 | 950 ± 103 | 160 ± 34 | 190 ± 42 | 350 ± 25 | 530 ± 77 | 250 ± 37 | 310 ± 34 | 7000 |
Ti | 21.0 ± 3.1 | 50.9 ± 7.4 | 24.6 ± 3.6 | 25.1 ± 3.2 | 43.3 ± 5.5 | 40.0 ± 3.9 | 14.5 ± 1.8 | 15.8 ± 2.2 | 25.2 ± 4.5 | 32.7 ± 3.8 | 20.3 ± 2.4 | 32.9 ± 4.6 | - |
Tl | 0.47 ± 0.12 | 0.09 ± 0.03 | 0.23 ± 0.07 | 0.18 ± 0.05 | 0.08 ± 0.04 | 0.14 ± 0.05 | 0.14 ± 0.04 | 0.27 ± 0.13 | 0.04 ± 0.01 | 0.05 ± 0.02 | 0.03 ± 0.01 | 0.37 ± 0.16 | - |
V | 0.36 ± 0.14 | 0.37 ± 0.11 | 0.42 ± 0.16 | 0.25 ± 0.08 | 1.29 ± 0.33 | 0.32 ± 0.06 | 0.23 ± 0.04 | 0.04 ± 0.01 | 0.11 ± 0.03 | 0.17 ± 0.05 | 0.92 ± 0.29 | 0.22 ± 0.05 | - |
Zn | 176 ± 20 | 91.4 ± 8.8 | 21.4 ± 2.6 | 18.4 ± 2.1 | 22.5 ± 3.1 | 93.4 ± 12.4 | 28.2 ± 3.6 | 41.5 ± 4.8 | 23.4 ± 2.5 | 8.75 ± 1.22 | 75.6 ± 12.5 | 55.7 ± 6.8 | 5000 |
Zr | 4.71 ± 0.56 | 13.49 ± 1.52 | 0.56 ± 0.18 | 0.31 ± 0.09 | 0.55 ± 0.08 | 1.27 ± 0.46 | 0.06 ± 0.02 | 0.06 ± 0.01 | 0.10 ± 0.03 | 0.12 ± 0.04 | 0.51 ± 0.11 | 9.45 ± 1.57 | - |
Variables | Fe | As | Al | Cd | Cr | Cu | Mn | Ni | Pb | Zn | PI | HEI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fe | 1 | 0.023 | 0.614 * | −0.073 | 0.124 | −0.198 | 0.753 | 0.389 | −0.319 | −0.068 | 0.501 | 0.888 |
As | 1 | −0.309 | −0.182 | 0.424 | −0.260 | −0.227 | −0.273 | 0.316 | 0.720 | 0.596 | −0.087 | |
Al | 1 | −0.162 | 0.105 | −0.210 | 0.474 | 0.388 | −0.357 | −0.347 | 0.052 | 0.682 | ||
Cd | 1 | −0.216 | −0.046 | −0.137 | −0.043 | 0.374 | −0.223 | 0.175 | −0.130 | |||
Cr | 1 | −0.125 | 0.039 | 0.289 | 0.361 | 0.816 | 0.479 | 0.191 | ||||
Cu | 1 | 0.457 | 0.155 | −0.240 | −0.091 | 0.013 | 0.170 | |||||
Mn | 1 | 0.565 | −0.408 | −0.160 | 0.437 | 0.931 | ||||||
Ni | 1 | −0.029 | 0.078 | 0.313 | 0.572 | |||||||
Pb | 1 | 0.371 | 0.416 | −0.322 | ||||||||
Zn | 1 | 0.491 | −0.085 | |||||||||
PI | 1 | 0.550 | ||||||||||
HEI | 1 |
Al | As | Cr | Cd | Cu | Mn | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|
1 | 0.45 | 0.06 | 2.2 × 10−4 | 5.4 × 10−3 | 2.7 × 10−3 | 5.0 × 10−4 | 1.0 × 10−2 | 6.2 × 10−2 | 1.7 × 10−2 |
2 | 0.07 | 0.08 | 2.0 × 10−5 | 5.4 × 10−3 | 1.3 × 10−3 | 0.0 | 4.5 × 10−3 | 2.6 × 10−2 | 8.7 × 10−3 |
