Early Detection and Control of the Next Epidemic Wave Using Health Communications: Development of an Artificial Intelligence-Based Tool and Its Validation on COVID-19 Data from the US
Abstract
:1. Introduction
1.1. COVID-19 Pandemic Overtime
1.2. Clinical Detection of New Pandemic Waves
1.3. Health Communications-Based Detection of New Waves
1.4. Aims and Objectives
2. Material and Methods
- 1
- predicts the next epidemiological wave (Section 2.2), and
- 2
- estimates the impact of social interactions on the population’s compliance by using various Pandemic Intervention Policies (PIPs).
2.1. Data Collection
2.2. Next Wave Predictor
2.2.1. Overview
2.2.2. Machine Learning Process
2.3. Social-Epidemiological Simulator
2.3.1. Social-Epidemiological Dynamics
2.3.2. The Social-PIP
2.3.3. Social-PIP Strategies
2.3.4. Fitting Procedure
3. Results
- predict with a high level of accuracy the beginning of a new epidemiological wave;
- simulate the impact of online promotion of various Pandemic Intervention Policies on the pandemic spread.
3.1. EMIT: Epidemic and Media Impact Tool
3.2. Prediction of the Next Epidemic Wave
- a patient-centered viewpoint, looking at clinical symptoms in the community (solid blue line) [44],
- a predictive modeling approach (dotted-green) taking into account changes in topic trends on Twitter (potentially in any other social media).
3.3. Simulation of Social Media Network Intervention Policies
4. Discussion
5. Conclusions
5.1. Implications for Healthcare Practice
5.2. Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
EMIT | Epidemic and Media Impact Tool |
PIP | Pandemic Intervention Policy |
SMN | Social media network |
US | United States |
WHO | World Health Organization |
References
- Kwok, C.S.; Muntean, E.A.; Mallen, C.D. The impact of COVID-19 on the patient, clinician, healthcare services and society: A patient pathway review. J. Med. Virol. 2022, 94, 3634–3641. [Google Scholar] [CrossRef]
- Davis, B.; Bankhead-Kendall, B.K.; Dumas, R.P. A review of COVID-19’s impact on modern medical systems from a health organization management perspective. Health Technol. 2022, 12, 815–824. [Google Scholar] [CrossRef] [PubMed]
- McNeil, A.; Hicks, L.; Yalcinoz-Ucan, B.; Browne, D.T. Prevalence & Correlates of Intimate Partner Violence During COVID-19: A Rapid Review. J. Fam. Violence 2022. [Google Scholar] [CrossRef]
- World Health Organization. Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 1 October 2020).
- Dyson, L.; Hill, E.M.; Moore, S.; Curran-Sebastian, J.; Tildesley, M.J.; Lythgoe, K.A.; House, T.; Pellis, L.; Keeling, M.J. Possible future waves of SARS-CoV-2 infection generated by variants of concern with a range of characteristics. Nat. Commun. 2021, 12, 5730. [Google Scholar] [CrossRef] [PubMed]
- Bouzid, D.; Visseaux, B.; Kassasseya, C.; Daoud, A.; Femy, F.; Hermand, C.; Truchot, J.; Beaune, S.; Javaud, N.; Peyrony, O.; et al. Comparison of Patients Infected with Delta Versus Omicron COVID-19 Variants Presenting to Paris Emergency Departments: A Retrospective Cohort Study. Ann. Intern. Med. 2022, 175, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zhao, Y.; Chen, B.; He, D. Multiple COVID-19 Waves and Vaccination Effectiveness in the United States. Int. J. Env. Res. Public Health 2022, 19, 2282. [Google Scholar] [CrossRef]
