Ecosystem Services: A Social and Semantic Network Analysis of Public Opinion on Twitter
Abstract
:1. Introduction
1.1. Ecosystem Services
1.2. Social Media Data
1.3. Literature Review
1.4. Research Questions and Hypothesis
- (RQ1) What kind of social network and what characteristics do we find on Twitter related to ecosystem services?
- (RQ2) Which users play a key role in the dissemination/disruption of information on the network?
- (RQ3) What are the most discussed topics and keywords that emerge in the discussions?
- (H1) In the social network, there are good interactions between users and high content sharing.
- (H2) Most influential users in the network are scientists or researchers.
- (H3) The most discussed topics are related to the latest research in the literature on ecosystem services, while the keywords are related to both technical terms used in research and more generic terms known to society.
1.5. Sections
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
3. Results
3.1. Search Results
3.2. Social Network Analysis
3.2.1. Network Overviews
3.2.2. User Analysis
3.3. Content Analysis
3.3.1. Top Contents
3.3.2. Semantic Analysis
3.4. Network Visualisations
3.4.1. Social Network Analysis
3.4.2. Semantic Networks
4. Discussion
5. Conclusions
5.1. Limitations
5.2. Implications for Research
5.3. Implications for Practitioners
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- Piaggio, M.; Siikamäki, J. The Value of Forest Water Purification Ecosystem Services in Costa Rica. Sci. Total Environ. 2021, 789, 147952. [Google Scholar] [CrossRef]
- Zhai, T.; Wang, J.; Fang, Y.; Huang, L.; Liu, J.; Zhao, C. Integrating Ecosystem Services Supply, Demand and Flow in Ecological Compensation: A Case Study of Carbon Sequestration Services. Sustainability 2021, 13, 1668. [Google Scholar] [CrossRef]
- Blanc, S.; Accastello, C.; Bianchi, E.; Lingua, F.; Vacchiano, G.; Mosso, A.; Brun, F. An Integrated Approach to Assess Carbon Credit from Improved Forest Management. J. Sustain. For. 2019, 38, 31–45. [Google Scholar] [CrossRef]
- Muro, A.; Feliu-Soler, A.; Canals, J.; Parrado, E.; Sanz, A. Psychological Benefits of Forest Bathing during the COVID-19 Pandemic: A Pilot Study in a Mediterranean Forest Close to Urban Areas. J. For. Res. 2022, 27, 71–75. [Google Scholar] [CrossRef]
- Yin, C.; Zhao, W.; Cherubini, F.; Pereira, P. Integrate Ecosystem Services into Socio-Economic Development to Enhance Achievement of Sustainable Development Goals in the Post-Pandemic Era. Geogr. Sustain. 2021, 2, 68–73. [Google Scholar] [CrossRef]
- Bakure, B.Z.; Hundera, K.; Abara, M. Review on the Effect of Climate Change on Ecosystem Services. IOP Conf. Ser. Earth Environ. Sci. 2022, 1016, 012055. [Google Scholar] [CrossRef]
- Yadav, V.K.; Yadav, S.; Adhikari, B.S.; Rawat, L. Forest Provisioning Services Use Pattern: A Case Study from Renuka Forest Division, Western Himalaya. Small-Scale For. 2022, 21, 55–70. [Google Scholar] [CrossRef]
- Sánchez-Galván, G.; Olguín, E.J.; Melo, F.J.; Jiménez-Moreno, D.; Hernández, V.J. Pontederia Sagittata and Cyperus Papyrus Contribution to Carbon Storage in Floating Treatment Wetlands Established in Subtropical Urban Ponds. Sci. Total Environ. 2022, 832, 154990. [Google Scholar] [CrossRef]
- Immerzeel, B.; Vermaat, J.E.; Juutinen, A.; Pouta, E.; Artell, J. Appreciation of Nordic Landscapes and How the Bioeconomy Might Change That: Results from a Discrete Choice Experiment. Land Use Policy 2022, 113, 105909. [Google Scholar] [CrossRef]
- Csurgó, B.; Smith, M.K. The Value of Cultural Ecosystem Services in a Rural Landscape Context. J. Rural Stud. 2021, 86, 76–86. [Google Scholar] [CrossRef]
- Lin, J.-C.; Chiou, C.-R.; Chan, W.-H.; Wu, M.-S. Public Perception of Forest Ecosystem Services in Taiwan. J. For. Res. 2021, 26, 344–350. [Google Scholar] [CrossRef]
- Google Trends “Ecosystem Services” at Global Level. Available online: https://trends.google.com/trends/explore?q=%22ecosystem%20services%22 (accessed on 2 October 2022).
