Distribution and Potential Availability of As, Metals and P in Sediments from a Riverine Reservoir in a Rural Mountainous Catchment (NE Portugal)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Sample Preparation
2.3. Water Analyses
2.4. Sediment Analyses
2.5. Risk Assessment of Sediment Contamination
3. Results and Discussion
3.1. Waters
3.2. Sediments
3.1.1. Evaluation of the Potential Availability of As and Metals
3.1.2. Pattern of Distribution of Metals in the Bottom Sediments of the Reservoir
3.1.3. Contamination and Risk Assessment of Sediments by As and Metals
3.1.4. Evaluation of the Potential Availability of P
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Förstner, U.; Wittmann, G.T.W. Metal Pollution in the Aquatic Environment; Springer: Berlin, Germany, 1979. [Google Scholar]
- Salomons, W.; Förstner, U. Metals in the Hydrocycle; Springer: New York, NY, USA, 1984. [Google Scholar]
- Salomons, W.; Rooij, N.M.; Kerdijk, H.; Bril, J. Sediments as a source for contaminants? Hydrobiologia 1987, 149, 13–30. [Google Scholar] [CrossRef]
- Salomons, W. Sediment Pollution in the EEC; Office for Official Publications of the European Communities: Luxembourg, 1993. [Google Scholar]
- Salomons, W.; Stigliani, W.M. Biogeodynamics of Pollutants in Soils and Sediments: Risk Assessment of Delayed and Non-Linear Responses; Springer: Berlin, Germany; London, UK, 1995. [Google Scholar]
- Calmano, W.; Förstner, U. Sediments and Toxic Substances: Environmental Effects and Ecotoxity; Springer: Berlin, Germany, 1996. [Google Scholar]
- Horowitz, A.J.; Elrick, K.A.; Smith, J.J. Estimating suspended sediment and trace element fluxes in large river basins: Methodological considerations as applied to the NASQAN programme. Hydrol. Process. 2001, 15, 1107–1132. [Google Scholar] [CrossRef]
- Förstner, U. Sediment dynamics and pollutant mobility in rivers: An interdisciplinary approach. Lakes Reserv. Res. Manag. 2004, 9, 25–40. [Google Scholar] [CrossRef]
- Westrich, B.; Förstner, U. Sediment Dynamics and Pollutant Mobility in Rivers: An Interdisciplinary Approach; Springer: Berlin, Germany, 2007. [Google Scholar]
- Pickering, W.F. Metal ion speciation—soils and sediments (a review). Ore Geol. Rev. 1986, 1, 83–146. [Google Scholar] [CrossRef]
- Mainstone, C.P.; Parr, W. Phosphorus in rivers—Ecology and management. Sci. Total Environ. 2002, 282, 25–47. [Google Scholar] [CrossRef]
- Malmqvist, B.; Rundle, S. Threats to the running water ecosystems of the world. Environ. Conserv. 2002, 29, 134–153. [Google Scholar] [CrossRef]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Available online: https://www.eea.europa.eu/policy-documents/directive-2000-60-ec-of (accessed on 22 May 2021).
