Disinformation: A Bibliometric Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Countries/Regions Production and Collaboration
3.2. The Most Attractive Journals
3.3. Leading Authors
3.4. Leading Institutions
3.5. Keywords Analysis
3.6. Highly Cited Papers
3.7. Analysis of Hot Papers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fallis, D. What Is Disinformation? Libr. Trends 2015, 63, 401–426. [Google Scholar] [CrossRef] [Green Version]
- Wood, A.K.; Ravel, A.M. Fool me once: Regulating “fake news” and other online advertising. South. Calif. Law Rev. 2018, 91, 1223–1278. [Google Scholar]
- Casey, K.M.; Casey, K., Jr. Financial Regulatory and Risk Management Challenges Stemming from Firm-Specific Digital Misinformation. J. Data Inf. Qual. 2019, 11, 4. [Google Scholar] [CrossRef]
- Wald, H.S.; Dube, C.E.; Anthony, D.C. Untangling the Web—The impact of Internet use on health care and the physician–patient relationship. Patient Educ. Couns. 2007, 68, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Hindin, T.J.; Contento, I.R.; Gussow, J.D. A media literacy nutrition education curriculum for head start parents about the effects of television advertising on their children’s food requests. J. Am. Diet. Assoc. 2004, 104, 192–198. [Google Scholar] [CrossRef]
- Kanamori, Y.; Malone, R.E. Conveying misinformation: Top-ranked Japanese books on tobacco. Tob. Induc. Dis. 2011, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Xiu, H.; Wang, Y.; Yu, X. Characterizing the dissemination of misinformation on social media in health emergencies: An empirical study based on COVID-19. Inf. Process. Manag. 2021, 58, 102554. [Google Scholar] [CrossRef]
- Song, C.; Shu, K.; Wu, B. Temporally evolving graph neural network for fake news detection. Inf. Process. Manag. 2021, 58, 102712. [Google Scholar] [CrossRef]
- Guo, B.; Ding, Y.; Yao, L.; Liang, Y.; Yu, Z. The Future of False Information Detection on Social Media. ACM Comput. Surv. 2021, 53, 68. [Google Scholar] [CrossRef]
- Tifferet, S. Verifying online information: Development and validation of a self-report scale. Technol. Soc. 2021, 67, 101788. [Google Scholar] [CrossRef]
- Bondielli, A.; Marcelloni, F. A survey on fake news and rumour detection techniques. Inf. Sci. 2019, 497, 38–55. [Google Scholar] [CrossRef]
- Jungherr, A.; Schroeder, R. Disinformation and the Structural Transformations of the Public Arena: Addressing the Actual Challenges to Democracy. Soc. Media Soc. 2021, 7, 2056305121988928. [Google Scholar] [CrossRef]
- Di Domenico, G.; Sit, J.; Ishizaka, A.; Nunan, D. Fake news, social media and marketing: A systematic review. J. Bus. Res. 2020, 124, 329–341. [Google Scholar] [CrossRef]
- Boman, C.D. Examining characteristics of prebunking strategies to overcome PR disinformation attacks. Public Relat. Rev. 2021, 47, 102105. [Google Scholar] [CrossRef]
- Alonso, M.; Vilares, D.; Gómez-Rodríguez, C.; Vilares, J. Sentiment Analysis for Fake News Detection. Electronics 2021, 10, 1348. [Google Scholar] [CrossRef]
- Robinson, N. Foreign agents” in an interconnected world: Fara and the weaponization of trans-parency. Duke Law J. 2020, 69, 1075–1147. [Google Scholar]
- Weeks, B.E.; Garrett, R.K. Electoral Consequences of Political Rumors: Motivated Reasoning, Candidate Rumors, and Vote Choice during the 2008 U.S. Presidential Election. Int. J. Public Opin. Res. 2014, 26, 401–422. [Google Scholar] [CrossRef]
- Ecker, U.K.H.; Lewandowsky, S.; Swire, B.; Chang, D. Correcting false information in memory: Manipulating the strength of misinformation encoding and its retraction. Psychon. Bull. Rev. 2011, 18, 570–578. [Google Scholar] [CrossRef]
- Hao, L.; Li, W. Misinformation. Int. Econ. Rev. 2013, 54, 253–277. [Google Scholar] [CrossRef]
- Pandita, R. Information Pollution, a Mounting Threat: Internet a Major Causality. J. Inf. Sci. Theory Pract. 2014, 2, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Szymanski, A. On the uses of disinformation to legitimize the revival of the cold war: Health in the U.S.S.R. Sci. Soc. 1981, 45, 453–474. [Google Scholar] [CrossRef] [PubMed]