3 | 0.41 | 0.04 | 3.4 × 10−5 | 9.7 × 10−3 | 3.5 × 10−3 | 0.0 | 2.7 × 10−3 | 5.6 × 10−2 | 2.0 × 10−3 |
4 | 0.40 | 3.1 × 10−3 | 2.0 × 10−5 | 8.4 × 10−2 | 3.9 × 10−3 | 5.9 × 10−4 | 7.3 × 10−3 | 5.4 × 10−2 | 1.8 × 10−3 |
5 | 2.4 | 2.8 × 10−3 | 7.4 × 10−5 | 5.2 × 10−3 | 2.3 × 10−3 | 5.6 × 10−2 | 0.01 | 0.02 | 2.2 × 10−3 |
6 | 0.48 | 0.05 | 9.6 × 10−5 | 0.01 | 5.9 × 10−3 | 1.8 × 10−2 | 4.9 × 10−3 | 0.2 × 10−2 | 8.9 × 10−3 |
7 | 8.0 × 10−2 | 1.4 × 10−3 | 1.7 × 10−5 | 7.6 × 10−3 | 1.6 × 10−3 | 6.2 × 10−4 | 4.7 × 10−3 | 2.1 × 10−2 | 2.7 × 10−3 |
8 | 0.10 | 0.0 | 3.3 × 10−5 | 1.0 × 10−2 | 6.3 × 10−2 | 3.7 × 10−2 | 7.2 × 10−3 | 2.2 × 10−2 | 3.9 × 10−3 |
9 | 8.6 × 10−2 | 2.1 × 10−4 | 3.5 × 10−5 | 4.3 × 10−3 | 4.2 × 10−3 | 1.1 × 10−3 | 1.1 × 10−2 | 2.1 × 10−2 | 2.2 × 10−3 |
10 | 2.0 | 1.9 × 10−3 | 4.5 × 10−5 | 4.7 × 10−3 | 5.5 × 10−3 | 0.0 | 4.6 × 10−3 | 1.8 × 10−3 | 8.3 × 10−4 |
11 | 0.41 | 9.6 × 10−4 | 9.5 × 10−5 | 8.8 × 10−3 | 7.7 × 10−3 | 1.2 × 10−3 | 5.2 × 10−3 | 3.4 × 10−2 | 7.2 × 10−3 |
12 | 0.11 | 0.01 | 2.6 × 10−5 | 8.8 × 10−3 | 2.2 × 10−3 | 0.0 | 8.5 × 10−3 | 5.0 × 10−2 | 5.3 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dippong, T.; Resz, M.-A. Quality and Health Risk Assessment of Groundwaters in the Protected Area of Tisa River Basin. Int. J. Environ. Res. Public Health 2022, 19, 14898. https://doi.org/10.3390/ijerph192214898
Dippong T, Resz M-A. Quality and Health Risk Assessment of Groundwaters in the Protected Area of Tisa River Basin. International Journal of Environmental Research and Public Health. 2022; 19(22):14898. https://doi.org/10.3390/ijerph192214898
Chicago/Turabian StyleDippong, Thomas, and Maria-Alexandra Resz. 2022. "Quality and Health Risk Assessment of Groundwaters in the Protected Area of Tisa River Basin" International Journal of Environmental Research and Public Health 19, no. 22: 14898. https://doi.org/10.3390/ijerph192214898
APA StyleDippong, T., & Resz, M. -A. (2022). Quality and Health Risk Assessment of Groundwaters in the Protected Area of Tisa River Basin. International Journal of Environmental Research and Public Health, 19(22), 14898. https://doi.org/10.3390/ijerph192214898