- Xuezhu, Z.; Lange, E. Using Social Media to Explore Perceptions of Ecosystem Services by Nature-Based Solution Projects. Landsc. Archit. Front. 2020, 8, 58–78. [Google Scholar] [CrossRef]
- Dai, P.; Zhang, S.; Chen, Z.; Gong, Y.; Hou, H. Perceptions of Cultural Ecosystem Services in Urban Parks Based on Social Network Data. Sustainability 2019, 11, 5386. [Google Scholar] [CrossRef] [Green Version]
- Wamba, S.F.; Akter, S.; Kang, H.; Bhattacharya, M.; Upal, M. The Primer of Social Media Analytics. J. Organ. End User Comput. 2016, 28, 1–12. [Google Scholar] [CrossRef]
- Sloan, L.; Quan-Haase, A. The SAGE Handbook of Social Media Research Methods; Sage: Thousand Oaks, CA, USA, 2017; ISBN 1-4739-8721-0. [Google Scholar]
- Khan, M.M.; Ghani, I.; Jeong, S.R.; Ibrahim, R. Social Media Usage in Academic Research. J. Theor. Appl. Inf. Technol. 2016, 87, 191. [Google Scholar]
- Datareportal; We Are Social; Hootsuite. Digital 2022 Global Overview Report; Kepios: Singapore, 2022. [Google Scholar]
- Hou, Q.; Han, M.; Qu, F.; He, J.S. Understanding Social Media beyond Text: A Reliable Practice on Twitter. Comput. Soc. Netw. 2021, 8, 4. [Google Scholar] [CrossRef]
- Côté, I.M.; Darling, E.S. Scientists on Twitter: Preaching to the Choir or Singing from the Rooftops? FACETS 2018, 3, 682–694. [Google Scholar] [CrossRef] [Green Version]
- Van Noorden, R. Online Collaboration: Scientists and the Social Network. Nat. News 2014, 512, 126. [Google Scholar] [CrossRef] [Green Version]
- Kepios. Global Social Media Statistics; Kepios: Singapore, 2022. [Google Scholar]
- Cormier, M.; Cushman, M. Innovation via Social Media—The Importance of Twitter to Science. Res. Pract. Thromb. Haemost. 2021, 5, 373–375. [Google Scholar] [CrossRef]
- Costas, R.; van Honk, J.; Franssen, T. Scholars on Twitter: Who and How Many Are They? arXiv 2017, arXiv:1712.05667. [Google Scholar] [CrossRef]
- Boothby, C.; Murray, D.; Waggy, A.P.; Tsou, A.; Sugimoto, C.R. Credibility of Scientific Information on Social Media: Variation by Platform, Genre and Presence of Formal Credibility Cues. Quant. Sci. Stud. 2021, 2, 845–863. [Google Scholar] [CrossRef]
- Theocharis, Y.; Cardenal, A.; Jin, S.; Aalberg, T.; Hopmann, D.N.; Strömbäck, J.; Castro, L.; Esser, F.; Van Aelst, P.; de Vreese, C.; et al. Does the Platform Matter? Social Media and COVID-19 Conspiracy Theory Beliefs in 17 Countries. New Media Soc. 2021, 23, 1–26. [Google Scholar] [CrossRef]
- Karasov, O.; Heremans, S.; Külvik, M.; Domnich, A.; Burdun, I.; Kull, A.; Helm, A.; Uuemaa, E. Beyond Land Cover: How Integrated Remote Sensing and Social Media Data Analysis Facilitates Assessment of Cultural Ecosystem Services. Ecosyst. Serv. 2022, 53, 101391. [Google Scholar] [CrossRef]
- Lee, H.; Seo, B.; Cord, A.F.; Volk, M.; Lautenbach, S. Using Crowdsourced Images to Study Selected Cultural Ecosystem Services and Their Relationships with Species Richness and Carbon Sequestration. Ecosyst. Serv. 2022, 54, 101411. [Google Scholar] [CrossRef]
- Zabelskyte, G.; Kabisch, N.; Stasiskiene, Z. Patterns of Urban Green Space Use Applying Social Media Data: A Systematic Literature Review. Land 2022, 11, 238. [Google Scholar] [CrossRef]
- Cao, H.; Wang, M.; Su, S.; Kang, M. Explicit Quantification of Coastal Cultural Ecosystem Services: A Novel Approach Based on the Content and Sentimental Analysis of Social Media. Ecol. Indic. 2022, 137, 108756. [Google Scholar] [CrossRef]