- Withers, P.J.A.; Lord, E. Agricultural nutrient inputs to rivers and groundwaters in the UK: Policy, environmental management and research needs. Sci. Total Environ. 2002, 282, 9–24. [Google Scholar] [CrossRef]
- Neal, C.; Jarvie, H.P.; Williams, R.; Love, A.; Neal, M.; Wickham, H.; Harman, S.; Armstrong, L. Declines in phosphorus concentration in the upper River Thames (UK): Links to sewage effluent cleanup and extended end-member mixing analysis. Sci. Total Environ. 2010, 408, 1315–1330. [Google Scholar] [CrossRef]
- Raike, A.; Pietilainen, O.P.; Rekolainen, S.; Kauppila, P.; Pitkanen, H.; Niemi, J.; Raateland, A.; Vuorenmaa, J. Trends of phosphorus, nitrogen and chlorophyll a concentrations in Finnish rivers and lakes in 1975–2000. Sci. Total Environ. 2003, 310, 47–59. [Google Scholar] [CrossRef]
- Zoboli, O.; Viglione, A.; Rechberger, H.; Zessner, M. Impact of reduced anthropogenic emissions and century flood on the phosphorus stock, concentrations and loads in the Upper Danube. Sci. Total Environ. 2015, 518, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Colombo, C.; Barron, V.; Torrent, J. Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites. Geochim. Cosmochim. Acta 1994, 58, 1261–1269. [Google Scholar] [CrossRef]
- Goldberg, S.; Sposito, G. On the mechanism of specific phosphate adsorption by hydroxylated mineral surfaces: A review. Commun. Soil Sci. Plant Anal. 1985, 16, 801–821. [Google Scholar] [CrossRef]
- Parfitt, R.L.; Atkinson, R.J.; Smart, R.S.C. The mechanism of phosphate fixation by iron oxides. Soil Sci. Soc. Am. J. 1975, 39, 837–841. [Google Scholar] [CrossRef]
- Parfitt, R.L.; Russell, J.D. Adsorption on hydrous oxides. IV. Mechanisms of adsorption of various ions on goethite. J. Soil Sci. 1977, 28, 297–305. [Google Scholar] [CrossRef]
- Reddy, K.R.; Kadlec, R.H.; Flaig, E.; Gale, P.M. Phosphorus retention in streams and wetlands: A review. Crit. Rev. Environ. Sci. Technol. 1999, 29, 83–146. [Google Scholar] [CrossRef]
- Torrent, J. Interactions between Phosphate and Iron Oxide. Adv. GeoEcol. 1997, 30, 321–344. [Google Scholar]
- Gunnars, A.; Blomqvist, S. Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions—an experimental comparison of freshwater and brackish-marine systems. Biogeochemistry 1997, 37, 203–226. [Google Scholar] [CrossRef]
- Bartlett, R.J. Characterizing soil redox behavior. In Soil Physical Chemistry, 2nd ed.; Sparks, D.L., Ed.; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Uusitalo, R.; Turtola, E. Determination of Redox-Sensitive Phosphorus in Field Runoff without Sediment Preconcentration. J. Environ. Qual. 2003, 32, 70–77. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Meybeck, M.; Fekete, B.; Sharma, K.; Green, P.; Syvitski, J.P.M. Anthropogenic sediment retention: Major global impact from registered river impoundments. Glob. Planet. Chang. 2003, 39, 169–190. [Google Scholar] [CrossRef]
- Walling, D.E.; Fang, D. Recent trends in the suspended sediment loads of the world’s rivers. Glob. Planet. Chang. 2003, 39, 111–126. [Google Scholar] [CrossRef]
- Walling, D.E. Human impact on land–ocean sediment transfer by the world’s rivers. Geomorphology 2006, 79, 192–216. [Google Scholar] [CrossRef]
