Synthesis, Characterization and Decomposition of Potassium Jarosite for Adsorptive As(V) Removal in Contaminated Water: Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Potassium Jarosite
2.2. Alkaline Decomposition of Potassium Jarosite and Addition of As(V)
2.3. Material Characterization
3. Results
3.1. Synthesis of the Potassium Jarosite
3.2. Potassium Hydronium Jarosite Decomposition and Adsorption of As(V)
4. Discussion
5. Conclusions
- The modified synthesis process, executed at 75 °C and only 9 h of reaction, produces a browning powder of potassium jarosite with spherical and semispherical particles of 1–2 μm sizes, which is of importance for the subsequent decomposition, As(V) adsorption, and recrystallization processes.
- As(V) adsorption in the decomposed structure of potassium jarosite is possible, attaining 4.19% of As(V) in the jarosite structure. The process was executed at ambient temperature, which is of great interest.
- During the As(V) adsorption process, it is also possible to recover the original structure of potassium jarosite by decreasing the pH to 1.1 (original pH used for synthesis).
- This process of As(V) adsorption and recrystallization of jarosite structure could be used with jarosite precipitated in the zinc industry (waste) for the treatment of As(V)-contaminated water.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, V.; Goel, R.; Chawla, R.; Silambarasan, M.; Kumar, S.R. Chemical, biological, radiological, and nuclear decontamination: Recent trends and future perspective. J. Pharm. Bioallied. Sci. 2010, 2, 220–238. [Google Scholar] [CrossRef]
- Kumar, A.P. Ensuring safe water in post-chemical, biological, radiological and nuclear emergencies. J. Pharm. Bioallied. Sci. 2010, 2, 253–266. [Google Scholar] [CrossRef]
- Ahmad, K.; Shan, H.U.R.; Ashfaq, M.; Nawaz, H. Removal of decidedly lethal metal arsenic from water using metal organic frameworks: A critical review. Rev. Inrg. Chem. 2021, 42, 2. [Google Scholar] [CrossRef]
- Askelan, D.R. The Science and Engineering of Materials, 3rd ed.; PWS Publishing Company: Worcester, UK, 1998; Volume 1, pp. 105–125. [Google Scholar]
- Callister, W.D. Materials Science and Engineering: An Introduction, 5th ed.; John Wiley and sons: New York, NY, USA, 1987. [Google Scholar]
- Sun, L.; Lu, M.; Li, Q.; Jiang, H.; Yin, S. Research progress of arsenic removal from wastewater. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Moscow, Russia, 27 May–6 June 2019; Volume 218, p. 012142. [Google Scholar] [CrossRef]
- Shui, Z.; Chen, Q.; Shui, H. Arsenic Chemistry and Arsenic Process. Beijing. Chem. Ind. Press 2014, 169–172. [Google Scholar] [CrossRef]
- Gao, F.; Jia, Y.; Sun, J. Status and Prospect at Arsenic Technology. Salt Lake Res. 2010, 1, 53–57. [Google Scholar]
- Yi, Q. Three-stage Lime-iron salt process for treating high arsenic contaminated acid. Sulf. Acid Ind. 2012, 46–48. [Google Scholar] [CrossRef]
- Liao, Y.; Zhou, J.; Huang, F. Deep removal of arsenic from high concentration arsenic-containing wastewater by two-stage iron, salt precipitation. J. Environ. Eng. 2015, 9, 5261–5266. [Google Scholar]