- Richards, D.R.; Lavorel, S. Integrating Social Media Data and Machine Learning to Analyse Scenarios of Landscape Appreciation. Ecosyst. Serv. 2022, 55, 101422. [Google Scholar] [CrossRef]
- Ghermandi, A.; Sinclair, M. Passive Crowdsourcing of Social Media in Environmental Research: A Systematic Map. Glob. Environ. Chang. 2019, 55, 36–47. [Google Scholar] [CrossRef]
- Tenerelli, P.; Demšar, U.; Luque, S. Crowdsourcing Indicators for Cultural Ecosystem Services: A Geographically Weighted Approach for Mountain Landscapes. Ecol. Indic. 2016, 64, 237–248. [Google Scholar] [CrossRef] [Green Version]
- Tian, T.; Sun, L.; Peng, S.; Sun, F.; Che, Y. Understanding the Process from Perception to Cultural Ecosystem Services Assessment by Comparing Valuation Methods. Urban For. Urban Green. 2021, 57, 126945. [Google Scholar] [CrossRef]
- Chen, Y.; Ke, X.; Min, M.; Cheng, P. Disparity in Perceptions of Social Values for Ecosystem Services of Urban Green Space: A Case Study in the East Lake Scenic Area, Wuhan. Front. Public Health 2020, 8, 370. [Google Scholar] [CrossRef]
- Teles da Mota, V.; Pickering, C. Geography of Discourse about a European Natural Park: Insights from a Multilingual Analysis of Tweets. Soc. Nat. Resour. 2021, 34, 1492–1509. [Google Scholar] [CrossRef]
- Johnson, T.F.; Kent, H.; Hill, B.M.; Dunn, G.; Dommett, L.; Penwill, N.; Francis, T.; González-Suárez, M. Classecol: Classifiers to Understand Public Opinions of Nature. Methods Ecol. Evol. 2021, 12, 1329–1334. [Google Scholar] [CrossRef]
- Pan, Y.; Vira, B. Exploring Natural Capital Using Bibliometrics and Social Media Data. Ecol. Soc. 2019, 24, 5. [Google Scholar] [CrossRef] [Green Version]
- Roberts, H.; Sadler, J.; Chapman, L. The Value of Twitter Data for Determining the Emotional Responses of People to Urban Green Spaces: A Case Study and Critical Evaluation. Urban Stud. 2019, 56, 818–835. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Frau, A.; Ospina-Alvarez, A.; Villasante, S.; Pita, P.; Maya-Jariego, I.; de Juan, S. Using Graph Theory and Social Media Data to Assess Cultural Ecosystem Services in Coastal Areas: Method Development and Application. Ecosyst. Serv. 2020, 45, 101176. [Google Scholar] [CrossRef]
- Fisher, D.M.; Wood, S.A.; Roh, Y.-H.; Kim, C.-K. The Geographic Spread and Preferences of Tourists Revealed by User-Generated Information on Jeju Island, South Korea. Land 2019, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.L.; Campbell, L.K.; Svendsen, E.S.; McMillen, H.L. Mapping Urban Park Cultural Ecosystem Services: A Comparison of Twitter and Semi-Structured Interview Methods. Sustainability 2019, 11, 6137. [Google Scholar] [CrossRef] [Green Version]
- Roberts, H.; Sadler, J.; Chapman, L. Using Twitter to Investigate Seasonal Variation in Physical Activity in Urban Green Space. Geo: Geogr. Environ. 2017, 4, e00041. [Google Scholar] [CrossRef]
- Tyner, E.H.; Scott Graham, S. Tweeting the Laurentian Great Lakes: A Community Opinion Analysis about Great Lakes Areas as Assessed through Mentions on Twitter. J. Great Lakes Res. 2022. [Google Scholar] [CrossRef]
- Hansen, D.; Shneiderman, B.; Smith, M.A. Analyzing Social Media Networks with NodeXL: Insights from a Connected World, 1st ed.; Morgan Kaufmann: Burlington, MA, USA, 2010; ISBN 978-0-12-382230-7. [Google Scholar]