- Grubaugh, N.; Petrone, M.; Holmes, E. We should not worry when a virus mutates during disease outbreaks. Nat. Microbiol. 2020, 5, 529–530. [Google Scholar] [CrossRef] [Green Version]
- Ayala, A.; Villalobos Dintrans, P.; Elorrieta, F.; Castillo, C.; Vargas, C.; Maddaleno, M. Identification of COVID-19 Waves: Considerations for Research and Policy. Int. J. Env. Res. Public Health 2021, 18, 11058. [Google Scholar] [CrossRef]
- Elghamrawy, S.M.; Darwish, A.; Hassanien, A.E. Monitoring COVID-19 Disease Using Big Data and Artificial Intelligence-Driven Tools. In Digital Transformation and Emerging Technologies for Fighting COVID-19 Pandemic: Innovative Approaches; Hassanien, A.E., Darwish, A., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Kerdvibulvech, C.; Dong, Z.Y. Roles of Artificial Intelligence and Extended Reality Development in the Post-COVID-19 Era; Springer: Berlin/Heidelberg, Gedrmany, 2021; pp. 445–454. [Google Scholar]
- Bhargava, A.; Bansal, A. Novel coronavirus (COVID-19) diagnosis using computer vision and artificial intelligence techniques: A review. Multimed. Tools Appl. 2021, 80, 19931–19946. [Google Scholar] [CrossRef]
- Kerdvibulvech, C. Exploring the Impacts of COVID-19 on Digital and Metaverse Games. In Proceedings of the HCI International 2022 Posters, Virtual Event, 26 June–1 July 2022; Stephanidis, C., Antona, M., Ntoa, S., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 561–565. [Google Scholar]
- Singh, K.; Misra, M.; Yadav, J. Artificial Intelligence and Machine Learning as a Tool for Combating COVID-19: A Case Study on Health-Tech Start-ups. In Proceedings of the 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, 6–8 July 2021; pp. 1–5. [Google Scholar]
- Bowd, K. Social media and news media: Building new publics or fragmenting audiences? In Making Publics, Making Places; Griffiths, M., Barbour, K., Eds.; University of Adelaide Press: Adelaide, Australia, 2016; pp. 129–144. [Google Scholar]
- Ashkenazi, S.; Livni, G.; Klein, A.; Kremer, N.; Havlin, A.; Berkowitz, O. The relationship between parental source of information and knowledge about measles/measles vaccine and vaccine hesitancy. Vaccine 2020, 38, 7292–7298. [Google Scholar] [CrossRef]
- Larson, H.J.; Jarrett, C.; Schulz, W.S.; Chaudhuri, M.; Zhou, Y.; Dube, E.; Schuster, M.; MacDonald, N.E.; Wilson, R.; The SAGE Working Group on Vaccine Hesitancy. Measuring vaccine hesitancy: The development of a survey tool. Vaccine 2015, 33, 4165–4175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benis, A.; Khodos, A.; Ran, S.; Levner, E.; Ashkenazi, S. Social Media Engagement and Influenza Vaccination During the COVID-19 Pandemic: Cross-sectional Survey Study. J. Med. Internet Res. 2021, 23, e25977. [Google Scholar] [CrossRef] [PubMed]
- Benis, A.; Seidmann, A.; Ashkenazi, S. Reasons for Taking the COVID-19 Vaccine by US Social Media Users. Vaccines 2021, 9, 315. [Google Scholar] [CrossRef] [PubMed]
- Zarocostas, J. How to fight an infodemic. Lancet 2020, 395, 676. [Google Scholar] [CrossRef] [PubMed]
- Van der Linden, S. Misinformation: Susceptibility, spread, and interventions to immunize the public. Nat. Med. 2022, 28, 460–467. [Google Scholar] [CrossRef]
- Twitter API. Twitter Developer Platform. 2022. Available online: https://developer.twitter.com/en/docs/twitter-api (accessed on 1 October 2020).
