The Influence of the Reduction in Clay Sediments in the Level of Metals Bioavailability—An Investigation in Liujiang River Basin after Wet Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Description of the Study Area and Field Sampling
2.2. Sample Preparation and Analysis
2.3. Quality Assurance and Quality Control
2.4. The Calculation of Metals Bioavailability
2.5. Statistical Analysis
3. Results
3.1. The Properties in Sediments and Their Overlying Water
3.2. The Distribution and Speciations of Metals in Sediments
3.3. The Bioavailability of Metals in Sediments
4. Discussion
4.1. Basis for the Seasonal Variations of Metals Bioavailability
4.2. The Destabilization of Metals in Strongly Bound Form
4.3. The Regulation of Seasonal Variations on Metals Bioavailability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Miao, X.; Hao, Y.; Liu, H.; Xie, Z.; Miao, D.; He, X. Effects of heavy metals speciations in sediments on their bioaccumulation in wild fish in rivers in Liuzhou—A typical karst catchment in southwest China. Ecotoxicol. Environ. Saf. 2021, 214, 112099. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Miao, X.; Liu, H.; Miao, D. The Variation of Heavy Metals Bioavailability in Sediments of Liujiang River Basin, SW China Associated to Their Speciations and Environmental Fluctuations, a Field Study in Typical Karstic River. Int. J. Environ. Res. Public Health 2021, 18, 3986. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-F.; Ju, Y.-R.; Chen, C.-W.; Dong, C.-D. Changes in the total content and speciation patterns of metals in the dredged sediments after ocean dumping: Taiwan continental slope. Ocean. Coast. Manag. 2019, 181, 104893. [Google Scholar] [CrossRef]
- Yang, W.; Li, X.; Pei, J.; Sun, T.; Shao, D.; Bai, J.; Li, Y. Bioavailability of trace metals in sediments of a recovering freshwater coastal wetland in China’s Yellow River Delta, and risk assessment for the macrobenthic community. Chemosphere 2017, 189, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Tamim, U.; Khan, R.; Jolly, Y.N.; Fatema, K.; Das, S.; Naher, K.; Islam, M.A.; AzharulIslam, S.M.; Hossain, S.M. Elemental distribution of metals in urban river sediments near an industrial effluent source. Chemosphere 2016, 155, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Zhang, M.; Liu, C.; Li, L.; Chen, Z. Heavy metal(loid)s and organic contaminants in groundwater in the Pearl River Delta that has undergone three decades of urbanization and industrialization: Distributions, sources, and driving forces. Sci. Total Environ. 2018, 635, 913–925. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Chen, F.; Ma, J.; Khan, Z.I.; Hussain, M.I.; Javaid, I.; Ahmad, K.; Nazar, S.; Akhtar, S.; Ejaz, A.; et al. Comparative evaluation of groundwater, wastewater and canal water for irrigation on toxic metal accumulation in soil and vegetable: Pollution load and health risk assessment. Agric. Water Manag. 2022, 264, 107515. [Google Scholar] [CrossRef]
- Zhao, X.; Yao, L.; Ma, Q.; Zhou, G.; Wang, L.; Fang, Q.; Xu, Z. Distribution and ecological risk assessment of cadmium in water and sediment in Longjiang River, China: Implication on water quality management after pollution accident. Chemosphere 2018, 194, 107–116. [Google Scholar] [CrossRef]