- Klaver, G.; van Os, B.; Negrel, P.; Petelet-Giraud, E. Influence of hydropower dams on the composition of the suspended and riverbank sediments in the Danube. Environ. Pollut. 2007, 148, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Van Den Berg, G.A.; Loch, J.P.G.; Van Der Heijdt, L.M.; Zwolsman, J.J.G. Mobilisation of heavy metals in contaminated sediments in the river Meuse, The Netherlands. Water Air Soil Pollut. 1999, 166, 567–586. [Google Scholar] [CrossRef]
- Simpson, S.L.; Apte, S.C.; Batley, G.E. Effect of short-term resuspension events on the oxidation of cadmium, lead, and zinc sulfide phases in anoxic estuarine sediments. Environ. Sci. Technol. 2000, 34, 4533–4537. [Google Scholar] [CrossRef]
- Zoumis, T.; Schmidt, A.; Grigorova, L.; Calmano, W. Contaminants in sediments: Remobilisation and demobilisation. Sci. Total Environ. 2001, 266, 195–202. [Google Scholar] [CrossRef]
- Audry, S.; Schäfer, J.; Blanc, G.; Bossy, C.; Lavaux, G. Anthropogenic components of heavy metal (Cd, Zn, Cu, Pb) budgets in the Lot–Garonne fluvial system (France). Appl. Geochem. 2004, 19, 269–286. [Google Scholar] [CrossRef]
- Arnason, J.G.; Fletcher, B.A. A 40+ year record of Cd, Hg, Pb, and U deposition in sediments of Patroon Reservoir, Albany County, NY, USA. Environ. Pollut. 2003, 123, 383–391. [Google Scholar] [CrossRef]
- Audry, S.; Schäfer, J.; Blanc, G.; Jouanneau, J.M. Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France). Environ. Pollut. 2004, 132, 413–426. [Google Scholar] [CrossRef]
- Varol, M.; Gökot, B.; Bekleyen, A.; Şen, B. Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. Catena 2012, 92, 11–21. [Google Scholar] [CrossRef]
- Vukovic, D.; Vukovic, Z.; Stankovic, S. The impact of the Danube Iron Gate Dam on heavy metal storage and sediment flux within the reservoir. Catena 2014, 113, 18–23. [Google Scholar] [CrossRef]
- Reis, A.; Parker, A.; Alencoão, A. Storage and origin of metals in active stream sediments from mountainous rivers: A case study in the River Douro basin (North Portugal). Appl. Geochem. 2014, 44, 69–79. [Google Scholar] [CrossRef]
- Reis, A.R. Occurrence and Mobilisation of Non-Organic Micro-Pollutants in Mountainous Riverine Systems. Ph.D. Thesis, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal, Unpublished work. 2010; 453p. [Google Scholar]
- Matos, A.V. A Geologia da Região de Vila Real. Ph.D. Thesis, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal, Unpublished work. 1991; 312p. [Google Scholar]
- Neiva, A.M.R.; Gomes, M.E.P. Geochemistry of the granitoid rocks and their minerals from Lixa do Alvão-Alfarela de Jales-Tourencinho (Vila Pouca de Aguiar, northern Portugal). Chem. Geol. 1991, 89, 305–327. [Google Scholar] [CrossRef]
- Förstner, U. Traceability of sediment analysis. Trends Anal. Chem. 2004, 23, 217–236. [Google Scholar] [CrossRef] [Green Version]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution; A.A. Balkema: Rotterdam, The Netherlands, 1993; 535p. [Google Scholar]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed.; Wiley: New York, NY, USA; Chichester, UK, 1996. [Google Scholar]
- Rauret, G.; Lopez-Sanchez, F.J.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ure, A. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1999, 1, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.C.; Jackson, M.L. Fractionation of soil phosphorus. Soil Sci. 1957, 84, 133–144. [Google Scholar] [CrossRef]
- Wang, Y.T.; O’Halloran, I.P.; Zhang, T.Q.; Hu, Q.C.; Tan, C.S. Phosphorus sorption parameters of soil ant their relationships with soil test phosphorus. Soil Sci. Soc. Am. J. 2015, 79, 672–680. [Google Scholar] [CrossRef]