- Himelboim, I.; Smith, M.A.; Rainie, L.; Shneiderman, B.; Espina, C. Classifying Twitter Topic-Networks Using Social Network Analysis. Soc. Media Soc. 2017, 3, 1–13. [Google Scholar] [CrossRef]
- Brandes, U. A Faster Algorithm for Betweenness Centrality. J. Math. Sociol. 2001, 25, 163–177. [Google Scholar] [CrossRef]
- Ahmed, W.; Vidal-Alaball, J.; Lopez Segui, F.; Moreno-Sánchez, P.A. A Social Network Analysis of Tweets Related to Masks during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2020, 17, 8235. [Google Scholar] [CrossRef]
- Wang, Z.; Ye, X.; Tsou, M.-H. Spatial, Temporal, and Content Analysis of Twitter for Wildfire Hazards. Nat. Hazards 2016, 83, 523–540. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, H.; Jian, Y.; Qureshi, S.; Jie, H.; Wang, L. On the Comparative Use of Social Media Data and Survey Data in Prioritizing Ecosystem Services for Cost-Effective Governance. Ecosyst. Serv. 2022, 56, 101446. [Google Scholar] [CrossRef]
- Hausmann, A.; Toivonen, T.; Slotow, R.; Tenkanen, H.; Moilanen, A.; Heikinheimo, V.; Di Minin, E. Social Media Data Can Be Used to Understand Tourists’ Preferences for Nature-Based Experiences in Protected Areas. Conserv. Lett. 2018, 11, e12343. [Google Scholar] [CrossRef] [Green Version]
- Rossi, S.D.; Barros, A.; Walden-Schreiner, C.; Pickering, C. Using Social Media Images to Assess Ecosystem Services in a Remote Protected Area in the Argentinean Andes. Ambio 2020, 49, 1146–1160. [Google Scholar] [CrossRef]
- Clemente, P.; Calvache, M.; Antunes, P.; Santos, R.; Cerdeira, J.O.; Martins, M.J. Combining Social Media Photographs and Species Distribution Models to Map Cultural Ecosystem Services: The Case of a Natural Park in Portugal. Ecol. Indic. 2019, 96, 59–68. [Google Scholar] [CrossRef]
- Riley, M.; Robertson, B. #farming365–Exploring Farmers’ Social Media Use and the (Re)Presentation of Farming Lives. J. Rural Stud. 2021, 87, 99–111. [Google Scholar] [CrossRef]
- Reyes-Menendez, A.; Saura, J.R.; Alvarez-Alonso, C. Understanding #WorldEnvironmentDay User Opinions in Twitter: A Topic-Based Sentiment Analysis Approach. Int. J. Environ. Res. Public Health 2018, 15, 2537. [Google Scholar] [CrossRef] [Green Version]
- Chisholm, E.; O’Sullivan, K. Using Twitter to Explore (Un)Healthy Housing: Learning from the #Characterbuildings Campaign in New Zealand. Int. J. Environ. Res. Public Health 2017, 14, 1424. [Google Scholar] [CrossRef]
- Leslie, J.; Mochon, D.; Emrich, O. What’s the Value of a Like?: Social Media Endorsements Don’t Work the Way You Might Think. Harv. Bus. Rev. 2017, 95, 108–115. [Google Scholar]
- Smith, M.A.; Rainie, L.; Shneiderman, B.; Himelboim, I. Mapping Twitter Topic Networks: From Polarized Crowds to Community Clusters; Pew Research Center: Washington, DC, USA, 2014. [Google Scholar]
- Ahn, H.; Park, J.-H. The Structural Effects of Sharing Function on Twitter Networks: Focusing on the Retweet Function. J. Inf. Sci. 2015, 41, 354–365. [Google Scholar] [CrossRef]
- Wiiava, S.W.; Handoko, I. Examining a COVID-19 Twitter Hashtag Conversation in Indonesia: A Social Network Analysis Approach. In Proceedings of the 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM), Seoul, Korea, 4–6 January 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Williams, H.T.P.; McMurray, J.R.; Kurz, T.; Hugo Lambert, F. Network Analysis Reveals Open Forums and Echo Chambers in Social Media Discussions of Climate Change. Glob. Environ. Chang. 2015, 32, 126–138. [Google Scholar] [CrossRef]