- Hao, Y.; Miao, X.; Song, M.; Zhang, H. The Bioaccumulation and Health Risk Assessment of Metals among Two Most Consumed Species of Angling Fish (Cyprinus carpio and Pseudohemiculter dispar) in Liuzhou (China): Winter Should Be Treated as a Suitable Season for Fish Angling. Int. J. Environ. Res. Public Health 2022, 19, 1519. [Google Scholar] [CrossRef]
- Horta-Puga, G.; Cházaro-Olvera, S.; Winfield, I.; Avila-Romero, M.; Moreno-Ramírez, M. Cadmium, copper and lead in macroalgae from the Veracruz Reef System, Gulf of Mexico: Spatial distribution and rainy season variability. Mar. Pollut. Bull. 2013, 68, 127–133. [Google Scholar] [CrossRef]
- Marques, J.A.; Costa, S.R.; Maraschi, A.C.; Vieira, C.E.D.; Costa, P.G.; Martins, C.M.G.; Santos, H.F.; Souza, M.M.; Sandrini, J.Z.; Bianchini, A. Biochemical response and metals bioaccumulation in planktonic communities from marine areas impacted by the Fundão mine dam rupture (southeast Brazil). Sci. Total Environ. 2022, 806, 150727. [Google Scholar] [CrossRef] [PubMed]
- Sundaray, S.K.; Nayak, B.B.; Lin, S.; Bhatta, D. Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—A case study: Mahanadi basin, India. J. Hazard. Mater. 2011, 186, 1837–1846. [Google Scholar] [CrossRef] [PubMed]
- Peakall, D.; Burger, J. Methodologies for assessing exposure to metals: Speciation, bioavailability of metals, and ecological host factors. Ecotoxicol. Environ. Saf. 2003, 56, 110121. [Google Scholar] [CrossRef]
- Lin, J.G.; Chen, S.Y.; Su, C.R. Assessment of sediment toxicity by metal speciation in different particle-size fractions of river sediment. Water Sci. Technol. 2003, 47, 233–241. [Google Scholar] [CrossRef]
- Nemati, K.; Abu Bakar, N.K.; Abas, M.R.; Sobhanzadeh, E. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. J. Hazard. Mater. 2011, 192, 402–410. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Wiśniowska, E.; Włodarczyk-Makuła, M. The effect of selected acidic or alkaline chemical agents amendment on leachability of selected heavy metals from sewage sludge. Sci. Total Environ. 2018, 633, 463–469. [Google Scholar] [CrossRef]
- Guo, X.; Tian, Y.; Yuan, D.; Huang, Y.; Yang, Y.; Zou, C. Effects of hydrophyte decomposition on the binding mechanism between fluorescent DOM and copper. Ecotoxicol. Environ. Saf. 2021, 214, 112064. [Google Scholar] [CrossRef]
- Huang, D.; Liu, L.; Zeng, G.; Xu, P.; Huang, C.; Deng, L.; Wang, R.; Wan, J. The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment. Chemosphere 2017, 174, 545–553. [Google Scholar] [CrossRef]
- Xu, D.; Wang, Y.; Zhang, R.; Guo, J.; Yu, K. Distribution, speciation, environmental risk, and source identification of heavy metals in surface sediments from the karst aquatic environment of the Lijiang River, Southwest China. Environ. Sci. Pollut. Res. 2016, 23, 9122–9133. [Google Scholar] [CrossRef]
- Huaming, G.; Yan, R.; Qiong, L.; Kai, Z.; Yuan, L. Enhancement of Arsenic Absorption during Mineral Transformation from Siderite to Goethite: Mechanism and Application. Environ. Sci. Technol. 2013, 47, 1009–1016. [Google Scholar]