- Xie, H.; Zhong, Z.; Cao, C. Behavior of Arsenic in Molybdenum Removal by Sulfurization. J. Cent. South Univ. 2012, 43, 34–38. [Google Scholar]
- Wang, D.; Peng, X.; Zhang, W. Hydrogen sulfide purity strong acid and high arsenic. Waste Liquid. Environ. Chem. 2015, 12, 2233–2238. [Google Scholar]
- Wang, P. Discussion on the process of arsenic removal by sulfurization neutralization. Xinjiang Nonfe. Met. 2012, S2, 98–100. [Google Scholar]
- Cuong, D.V.; Wo, P.-C.; Chen, L.-I.; Hou, C.-H. Active MnO2/biochar composite for efficient As (III) removal: Insight into the mechanims of redox transformation and adsorption. Water Res. 2021, 188, 116495. [Google Scholar] [CrossRef]
- Maity, J.P.; Chen, C.-Y.; Bhattacharya, P.; Sharma, R.K.; Ahmad, A.; Patnaik, S.; Bundschuh, J. Advanced applications of nano-technological and biological processes as well as mitigation options for arsenic removal. J. Hazard. Mater. 2021, 405, 123885. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, H.; Wang, S.; Li, X.; Wang, X.; Jia, Y. Simultaneous removal and oxidation of arsenic from water by δ-MnO2 modified activated carbon. J. Environ. Sci. 2020, 94, 147–160. [Google Scholar] [CrossRef]
- Yoon, K.; Cho, D.-W.; Bhatnagar, A.; Song, H. Adsorption of As(V) and Ni(II) by Fe-Biochar composite fabricated by co-pyrolysis of orange peel and red mud. Environ. Res. 2020, 188, 109809. [Google Scholar] [CrossRef] [PubMed]
- Suming, Z.; Jianqiang, Z.; Kai, Z.; Zhiliang, C. Adsorption Effect and Mechanism of Iron-based Modified Coconut Shell Biochar to Arsenic. Ecol. Environ. Sci. 2021, 30, 1503–1512. [Google Scholar] [CrossRef]
- Kim, J.-G.; Kim, H.-B.; Yoon, G.-S.; Kim, S.-H.; Min, S.-J.; Tsang, D.C.W.; Baek, K. Simultaneous oxidation and adsorption of arsenic by one-step fabrication of alum sludge and graphitic carbon nitride (g-C3N4). J. Hazard. Mater. 2020, 383, 121138. [Google Scholar] [CrossRef] [PubMed]
- Akram, A.; Muzammal, S.; Shakoor, M.B.; Ahmad, S.R.; Jilani, A.; Iqbal, J.; Al-Sehemi, A.G.; Kalam, A.; Aboushoushah, S.F.O. Synthesis and Application of Egg Shell Biochar for As(V) Removal from Aqueous Solutions. Catalysis 2022, 12, 431. [Google Scholar] [CrossRef]
- Bilal, S.M.; Khan, N.N.; Bibi, I.; Shaid, M.; Ahmad, S.Z.; Farrakh, N.M.; Shaheen, M.S.; Wang, H.; Tsang, D.C.W.; Bundschuh, J.; et al. Exploring the arsenic removal potential of various biosorbents from water. Environ. Int. 2019, 123, 567–579. [Google Scholar] [CrossRef]
- Abid, M.; Niazi, N.K.; Bibi, I.; Farooki, A.; Ok, Y.S.; Kunhikrishnan, A.; Ali, F.; Ali, S.; Igalavithana, A.D.; Arshad, M. Arsenic (V) biosorption by charred orange peel in aqueous environments. Int. J. Phyroremediat. 2016, 18, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Dawal, A.; Mishra, V. Review on biosorption of arsenic from contaminated water. CLEAN Soil Air Water 2017, 45, 1600346. [Google Scholar] [CrossRef]
- Muñoz, J.A.; Gonzalo, A.; Valiente, M. Kinetic and Dynamic Aspects of Arsenic Adsorption by Fe(III)-Loaded Sponge. J. Solut. Chem. 2008, 37, 553–565. [Google Scholar] [CrossRef]