- Bridge, G. Social Network Analysis of #ClimateAction on Twitter. In The Sustainability Debate; Topić, M., Lodorfos, G., Eds.; Critical Studies on Corporate Responsibility, Governance and Sustainability; Emerald Publishing Limited: Bingley, UK, 2021; Volume 14, pp. 237–250. ISBN 978-1-80043-779-1. [Google Scholar]
- Aguilar-Gallegos, N.; Klerkx, L.; Romero-García, L.E.; Martínez-González, E.G.; Aguilar-Ávila, J. Social Network Analysis of Spreading and Exchanging Information on Twitter: The Case of an Agricultural Research and Education Centre in Mexico. J. Agric. Educ. Ext. 2022, 28, 115–136. [Google Scholar] [CrossRef]
- Mills, J.; Reed, M.; Skaalsveen, K.; Ingram, J. The Use of Twitter for Knowledge Exchange on Sustainable Soil Management. Soil Use Manag. 2019, 35, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, P.; Chowdhury, A.; Hambly Odame, H.; van Paassen, A. Social Media for Enhancing Stakeholders’ Innovation Networks in Ontario, Canada. J. Agric. Food Inf. 2018, 19, 331–353. [Google Scholar] [CrossRef]
- Kelly, N.; Bennett, J.M.; Starasts, A. Networked Learning for Agricultural Extension: A Framework for Analysis and Two Cases. J. Agric. Educ. Ext. 2017, 23, 399–414. [Google Scholar] [CrossRef] [Green Version]
- Fedushko, S.; Syerov, Y.; Kolos, S. Hashtag as a Way of Archiving and Distributing Information on the Internet. In Proceedings of the Workshop Proceedings of the 8th International Conference on “Mathematics. Information Technologies. Education” Modern Machine Learning Technologies and Data Science, MoMLeT and DS 2019, Shatsk, Ukraine, 2–4 June 2019; Volume 2386, pp. 274–286. [Google Scholar]
- Palos-Sanchez, P.; Saura, J.R.; Reyes-Menendez, A.; Esquivel, I.V. Users Acceptance of Location-Based Marketing Apps in Tourism Sector: An Exploratory Analysis. J. Spat. Organ. Dyn. 2018, 6, 258–270. [Google Scholar]
- Das, R.; Ahmed, W. Rethinking Fake News: Disinformation and Ideology during the Time of COVID-19 Global Pandemic. IIM Kozhikode Soc. Manag. Rev. 2022, 11, 146–159. [Google Scholar] [CrossRef]
- Ahmed, W.; Vidal-Alaball, J.; Downing, J.; Seguí, F.L. COVID-19 and the 5G Conspiracy Theory: Social Network Analysis of Twitter Data. J. Med. Internet Res. 2020, 22, e19458. [Google Scholar] [CrossRef]
- Ahmed, W.; Seguí, F.L.; Vidal-Alaball, J.; Katz, M.S. COVID-19 and the “Film Your Hospital” Conspiracy Theory: Social Network Analysis of Twitter Data. J. Med. Internet Res. 2020, 22, e22374. [Google Scholar] [CrossRef]
- Jones, G.; Hessburg, P.F.; Spies, T.; North, M.P.; Collins, B.M.; Finney, M.A.; Lydersen, J. Counteracting wildfire misinformation. Front. Ecol. Environ. 2022, 20, 392–393. [Google Scholar] [CrossRef]
- Lewandowsky, S. Climate change disinformation and how to combat it. Annu. Rev. Public Health 2021, 42, 1–21. [Google Scholar] [CrossRef]
Metrics | 25 January 2022 | 3 February 2022 |
---|---|---|
Twitter users | 1427 | 1359 |
Unique relationships | 2034 | 1905 |
Relationships with duplicates | 283 | 176 |
Total relationships | 2317 | 2081 |
Self-loops | 227 | 246 |
Reciprocated Twitter users pair ratio | 0.030 | 0.02 |
Reciprocated relationships ratio | 0.058 | 0.05 |
Isolated Twitter users | 62 | 99 |
Diameter | 14 | 11 |
Average shortest path | 5.7 | 4.4 |
Density | 0.001 | 0.001 |
Modularity | 0.82 | 0.84 |
Rank | Twitter User | Betweenness Centrality | Followers (n) | Network Group |