- Xiu, W.; Guo, H.; Shen, J.; Liu, S.; Ding, S.; Hou, W.; Ma, J.; Dong, H. Stimulation of Fe(II) Oxidation, Biogenic Lepidocrocite Formation, and Arsenic Immobilization by Pseudogulbenkiania Sp. Strain 2002. Environ. Sci. Technol. 2016, 50, 6449–6458. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Li, X.; Xi, Y.; Xie, T.; Liu, Y.; Liu, B.; Liu, H.; Xu, W.; Zhang, C. Microbe-mediated transformation of metal sulfides: Mechanisms and environmental significance. Sci. Total Environ. 2022, 825, 153767. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Hu, G.; Wang, L. Speciation and ecological risk of heavy metals in intertidal sediments of Quanzhou Bay, China. Environ. Monit. Assess. 2010, 163, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Hao, Y.; Tang, X.; Xie, Z.; Liu, L.; Luo, S.; Huang, Q.; Zou, S.; Zhang, C.; Li, J. Analysis and health risk assessment of toxic and essential elements of the wild fish caught by anglers in Liuzhou as a large industrial city of China. Chemosphere 2020, 243, 125337. [Google Scholar] [CrossRef]
- Miao, X.; Song, M.; Xu, G.; Hao, Y.; Zhang, H. The Accumulation and Transformation of Heavy Metals in Sediments of Liujiang River Basin in Southern China and Their Threatening on Water Security. Int. J. Environ. Res. Public Health 2022, 19, 1619. [Google Scholar] [CrossRef]
- Jerves-Cobo, R.; Forio, M.A.E.; Lock, K.; Butsel, J.V.; Pauta, G.; Cisneros, F.; Nopens, I.; Goethals, P.L.M. Biological water quality in tropical rivers during dry and rainy seasons: A model-based analysis. Ecol. Indic. 2020, 108, 105769. [Google Scholar] [CrossRef]
- Zhang, Q.; Wei, Y.; Cao, J.; Yu, S. Heavy Metal Pollution of the Drinking Water Sources in the Liujiang River Basin, and Related Health Risk Assessments. Environ. Sci. 2018, 39, 1598–1607. [Google Scholar]
- Long, E.R.; Field, L.J.; MacDonald, D.D. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environ. Toxicol. Chem. 1998, 17, 714–727. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, Y.; Hu, S.; Deng, K.; Huang, D.; Cao, L. Chemical forms of Hg, Pb, Cd, Cu and Zn in Beijing urban soil and its environmental effects. Urban Geol. 2015, 10, 11–15. [Google Scholar]
- Liu, F.; Yan, W.; Huang, X.; Shi, P. Distributional characteristics of heavy metal and its available phases in sediments from Zhujiang river mouth. J. Trop. Oceanogr. 2003, 22, 16–24. [Google Scholar]
- Chakraborty, P.; Ramteke, D.; DeviGadi, S.; Bardhan, P. Linkage between speciation of Cd in mangrove sediment and its bioaccumulation in total soft tissue of oyster from the west coast of India. Mar. Pollut. Bull. 2016, 106, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Chen, J.; Sun, X.; Hu, Z.; Fan, D. Accumulation and transformation of heavy metals in surface sediments from the Yangtze River estuary to the East China Sea shelf. Environ. Pollut. 2019, 245, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Abollino, O.; Aceto, M.; Malandrino, M.; Sarzanini, C.; Mentasti, E. Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Res. 2003, 37, 1619–1627. [Google Scholar] [CrossRef]
- Bing, H.; Liu, Y.; Huang, J.; Tian, X.; Zhu, H.; Wu, Y. Dam construction attenuates trace metal contamination in water through increased sedimentation in the Three Gorges Reservoir. Water Res. 2022, 217, 118419. [Google Scholar] [CrossRef]
Overlying Water | DO | EC | pH | Eh | Turbidity |
mg/L | μs/cm | mV | NTU | ||
Dry Season | 10.16–11.82 | 147.9–227.0 | 7.93–8.53 | 114.4–179.2 | 1.57–11.7 |
10.84 | 180.65 | 8.13 | 144.74 | 4.27 | |
Wet Season | 6.22–8.43 | 141.5–199.7 | 6.79–8.48 | 94.89–161.1 | 8.13–28.1 |