- Sunyer, A.; Viñals, J. Arsenate substitution in natroalunite: A potential medium for arsenic immobilization. Part 1: Synthesis and compositions. Hydrometallurgy 2011, 109, 54–64. [Google Scholar] [CrossRef]
- Sunyer, A.; Viñals, J. Arsenate subtitution in natroalunite: A potential medium for arsenic immobilization. Part 2: Cell parameters and stability test. Hydrometallurgy 2011, 109, 106–115. [Google Scholar] [CrossRef]
- Viñals, J.; Sunyer, A.; Molera, P.; Cruelss, M.; Llorca, N. Arsenic stabilization of calcium arsenate waste by hydrothermal precipitation of arsenical natroalunite. Hydreometallurgy 2010, 104, 247–259. [Google Scholar] [CrossRef]
- Fijita, T.; Taguchi, R.; Abumiya, M.; Matsumoto, M.; Shibata, E.; Nakamura, T. Effect of pH on atmospheric scorodite synthesis by oxidation of ferreous ions: Physical properties and stability of scorodite. Hydrometallurgy 2009, 96, 189–198. [Google Scholar] [CrossRef]
- Fijita, T.; Taguchi, R.; Abumiya, M.; Matsumoto, M.; Shibata, E.; Nakamura, T. Effects of zinc, copper, and sodium ions on ferric arsenate precipitation in a novel atmospheric scorodite process. Hydrometallurgy 2008, 93, 30–38. [Google Scholar] [CrossRef]
- Cruells, M.; Roca, A. Jarosites: Formation, Structure, Reactivity and Environmental. Metals 2022, 12, 802. [Google Scholar] [CrossRef]
- Rämä, M.; Nurmi, S.; Jokilaakso, A.; Klemettinen, L.; Taskinen, P.; Salminen, J. Thermal Processing of Jarosite Leach Residue for a Safe Disposable Slag and Valuable Metals Recovery. Metals 2018, 8, 744. [Google Scholar] [CrossRef] [Green Version]
- Savage, K.S.; Bird, D.K.; O´Day, P.A. Arsenic speciation in synthetic jarosite. Chem. Geol. 2005, 215, 473–498. [Google Scholar] [CrossRef]
- Smith, A.M.; Dubbin, W.E.; Wright, K.; Hudson-Edwards, K.A. Dissolution of lead- and lead-arsenic-jarosites at pH 2 and 8 and 20 °C: Insights from batch experiments. Chem. Geo. 2006, 229, 344–361. [Google Scholar] [CrossRef]
- Acero, P.; Ayora, C.; Torrentó, C.; Nieto, J.M. The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochim. Cosmochim. Acta 2006, 70, 4130–4139. [Google Scholar] [CrossRef]
- Flores, V.H.; Patiño, F.; Roca, A.; Flores, M.U.; Reyes, I.A.; Reyes, M.; Islas, H. Alkaline Decomposition of Solid Solution of Ammonium-Sodium Jarosite with Arsenic. Metals 2022, 12, 584. [Google Scholar] [CrossRef]
- Patiño, F.; Reyes, I.A.; Flores, M.U.; Pandiyan, T.; Roca, A.; Reyes, M.; Hernández, J. Kinetic modeling and experimental design of the sodium arsenojarosite decomposition in alkaline media: Implications. Hydrometallurgy 2013, 137, 115–125. [Google Scholar] [CrossRef]
- Hudson-Edwards, K.A. Uptake and release of arsenic and antimony in alunite-jarosite and beudantite group minerals. Am. Min. 2012, 334, 9–24. [Google Scholar] [CrossRef]
- Johnson, S.G.; Burton, E.D.; Keene, A.F.; Planer-Friedrich, B.; Voegelin, A.; Blackford, M.G.; Lumpkin, G.R. Arsenic mobilization and iron transformations during sulfidization of As(V)-bearing jarosite. Chem. Geol. 2012, 334, 9–24. [Google Scholar] [CrossRef]