- Vowles, J. Campaign claims, partisan cues, and media effects in the 2011 British Electoral System Referendum. Elect. Stud. 2013, 32, 253–264. [Google Scholar] [CrossRef]
- Barfar, A. Cognitive and affective responses to political disinformation in Facebook. Comput. Hum. Behav. 2019, 101, 173–179. [Google Scholar] [CrossRef]
- Ullah, S.; Massoud, N.; Scholnick, B. The Impact of Fraudulent False Information on Equity Values. J. Bus. Ethics 2013, 120, 219–235. [Google Scholar] [CrossRef]
- Pasquariello, P. Informative trading or just costly noise? An analysis of Central Bank interventions. J. Financ. Mark. 2007, 10, 107–143. [Google Scholar] [CrossRef]
- Matthews, S.C.; Camacho, A.; Mills, P.J.; Dimsdale, J.E. The Internet for Medical Information About Cancer: Help or Hindrance? J. Psychosom. Res. 2003, 44, 100–103. [Google Scholar] [CrossRef]
- Jejurikar, S.S.; Rovak, J.M.; Kuzon, W.M.; Chung, K.C.; Kotsis, S.V.; Cederna, P.S. Evaluation of Plastic Surgery Information on the Internet. Ann. Plast. Surg. 2002, 49, 460–465. [Google Scholar] [CrossRef]
- Gunenc, Z.; Bingol, B.; Gedikbasi, A.; Yesildaglar, N.; Erkaya, S. Opinions concerning male and female sterilisation in Turkey. Eur. J. Contracept. Reprod. Health Care 2009, 14, 375–378. [Google Scholar] [CrossRef]
- Barker, S.; Charlton, N.P.; Holstege, C.P. Accuracy of Internet Recommendations for Prehospital Care of Venomous Snake Bites. Wilderness Environ. Med. 2010, 21, 298–302. [Google Scholar] [CrossRef] [Green Version]
- Pineda, D.; Myers, M.G. Finding Reliable Information about Vaccines. Pediatrics 2011, 127, S134–S137. [Google Scholar] [CrossRef] [Green Version]
- Holliday, R.E.; Hayes, B. Dissociating Automatic and Intentional Processes in Children’s Eyewitness Memory. J. Exp. Child. Psychol. 2000, 75, 1–42. [Google Scholar] [CrossRef] [PubMed]
- Templeton, L.M.; Wilcox, S.A. A tale of two representations: The misinformation effect and children’s developing theory of mind. Child. Dev. 2000, 71, 402–416. [Google Scholar] [CrossRef] [PubMed]
- Assefi, S.L.; Garry, M. Absolut® Memory Distortions. Psychol. Sci. 2003, 14, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Jin, X. Preventing rumor spreading on small-world networks. J. Syst. Sci. Complex. 2011, 24, 449–456. [Google Scholar] [CrossRef]
- Goslin, R.A.; Elhassan, H.A. Evaluating internet health resources in ear, nose, and throat surgery. Laryngoscope 2013, 123, 1626–1631. [Google Scholar] [CrossRef]
- Levy, A.G.; Sonnad, S.S.; Kurichi, J.E.; Sherman, M.; Armstrong, K. Making Sense of Cancer Risk Calculators on the Web. J. Gen. Intern. Med. 2008, 23, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.P.; Yan, G.; Thai, M.T. Analysis of misinformation containment in online social networks. Comput. Netw. 2013, 57, 2133–2146. [Google Scholar] [CrossRef]
- Fortinsky, K.J.; Fournier, M.R.; Benchimol, E.I. Internet and electronic resources for inflammatory bowel disease: A primer for providers and patients. Inflamm. Bowel Dis. 2012, 18, 1156–1163. [Google Scholar] [CrossRef]
- Littman, L.L.; Jacobs, A.; Negron, R.; Shochet, T.; Gold, M.; Cremer, M. Beliefs about abortion risks in women returning to the clinic after their abortions: A pilot study. Contraception 2014, 90, 19–22. [Google Scholar] [CrossRef]
- Lin, P.; Chen, L.; Yuan, M.; Nie, P. Discover the Misinformation Broadcasting in On-Line Social Networks. J. Inf. Sci. Eng. 2015, 31, 763–785. [Google Scholar]
- Kapantai, E.; Christopoulou, A.; Berberidis, C.; Peristeras, V. A systematic literature review on disinformation: Toward a unified taxonomical framework. New Media Soc. 2020, 23, 1301–1326. [Google Scholar] [CrossRef]
- Ruokolainen, H.; Widén, G. Conceptualising misinformation in the context of asylum seekers. Inf. Process. Manag. 2019, 57, 102127. [Google Scholar] [CrossRef]
- Xia, Y. Disinformation after Trump. Media Cult. Soc. 2021, 43, 1364–1373. [Google Scholar] [CrossRef]