- Kuo, S. Phosphorus. In Methods of Soil Analysis Part 3—Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, T., Sumner, M.E., Eds.; SSSA Book Series 5.3; SSSA, ASA: Madison, WI, USA, 1996; pp. 869–919. [Google Scholar] [CrossRef]
- Buat-Menerd, P.; Chesselt, R. Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet Sci. Lett. 1979, 42, 398–411. [Google Scholar] [CrossRef]
- Grygar, T.M.; Popelka, J. Revisiting geochemical methods of distinguishing natural concentrations and pollution by risk elements in fluvial sediments. J. Geochem. Explor. 2016, 170, 39–57. [Google Scholar] [CrossRef]
- Perin, G.; Craboledda, L.; Cirillo, M.; Dotta, L.; Zanette, M.L.; Orio, A.A. Heavy metal speciation in the sediments of Northern Adriatic Sea: A new approach for environmental toxicity determination. In Heavy Metal in the Environment; Lekkas, T.D., Ed.; CEP Consultant: Edinburgh, UK, 1985; Volume 2, pp. 454–456. [Google Scholar]
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Developed and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef]
- Baruah, N.K.; Kotoky, P.; Bhattacharyya, K.G.; Borah, G.C. Metal speciation in Jhanji River sediments. Sci. Total Environ. 1996, 193, 1–12. [Google Scholar] [CrossRef]
- Macklin, M.G.; Doarsett, R.B. The chemical speciation of trace metals in fine grained overbank flood sediments in the Tyne basin, North East England. Catena 1989, 16, 135–151. [Google Scholar] [CrossRef]
- Hudson-Edwards, K.; Macklin, M.G.; Curtis, C.D.; Vaughan, D. Mineralogical forms, processes of formation and distribution of Pb, Zn, Cd and Cu in the Tyne catchment basin, Northern Pennines, North East England. Environ. Sci. Technol. 1996, 30, 72–80. [Google Scholar] [CrossRef]
- Passos, E.D.A.; Alves, J.C.; dos Santos, I.S.; Alves, J.D.P.H.; Garcia, C.A.B.; Spinola Costa, A.C. Assessment of trace metals contamination in estuarine sediments using a sequential extraction technique and principal component analysis. Microchem. J. 2010, 96, 50–57. [Google Scholar] [CrossRef]
- Palma, P.; Ledo, L.; Alvarenga, P. Assessment of trace element pollution and its environmental risk to freshwater sediments influenced by anthropogenic contributions: The case study of Alqueva reservoir (Guadiana Basin). Catena 2015, 128, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Alloway, B.J.; Ayres, D.C. Chemical Principles of Environmental Pollution, 2nd ed.; Blackie Academic & Professional: London, UK, 1997; 395p. [Google Scholar]
- Terrado, M.; Barceló, D.; Tauler, R. Identification and distribution of contamination sources in the Ebro river basin by chemometrics modelling coupled to geographical information systems. Talanta 2006, 70, 691–704. [Google Scholar] [CrossRef] [PubMed]
- Kaiserli, A.; Voutsa, D.; Samara, C. Phosphorus fractionation in lake sediments—Lakes Volvi and Koronia, N. Greece. Chemosphere 2002, 46, 1147–1155. [Google Scholar] [CrossRef]
- Pettersson, K. Phosphorus characteristics of settling and suspended particles in Lake Erken. Sci. Total Environ. 2001, 266, 79–86. [Google Scholar] [CrossRef]
- Vo, N.X.Q.; Ji, Y.; Doan, T.V.; Kang, H. Distribution of Inorganic Phosphorus Fractions in Sediments of the South Han River over a Rainy Season. Environ. Eng. Res. 2014, 19, 229–240. [Google Scholar] [CrossRef]