- Benis, A.; Chatsubi, A.; Levner, E.; Ashkenazi, S. Change in Threads on Twitter Regarding Influenza, Vaccines, and Vaccination During the COVID-19 Pandemic: Artificial Intelligence–Based Infodemiology Study. J. Med. Internet Res. 2021, 1, e31983. [Google Scholar] [CrossRef]
- Rothengatter, W.; Zhang, J.; Hayashi, Y.; Nosach, A.; Wang, K.; Oum, T.H. Pandemic waves and the time after COVID-19 – Consequences for the transport sector. Transp. Policy 2021, 110, 225–237. [Google Scholar] [CrossRef]
- Gonzalez-Padilla, D.A.; Tortolero-Blanco, L. Social media influence in the COVID-19 Pandemic. Braz. J. Urol. 2020, 46. [Google Scholar] [CrossRef]
- Liu, R.; Liu, E.; Yang, J.; Li, M.; Wang, F. Optimizing the Hyper-parameters for SVM by Combining Evolution Strategies with a Grid Search. In Intelligent Control and Automation; Lecture Notes in Control and Information Sciences Book Series; Springer: Berlin/Heidelberg, Germany, 2006; Volume 344. [Google Scholar]
- Olson, R.S.; Moore, J.H. TPOT: A Tree-based Pipeline Optimization Tool for Automating Machine Learning. In Proceedings of the JMLR: Workshop and Conference Proceedings, Hamilton, New Zealand, 16–18 November 2016; Volume 64, pp. 66–74. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Tianqi, C.; Carlos, G. XGBoost: A Scalable Tree Boosting System. In Proceedings of the Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef] [Green Version]
- Holland, J.H. Genetic Algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Kohavi, R. A Study of Cross Validation and Bootstrap for Accuracy Estimation and Model Select. In Proceedings of the International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995. [Google Scholar]
- Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. 1927, 115, 700–721. [Google Scholar]
- Reluga, T.C. An SIS epidemiology game with two subpopulations. J. Biol. Dyn. 2008, 3, 515–531. [Google Scholar] [CrossRef] [PubMed]
- Yicang, Z.; Hanwu, L. Stability of periodic solutions for an SIS model with pulse vaccination. Math. Comput. Model. 2003, 38, 299–308. [Google Scholar]
- Lazebnik, T.; Blumrosen, G. Advanced Multi-Mutation With Intervention Policies Pandemic Model. IEEE Access 2022, 10, 22769–22781. [Google Scholar] [CrossRef]
- Lazebnik, T.; Bunimovich-Mendrazitsky, S. Generic approach for mathematical model of multi-strain pandemics. PLoS ONE 2022, 17, e0260683. [Google Scholar] [CrossRef]
- Tuncgenc, B.; Zein, M.E.; Sulik, J.; Newson, M.; Zhao, Y.; Dezecache, G.; Deroy, O. Social influence matters: We follow pandemic guidelines most when our close circle does. Br. J. Psychol. 2021, 112, 763–780. [Google Scholar] [CrossRef]
- Bo, Z.W.; Hua, L.Z.; Yu, Z.G. Optimization of process route by genetic algorithms. Robot. Comput.-Integr. Manuf. 2006, 22, 180–188. [Google Scholar] [CrossRef]
- Dantzig, G.B.; Orden, A.; Wolfe, P. The generalized simplex method for minimizing a linear form under linear inequality restraints. Pac. J. Math. 1955, 5, 183–197. [Google Scholar] [CrossRef]
- DAndrea, A.; Ferri, F.; Grifoni, P. An Overview of Methods for Virtual Social Networks Analysis. Comput. Soc. Netw. Anal. Comput. Commun. Netw. 2010, 10, 3–25. [Google Scholar] [CrossRef]
- Zagenczyk, T.K.; Scott, K.D.; Gibney, R.; Murrell, A.J.; Thatcher, J.B. Social influence and perceived organizational support: A social networks analysis. Organ. Behav. Hum. Decis. Process. 2010, 111, 127–138. [Google Scholar] [CrossRef]
- Mossel, E.; Sly, A.; Tamuz, O. Strategic Learning and the Topology of Social Networks. Econometrica 2015, 83, 1755–1794. [Google Scholar] [CrossRef] [Green Version]
- Srinath, K.R. Python–The Fastest Growing Programming Language. Int. Res. J. Eng. Technol. 2017, 4, 354–357. [Google Scholar]
- CDC Museum COVID-19 Timeline. 2022. Available online: https://www.cdc.gov/museum/timeline/covid19.html (accessed on 1 October 2022).