- Hernández-Lazcano, E.; Cerecedo-Sáenz, E.; Hernández-Ávila, J.; Toro, N.; Karthik, T.V.K.; Mendoza-Anaya, D.; Fernández-García, M.E.; Rodríguez-Lugo, V.; Salinas-Rodríguez, E. Synthesis of Hydronium-Potassium Jarosites: The effect of pH and Aging Time on Their Structural, Morphological and Electrical Properties. Minerals 2021, 11, 80. [Google Scholar] [CrossRef]
- Serralde-Lealba, J.R.; Cerecedo-Sáenz, E.; Hernández-Ávila, J.; Arenas-Flores, A.; Veloz-Rodríguez, M.A.; Gutiérrez-Amador, M.P.; González-González, A.M.; Rosales-Ibáñez, R.; Salinas-Rodríguez, E. Doped Potassium Jarosite: Synthesis, Characterization and Evaluation as Biomaterial for its Application in Bone Tissue Engineering. Metals 2022, 12, 1052. [Google Scholar] [CrossRef]
- Salinas, E.; Cerecedo, E.; Ramírez, M.; Patiño, F.; Pérez, F. Kinetics of alkaline decomposition and cyanidation of argentian rubidium jarosite in NaOH medium. Metall. Mater. Trans. B 2012, 43B, 1027–1033. [Google Scholar] [CrossRef]
- Settle, F.A. Handbook of Instrumental Techniques for Analytical Chemistry, 1st ed.; Prentice-Hall Inc.: Upper Saddle River, NJ, USA, 1977; pp. 1–728. [Google Scholar]
- Ferenc, L.F.; Smith, A.M.L.; Navrotsky, A.; Wright, K.; Hudson-Edwards, K.A.; Dubbin, W.E. Synthesis, characterization and thermochemistry of synthetic Pb-As, Pb-Cu and Pb-Zn jarosites. Geochim. Cosmochim. Acta 2014, 127, 107–109. [Google Scholar] [CrossRef] [Green Version]
- Hudson-Edwards, K.A.; Smith, A.M.L.; Dubbin, W.E.; Bennett, A.J.; Murphy, P.J.; Wright, K. Comparison of the structure of natural and synthetic Pb-Cu-jarosite-type compounds. Eur. J. Mineral. 2008, 20, 241–252. [Google Scholar] [CrossRef]
- Frost, R.L.; Kloprogge, T. Raman spectroscopy of some complex arsenate minerals -implications for soil remediation. Spectrochm. Acta Part A 2003, 59, 2797–2804. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huifen, Y.; Zhang, G.; Kang, J.; Wang, C. Comprehensive recovery and recycle of jarosite residues from zinc hydrometallurgy. Chem. Eng. J. Adv. 2020, 3, 100023. [Google Scholar] [CrossRef]
- Grudinsky, P.; Pankratov, D.; Kovalev, D.; Grigoreva, D.; Dyubanov, V. Namic, and Kinetics of Rubidium Jarosite Decomposition in Calcium Hydroxide Solutions. Metall. Mater. Trans. B 2012, 43B, 773–780. [Google Scholar] [CrossRef]
- Jhonson, D.B.; Dybowska, A.; Schofield, P.F.; Herrington, R.J.; Smith, S.L.; Santos, A.L. Bioleaching of arsenic-rich cobalt mineral resources, and evidence for concurrent biomineralisation of scorodite during oxidative bio-processing of skutterudite. Hydrometallurgy 2020, 195, 105395. [Google Scholar] [CrossRef]
- Alguacil, F.J.; Escudero, E. The removal of toxic metals from liquid effluents by ion exchange resins. Part XVII: Arsenic(V)/H+/Dowex 1x8. Rev. Met. 2022, 58, e221. [Google Scholar] [CrossRef]
- Kurtz, E.E.C.; Luong, V.T.; Hellriegel, U.; Leidinger, F.; Luu, T.L.; Bundschuh, J.; Hoinkis, J. Iron-Based subsurface arsenic removal (SAR): Results of a long-term-pilot-scale test in Vietnam. Water Res. 2020, 181, 115929. [Google Scholar] [CrossRef]