- Yan, X.; Yang, W.; Chen, X.; Wang, M.; Wang, W.; Ye, D.; Wu, L. Soil Phosphorus Pools, Bioavailability and Environmental Risk in Response to the Phosphorus Supply in the Red Soil of Southern China. Int. J. Environ. Res. Public Health 2020, 17, 7384. [Google Scholar] [CrossRef]
- Rydin, E. Potentially mobile phosphorus in lake Erken sediment. Water Res. 2000, 34, 2037–2042. [Google Scholar] [CrossRef]
Parameters | Maximum | Minimum | Average | Median | Standard Deviation | |||||
---|---|---|---|---|---|---|---|---|---|---|
B | S | B | S | B | S | B | S | B | S | |
Temperature (°C) | 8.30 | 8.70 | 7.50 | 4.70 | 7.90 | 7.29 | 7.90 | 7.80 | 0.29 | 1.33 |
Conductivity (µS cm−1) | 130.60 | 68.60 | 55.80 | 55.70 | 67.61 | 58.94 | 56.20 | 56.00 | 27.85 | 4.88 |
Dissolved oxygen (mg L−1) | 11.10 | 12.52 | 10.50 | 10.80 | 10.94 | 11.35 | 11.00 | 11.01 | 0.20 | 0.68 |
pH | 6.46 | 6.57 | 6.31 | 5.40 | 6.42 | 6.19 | 6.44 | 6.41 | 0.05 | 0.43 |
NO3 (mg L−1) | 8.50 | 9.50 | 1.63 | 1.62 | 4.22 | 4.32 | 3.25 | 4.60 | 2.56 | 2.59 |
NO2 (mg L−1) | 0.19 | 0.21 | 0.18 | 0.15 | 0.18 | 0.18 | 0.18 | 0.17 | 0.01 | 0.02 |
Ca (mg L−1) | 1.08 | 1.03 | 0.90 | 0.90 | 1.00 | 0.98 | 0.99 | 0.99 | 0.07 | 0.05 |
K (mg L−1) | 1.14 | 1.13 | 1.05 | 1.03 | 1.09 | 1.08 | 1.08 | 1.08 | 0.03 | 0.03 |
Mg (mg L−1) | 0.92 | 0.92 | 0.87 | 0.86 | 0.89 | 0.90 | 0.90 | 0.90 | 0.02 | 0.02 |
Na (mg L−1) | 5.96 | 6.69 | 5.71 | 5.72 | 5.88 | 5.97 | 5.92 | 5.90 | 0.09 | 0.29 |
Cl (mg L−1) | 7.10 | 7.73 | 6.31 | 6.60 | 6.71 | 6.91 | 6.78 | 6.69 | 0.29 | 0.41 |
PO4 (mg L−1) | 6.51 | 2.61 | 1.83 | 1.82 | 2.56 | 2.00 | 1.94 | 1.94 | 1.74 | 0.24 |
SO4 (mg L−1) | 35.00 | 38.70 | 12.50 | 9.89 | 21.63 | 20.79 | 18.70 | 18.70 | 8.24 | 10.42 |
F (mg L−1) | 0.53 | 0.02 | 0.01 | 0.01 | 0.14 | 0.01 | 0.01 | 0.01 | 0.22 | 0.01 |
Mn (µg L−1) | 11.74 | 7.39 | 0.81 | 0.67 | 3.71 | 3.16 | 2.10 | 2.80 | 3.92 | 1.92 |
Alkalinity (mg L−1) | 11.38 | 9.67 | 5.65 | 7.80 | 8.56 | 8.77 | 8.64 | 8.81 | 1.73 | 0.65 |
TSS (mg L−1) | 103.00 | 91.00 | 48.00 | 43.00 | 81.14 | 66.44 | 86.00 | 66.00 | 19.14 | 14.34 |
Reference | As | Cd | Co | Cr | Cu | Ni | Pb | Zn | P |
---|---|---|---|---|---|---|---|---|---|
Average shale 1 | 13 | 90 | 90 | 45 | 68 | 20 | 95 | 700 | |
Shallow water sediment 2 | 5 | 60 | 56 | 35 | 22 | 92 | 550 | ||
River suspended sediments 3 | 5 | 100 | 100 | 100 | 90 | 150 | 350 | 1150 | |
Terragido sediments | 18–64 | <DL | <DL | 32–128 | 39–93 | 18–80 | 49–160 | 207–334 | 1705–2681 |
TEL 4 | 5.9 | 0.6 | - | 37.3 | 35.7 | 18 | 35 | 123 | - |
PEL 4 | 17 | 90 | - | 90 | 197 | 36 | 91.3 | 315 | - |
Fraction | Sampling Site | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
As | Available | 2.11 | 2.73 | 1.63 | 3.33 | 5.61 | 1.98 | 6.74 | 6.16 | 3.23 |
Reducible | 17.86 | 15.53 | 16.71 | 20.09 | 23.09 | 27.32 | 19.88 | 18.68 | 18.78 | |
Oxidizable | <DL. | <DL. | <DL. | 2.92 | 1.39 | <DL. | <DL. | <DL. | <DL. | |
Residual | 6.50 | 12.89 | <DL. | 14.09 | 24.47 | 34.79 | 25.38 | 33.75 | 26.69 | |
Cr | Available | 0.13 | 0.10 | 0.09 | 0.04 | 0.10 | 0.69 | 0.08 | 0.53 | 0.08 |
Reducible | 2.74 | 3.10 | 1.91 | 2.01 | 1.64 | 4.41 | 1.99 | 4.90 | 2.12 | |
Oxidizable | 9.89 | 9.95 | 8.62 | 8.16 | 6.90 | 15.55 | 8.73 | 10.90 | 10.02 | |
Residual | 48.53 | 22.08 | 48.65 | 36.66 | 23.58 | 107.39 | 28.54 | 61.24 | 33.91 | |
Cu | Available | 0.75 | 0.79 | 0.69 | 0.82 | 0.71 | 2.13 | 1.56 | 4.06 | 1.78 |
Reducible | 5.07 | 7.19 | 4.85 | 5.79 | 4.49 | 8.27 | 10.56 | 12.72 | 10.21 | |