- Edmunds, W.J.; O’Callaghan, C.J.; Nokes, D.J. Who mixes with whom? A method to determine the contact patterns of adults that may lead to the spread of airborne infections. Proc. Biol. Sci. 1997, 264, 949–957. [Google Scholar] [CrossRef]
- Moore, C.; Newman, M.E.J. Epidemics and percolation in small-world networks. Phys. Rev. E 2000, 6, 5678. [Google Scholar] [CrossRef] [Green Version]
- Lazebnik, T.; Bunimovich-Mendrazitsky, S.; Shami, L. Pandemic management by a spatio–temporal mathematical model. Int. J. Nonlinear Sci. Numer. Simul. 2021. [Google Scholar] [CrossRef]
- Klovdahl, A.S.; Potterat, J.J.; Woodhouse, D.E.; Muth, J.B.; Muth, S.Q.; Darrow, W.W. Social networks and infectious disease: The Colorado Springs study. Soc. Sci. Med. 1994, 38, 79–88. [Google Scholar] [CrossRef]
- Zhao, S.; Stone, L.; Gao, D.; Musa, S.S.; Chong, M.K.C.; He, D.; Wang, M.H. Imitation dynamics in the mitigation of the novel coronavirus disease (COVID-19) outbreak in Wuhan, China from 2019 to 2020. Ann. Transnatl. Med. 2020, 8, 448. [Google Scholar] [CrossRef]
- Al-Dmour, H.; Masadeh, R.; Salman, A.; Abuhashesh, M.; Al-Dmour, R. Influence of Social Media Platforms on Public Health Protection Against the COVID-19 Pandemic via the Mediating Effects of Public Health Awareness and Behavioral Changes: Integrated Model. J. Med. Internet Res. 2020, 22, e19996. [Google Scholar] [CrossRef]
- Wilson, S.; Wiysonge, C. Social media and vaccine hesitancy. BMJ Glob. Health 2020, 5, e004206. [Google Scholar] [CrossRef]
- Duong, H.T.; Monahan, J.L.; Mercer Kollar, L.M.; Klevens, J. Preventing the COVID-19 Outbreak in Vietnam: Social Media Campaign Exposure and the Role of Interpersonal Communication. Health Commun. 2021, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bhagat, S.; Jeong, E.; Kim, D. The Role of Individuals’ Need for Online Social Interactions and Interpersonal Incompetence in Digital Game Addiction. Int. J. Human-Comput. Interact. 2020, 36, 449–463. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazebnik, T.; Bunimovich-Mendrazitsky, S.; Ashkenazi, S.; Levner, E.; Benis, A. Early Detection and Control of the Next Epidemic Wave Using Health Communications: Development of an Artificial Intelligence-Based Tool and Its Validation on COVID-19 Data from the US. Int. J. Environ. Res. Public Health 2022, 19, 16023. https://doi.org/10.3390/ijerph192316023
Lazebnik T, Bunimovich-Mendrazitsky S, Ashkenazi S, Levner E, Benis A. Early Detection and Control of the Next Epidemic Wave Using Health Communications: Development of an Artificial Intelligence-Based Tool and Its Validation on COVID-19 Data from the US. International Journal of Environmental Research and Public Health. 2022; 19(23):16023. https://doi.org/10.3390/ijerph192316023
Chicago/Turabian StyleLazebnik, Teddy, Svetlana Bunimovich-Mendrazitsky, Shai Ashkenazi, Eugene Levner, and Arriel Benis. 2022. "Early Detection and Control of the Next Epidemic Wave Using Health Communications: Development of an Artificial Intelligence-Based Tool and Its Validation on COVID-19 Data from the US" International Journal of Environmental Research and Public Health 19, no. 23: 16023. https://doi.org/10.3390/ijerph192316023
APA StyleLazebnik, T., Bunimovich-Mendrazitsky, S., Ashkenazi, S., Levner, E., & Benis, A. (2022). Early Detection and Control of the Next Epidemic Wave Using Health Communications: Development of an Artificial Intelligence-Based Tool and Its Validation on COVID-19 Data from the US. International Journal of Environmental Research and Public Health, 19(23), 16023. https://doi.org/10.3390/ijerph192316023