7.20 | 164.32 | 7.81 | 114.03 | 13.61 | |
Sediment | OM | Mz | Clay | Silt | Sand |
% | μm | <4 μm% | 4–63 μm% | >63 μm% | |
Dry Season | 0.38–1.37 | 7.92–32.95 | 0.02–35.77 | 64.23–96.96 | 0–8.43 |
0.67 | 25.17 | 2.92 | 92.57 | 4.51 | |
Wet Season | 0.37–1.37 | 10.24–27.63 | 15.74–27.63 | 62.74–79.84 | 0.05–7.24 |
0.72 | 21.26 | 22.16 | 74.05 | 3.79 |
Location | Cd | Pb | Cr | Cu | Zn | As | Hg | |
---|---|---|---|---|---|---|---|---|
mg/kg | ||||||||
BSG | 0.267 | 24 | 82.1 | 27.8 | 75.6 | 20.5 | 0.152 | |
Wet season | Min–Max | 0.44–6.36 | 17.74–43.31 | 27.64–91.00 | 19.98–35.86 | 68.47–196.96 | 8.29–69.76 | 0.09–1.32 |
Mean | 1.27 | 30.10 | 53.53 | 25.20 | 124.93 | 23.24 | 0.19 | |
Dry Season | Min–Max | 0.45–8.74 | 21.28–55.73 | 29.86–59.98 | 20.19–37.67 | 56.56–208.99 | 10.00–28.18 | 0.09–0.47 |
Mean | 1.27 | 30.10 | 39.70 | 26.46 | 96.71 | 17.79 | 0.15 | |
TEL | 0.6 a | 35 a | 42 a | 36 a | 123 a | 7.2 b | 0.17 a | |
PEL | 3.5 a | 91 a | 160 a | 197 a | 315 a | 42 b | 0.49 a |
Dry Season | As | Cd | Cr | Cu | Hg | Pb | Zn |
BI | |||||||
F1 | 0.673 ** | 0.922 ** | 0.098 | 0.123 | 0.692 ** | 0.526 ** | 0.644 ** |
F2 | 0.997 ** | 1.000 ** | 0.997 ** | 0.994 ** | 0.659 ** | 0.992 ** | 1.000 ** |
F3 | 0.720 ** | 0.21 | −0.08 | 0.149 | 0.020 | 0.689 ** | 0.272 |
F4 | 0.093 | 0.982 ** | 0.318 | 0.131 | 0.624 ** | 0.785 ** | 0.902 ** |
F5 | 0.730 ** | 0.38 | 0.300 | 0.108 | 0.674 ** | 0.487 * | 0.742 ** |
Wet Season | As | Cd | Cr | Cu | Hg | Pb | Zn |
BI | |||||||
F1 | 0.784 ** | 0.689 ** | 0.842 ** | 0.389 | 0.840 ** | 0.137 | 0.476 * |
F2 | 1.000 ** | 1.000 ** | 0.820 ** | 0.930 ** | 0.919 ** | 0.998 ** | 1.000 ** |
F3 | 0.763 ** | 0.977 ** | 0.741 ** | 0.304 | 0.258 | 0.836 ** | 0.896 ** |
F4 | 0.468 * | 0.856 ** | 0.656 ** | 0.173 | 0.701 ** | 0.727 ** | 0.737 ** |
F5 | 0.621 ** | 0.372 | 0.615 ** | 0.389 | 0.414 * | 0.236 | 0.674 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, X.; Liang, J.; Hao, Y.; Zhang, W.; Xie, Y.; Zhang, H. The Influence of the Reduction in Clay Sediments in the Level of Metals Bioavailability—An Investigation in Liujiang River Basin after Wet Season. Int. J. Environ. Res. Public Health 2022, 19, 14988. https://doi.org/10.3390/ijerph192214988
Miao X, Liang J, Hao Y, Zhang W, Xie Y, Zhang H. The Influence of the Reduction in Clay Sediments in the Level of Metals Bioavailability—An Investigation in Liujiang River Basin after Wet Season. International Journal of Environmental Research and Public Health. 2022; 19(22):14988. https://doi.org/10.3390/ijerph192214988
Chicago/Turabian StyleMiao, Xiongyi, Jianping Liang, Yupei Hao, Wanjun Zhang, Yincai Xie, and Hucai Zhang. 2022. "The Influence of the Reduction in Clay Sediments in the Level of Metals Bioavailability—An Investigation in Liujiang River Basin after Wet Season" International Journal of Environmental Research and Public Health 19, no. 22: 14988. https://doi.org/10.3390/ijerph192214988
APA StyleMiao, X., Liang, J., Hao, Y., Zhang, W., Xie, Y., & Zhang, H. (2022). The Influence of the Reduction in Clay Sediments in the Level of Metals Bioavailability—An Investigation in Liujiang River Basin after Wet Season. International Journal of Environmental Research and Public Health, 19(22), 14988. https://doi.org/10.3390/ijerph192214988