Oxidizable | 15.83 | 21.78 | 14.56 | 20.21 | 20.18 | 10.23 | 35.13 | 43.55 | 32.21 | |
Residual | 35.76 | 30.43 | 34.96 | 43.32 | 29.86 | 18.66 | 30.00 | 32.55 | 28.07 | |
Ni | Available | 2.40 | 1.11 | 2.19 | 1.98 | 1.36 | 3.83 | 2.55 | 4.60 | 3.04 |
Reducible | 2.69 | 1.99 | 2.64 | 2.40 | 1.91 | 2.76 | 2.16 | 2.77 | 2.75 | |
Oxidizable | 3.94 | 3.13 | 3.86 | 3.27 | 3.29 | 6.01 | 4.23 | 3.89 | 4.86 | |
Residual | 28.45 | 11.37 | 28.30 | 20.17 | 12.56 | 67.18 | 17.08 | 37.12 | 20.31 | |
Pb | Available | 1.05 | 2.33 | 0.66 | 1.55 | 1.98 | 1.64 | 2.66 | 4.67 | 2.51 |
Reducible | 50.94 | 66.42 | 46.73 | 54.00 | 54.23 | 32.02 | 55.55 | 71.25 | 58.58 | |
Oxidizable | 15.09 | 19.02 | 13.19 | 17.05 | 13.47 | 5.72 | 14.25 | 25.81 | 11.58 | |
Residual | 39.80 | 55.98 | 31.45 | 48.68 | 36.32 | 28.85 | 34.58 | 67.89 | 25.00 | |
Zn | Available | 91.06 | 85.74 | 69.15 | 94.26 | 95.44 | 36.59 | 129.21 | 105.01 | 108.14 |
Reducible | 68.16 | 71.81 | 52.86 | 70.79 | 60.49 | 39.15 | 72.75 | 65.72 | 56.41 | |
Oxidizable | 24.97 | 34.04 | 21.64 | 24.38 | 29.02 | 28.13 | 41.60 | 28.19 | 43.79 | |
Residual | 77.99 | 83.77 | 81.20 | 85.46 | 78.11 | 102.97 | 81.55 | 85.65 | 79.90 |
Sampling Site | ES-P (μg g−1) 1M NH4CI | Al-P (μg g−1) 0.5M NH4F | Fe-P (μg g−1) 0.1M NaOH | RS-P (μg g−1) CDB | Ca-P (μg g−1) 0.25M H2SO4 |
---|---|---|---|---|---|
1 | 0.20 | 513.90 | 834.31 | 190.98 | 254.72 |
2 | 0.86 | 994.73 | 704.32 | 107.40 | 273.87 |
3 | 0.53 | 451.62 | 655.66 | 113.60 | 262.59 |
4 | 1.04 | 542.36 | 684.34 | 140.53 | 267.73 |
5 | 0.56 | 580.03 | 723.41 | 128.69 | 246.31 |
6 | 0.18 | 328.09 | 681.40 | 200.04 | 389.15 |
7 | 0.61 | 498.33 | 643.23 | 138.68 | 236.92 |
8 | 0.98 | 861.65 | 900.21 | 216.97 | 474.49 |
9 | 1.23 | 465.10 | 751.24 | 126.04 | 234.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, A.R.; Roboredo, M.; Pinto, J.P.R.M.; Vieira, B.; Varandas, S.G.P.; Fernandes, L.F.S.; Pacheco, F.A.L. Distribution and Potential Availability of As, Metals and P in Sediments from a Riverine Reservoir in a Rural Mountainous Catchment (NE Portugal). Int. J. Environ. Res. Public Health 2021, 18, 5616. https://doi.org/10.3390/ijerph18115616
Reis AR, Roboredo M, Pinto JPRM, Vieira B, Varandas SGP, Fernandes LFS, Pacheco FAL. Distribution and Potential Availability of As, Metals and P in Sediments from a Riverine Reservoir in a Rural Mountainous Catchment (NE Portugal). International Journal of Environmental Research and Public Health. 2021; 18(11):5616. https://doi.org/10.3390/ijerph18115616
Chicago/Turabian StyleReis, Anabela R., Marta Roboredo, João P. R. M. Pinto, Bernardete Vieira, Simone G. P. Varandas, Luis F. S. Fernandes, and Fernando A. L. Pacheco. 2021. "Distribution and Potential Availability of As, Metals and P in Sediments from a Riverine Reservoir in a Rural Mountainous Catchment (NE Portugal)" International Journal of Environmental Research and Public Health 18, no. 11: 5616. https://doi.org/10.3390/ijerph18115616
APA StyleReis, A. R., Roboredo, M., Pinto, J. P. R. M., Vieira, B., Varandas, S. G. P., Fernandes, L. F. S., & Pacheco, F. A. L. (2021). Distribution and Potential Availability of As, Metals and P in Sediments from a Riverine Reservoir in a Rural Mountainous Catchment (NE Portugal). International Journal of Environmental Research and Public Health, 18(11), 5616. https://doi.org/10.3390/ijerph18115616