---|---|---|---|---|
1 | Academic | 89,525 | 5463 | 2 |
2 | Academic | 70,096 | 1437 | 25 |
3 | Citizen | 67,320 | 129 | 25 |
4 | Academic | 66,980 | 4914 | 1 |
5 | Academic | 46,670 | 1877 | 1 |
6 | Scientific journal | 43,105 | 23,481 | 1 |
7 | Writer | 34,974 | 1590 | 2 |
8 | Non-profit organization | 20,798 | 2701 | 2 |
9 | Academic | 20,033 | 1293 | 1 |
10 | Academic | 20,033 | 586 | 1 |
Rank | Twitter User | Betweenness Centrality | Followers (n) | Network Group |
---|---|---|---|---|
1 | Global network | 46,726 | 6142 | 4 |
2 | Trust fund | 28,226 | 81,907 | 1 |
3 | Activist | 26,748 | 41 | 1 |
4 | Intergovernmental treaty | 25,569 | 25,784 | 3 |
5 | Non-governmental and non-profit organization | 22,942 | 187,392 | 3 |
6 | Government | 20,179 | 179,310 | 1 |
7 | Activist | 16,504 | 11 | 3 |
8 | Intergovernmental programme | 13,862 | 1,728,382 | 1 |
9 | Non-governmental and non-profit organization | 12,730 | 2652 | 5 |
10 | Scholar | 11,833 | 385 | 1 |
25 January 2022 | Occurrence | 3 February 2022 | Occurrence |
---|---|---|---|
ecosystemservices | 158 | worldwetlandsday | 193 |
ecosystem | 59 | ecosystemservices | 174 |
india | 59 | wetlands | 125 |
tiger | 58 | biodiversity | 120 |
agriculture | 56 | actforwetlands | 75 |
morningpositives | 54 | generationrestoration | 56 |
biodiversity | 49 | ecosystem | 50 |
soil | 45 | worldwetlandday | 39 |
groundedinsoil | 45 | climatechange | 29 |
climatechange | 44 | nature | 26 |
25 January 2022 | 3 February 2022 | Classes |
---|---|---|
4053 | 5023 | 0–2 |
1711 | 2143 | 3–10 |
151 | 302 | 11–30 |
31 | 28 | 31–50 |
19 | 10 | 51–100 |
2 | 1 | 101–1500 |
25 January 2022 | Occurrence | 3 February 2022 | Occurrence | ||
---|---|---|---|---|---|
socio | ecological | 103 | climate | change | 51 |
ecological | networks | 95 | wetlands | life | 45 |
interactions | people | 92 | life | livelihoods | 45 |
people | environment | 92 | livelihoods | wetlands | 45 |
environment | socio | 92 | wetlands | health | 45 |
#morningpositives | #india | 54 | health | #worldwetlandsday | 45 |
#india | #tiger | 54 | #worldwetlandsday | #generationrestoration | 45 |
#tiger | reserves | 54 | policy | biodiversity | 33 |
reserves | secure | 54 | intergovernmental | science | 32 |
secure | habitat | 54 | science | policy | 32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruzzese, S.; Ahmed, W.; Blanc, S.; Brun, F. Ecosystem Services: A Social and Semantic Network Analysis of Public Opinion on Twitter. Int. J. Environ. Res. Public Health 2022, 19, 15012. https://doi.org/10.3390/ijerph192215012
Bruzzese S, Ahmed W, Blanc S, Brun F. Ecosystem Services: A Social and Semantic Network Analysis of Public Opinion on Twitter. International Journal of Environmental Research and Public Health. 2022; 19(22):15012. https://doi.org/10.3390/ijerph192215012
Chicago/Turabian StyleBruzzese, Stefano, Wasim Ahmed, Simone Blanc, and Filippo Brun. 2022. "Ecosystem Services: A Social and Semantic Network Analysis of Public Opinion on Twitter" International Journal of Environmental Research and Public Health 19, no. 22: 15012. https://doi.org/10.3390/ijerph192215012
APA StyleBruzzese, S., Ahmed, W., Blanc, S., & Brun, F. (2022). Ecosystem Services: A Social and Semantic Network Analysis of Public Opinion on Twitter. International Journal of Environmental Research and Public Health, 19(22), 15012. https://doi.org/10.3390/ijerph192215012