- Alka, S.; Shahir, S.; Ibrahim, N.; Ndejiko, M.J.; Vo, D.-V.N.; Manan, F.A. Arsenic removal technologies and future trends: A mini review. J. Cleaner Prod. 2021, 278, 123805. [Google Scholar] [CrossRef]
Peaks | Intensity % | K | Λ | FWHM | 2θ | cos θ (rad) | Crystallite Size (nm) |
---|---|---|---|---|---|---|---|
1 | 100 | 1 | 1.789 | 0.512 | 34.108 | 0.956 | 3.655 |
2 | 53.8 | 1 | 1.789 | 0.471 | 33.720 | 0.957 | 3.969 |
3 | 43.1 | 1 | 1.789 | 0.333 | 20.566 | 0.984 | 5.460 |
4 | 25.0 | 1 | 1.789 | 0.469 | 54.094 | 0.891 | 4.283 |
5 | 22.7 | 1 | 1.789 | 0.464 | 46.770 | 0.918 | 4.201 |
6 | 21.2 | 1 | 1.789 | 0.331 | 28.605 | 0.969 | 5.578 |
7 | 20.0 | 1 | 1.789 | 0.467 | 58.882 | 0.871 | 4.399 |
8 | 11.3 | 1 | 1.789 | 0.369 | 17.632 | 0.988 | 4.906 |
Average Crystallite size | 4.556 |
Sample | O (%) | Fe (%) | S (%) | K (%) | H3O + OH * |
---|---|---|---|---|---|
Potassium Jarosite | 43.6 | 20.3 | 10.2 | 5.2 | 21.7 |
Sample | % O | % S | % K | % Fe | % As |
---|---|---|---|---|---|
J-K * | 43.60 | 10.20 | 5.20 | 20.30 | 0 |
J-K-As-30 min | 38.05 | 9.44 | 5.31 | 39.89 | 7.30 |
J-K-As-90 min | 36.34 | 9.23 | 5.14 | 40.78 | 8.48 |
K-K-120 min | 37.82 | 9.70 | 5.22 | 38.77 | 8.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerecedo-Sáenz, E.; Hernández-Lazcano, E.; González-Bedolla, M.J.; Hernández-Ávila, J.; Rosales-Ibáñez, R.; Gutiérrez-Amador, M.d.P.; Sánchez-Castillo, A.; Arenas-Flores, A.; Salinas-Rodríguez, E. Synthesis, Characterization and Decomposition of Potassium Jarosite for Adsorptive As(V) Removal in Contaminated Water: Preliminary Study. Int. J. Environ. Res. Public Health 2022, 19, 15912. https://doi.org/10.3390/ijerph192315912
Cerecedo-Sáenz E, Hernández-Lazcano E, González-Bedolla MJ, Hernández-Ávila J, Rosales-Ibáñez R, Gutiérrez-Amador MdP, Sánchez-Castillo A, Arenas-Flores A, Salinas-Rodríguez E. Synthesis, Characterization and Decomposition of Potassium Jarosite for Adsorptive As(V) Removal in Contaminated Water: Preliminary Study. International Journal of Environmental Research and Public Health. 2022; 19(23):15912. https://doi.org/10.3390/ijerph192315912
Chicago/Turabian StyleCerecedo-Sáenz, Eduardo, Elías Hernández-Lazcano, Maythe J. González-Bedolla, Juan Hernández-Ávila, Raúl Rosales-Ibáñez, María del P. Gutiérrez-Amador, Ariadna Sánchez-Castillo, Alberto Arenas-Flores, and Eleazar Salinas-Rodríguez. 2022. "Synthesis, Characterization and Decomposition of Potassium Jarosite for Adsorptive As(V) Removal in Contaminated Water: Preliminary Study" International Journal of Environmental Research and Public Health 19, no. 23: 15912. https://doi.org/10.3390/ijerph192315912
APA StyleCerecedo-Sáenz, E., Hernández-Lazcano, E., González-Bedolla, M. J., Hernández-Ávila, J., Rosales-Ibáñez, R., Gutiérrez-Amador, M. d. P., Sánchez-Castillo, A., Arenas-Flores, A., & Salinas-Rodríguez, E. (2022). Synthesis, Characterization and Decomposition of Potassium Jarosite for Adsorptive As(V) Removal in Contaminated Water: Preliminary Study. International Journal of Environmental Research and Public Health, 19(23), 15912. https://doi.org/10.3390/ijerph192315912