- García-Marín, D.; Martinrey, G.S. Investigación sobre desinformación en España. Fonseca J. Commun. 2021, 23, 199–225. [Google Scholar] [CrossRef]
- Shu, K.; Bhattacharjee, A.; Alatawi, F.; Nazer, T.H.; Ding, K.; Karami, M.; Liu, H. Combating disinformation in a social media age. WIREs Data Min. Knowl. Discov. 2020, 10, e1385. [Google Scholar] [CrossRef]
- MacCoun, R.J. Biases in the interpretation and use of research results. Annu. Rev. Psychol. 1998, 49, 259–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Combs, J.G.; Ketchen, D.J., Jr.; Crook, T.R.; Roth, P.L. Assessing Cumulative Evidence within ‘Macro’ Research: Why Meta-Analysis Should be Preferred over Vote Counting. J. Manag. Stud. 2009, 48, 178–197. [Google Scholar] [CrossRef]
- Lim, W.M.; Rasul, T.; Kumar, S.; Ala, M. Past, present, and future of customer engagement. J. Bus. Res. 2021, 140, 439–458. [Google Scholar] [CrossRef]
- Humlme, E.W. Statistical Bibliography in Relation to the Growth of Modern Civilization; University of Cambridge: London, UK, 1923. [Google Scholar]
- Lotka, A.J. The frequency distribution of scientific productivity. J. Wash. Acad. Sci. 1926, 16, 317–323. [Google Scholar]
- Bradford, S.C. Classic paper: Sources of Information on Specific Subjects. Collect. Manag. 1976, 1, 95–104. [Google Scholar] [CrossRef]
- Zipf, G.K. The Psycho-Biology of Language; Houghton Mifflin: New York, NY, USA, 1935. [Google Scholar]
- Seglen, P.O. Use of citation analysis and other bibliometric methods in evaluation of the quality of research. Tidsskr. Den. Nor. Legeforen. 1989, 109, 3229–3234. [Google Scholar]
- Campos, C.; Redondo, F.L. Bibliometrics and clinical chemistry. Clin. Chem. 1991, 37, 303–304. [Google Scholar] [CrossRef] [PubMed]
- Behrens, H.; Luksch, P. Mathematics 1868–2008: A bibliometric analysis. Scientometrics 2010, 86, 179–194. [Google Scholar] [CrossRef]
- Ahn, S.; Kang, J.; Lee, H.J. Research Trends in Condensed Matter Physics Based on Bibliometric Analysis. Inf. Int. Interdiscip. J. 2011, 14, 1745–1760. [Google Scholar]
- Rice, E.W. Bibliometric evaluations of modern Clinical Chemistry are needed. Clin. Chem. 1983, 29, 1858–1859. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Nah, K. (Eds.) A Counterattack of Misinformation: How the Information Influence to Human Being. In Proceeding of the 3rd International Conference on Intelligent Human Systems Integration (IHSI)—Integrating People and Intelligent Systems, Modena, Italy, 19–21 February 2020. [Google Scholar]
- Rani, N.; Bhardwaj, A.K.; Das, P.; Sharma, A. Bibliometric analysis of rumor detection via web of science from 1989 to 2021. Concurr. Comput. Pract. Exp. 2022, 34, e7260. [Google Scholar] [CrossRef]
- López, C.E.; Corcuera-Ciudad, R. Infodemic and Misinformation about COVID-19: A Bibliometric analysis. Rev. Cuba. Investig. Bioméd. 2021, 40 (Suppl. S1), e1379. [Google Scholar]
- Sahoo, J.; Sahu, S.C.; Mohanty, B. Research on Fake News An Empirical Analysis of Selected Library and Information Science Journals. DESIDOC J. Libr. Inf. Technol. 2021, 41, 268–274. [Google Scholar] [CrossRef]
- Tito, F.P.; Penalvo, F.J.G.; Postigo, G.P. Bibliometric analysis of media disinformation and fake news in so-cial networks. Rev. Univ. Soc. 2022, 14, 37–45. [Google Scholar]
- Yeung, A.W.K.; Tosevska, A.; Klager, E.; Eibensteiner, F.; Tsagkaris, C.; Parvanov, E.D.; Nawaz, F.A.; Völkl-Kernstock, S.; Schaden, E.; Kletecka-Pulker, M.; et al. Medical and Health-Related Misinformation on Social Media: Bibliometric Study of the Scientific Literature. J. Med. Internet Res. 2022, 24, e28152. [Google Scholar] [CrossRef] [PubMed]
- Patra, R.K.; Pandey, N.; Sudarsan, D. Bibliometric analysis of fake news indexed in Web of Science and Scopus (2001–2020). Glob. Knowl. Mem. Commun. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Y. Bibliometric analysis of global environmental assessment research in a 20-year period. Environ. Impact Assess. Rev. 2015, 50, 158–166. [Google Scholar] [CrossRef]
- Caballero-Apaza, L.M.; Vidal-Espinoza, R.; Curaca-Arroyo, S.; Gomez-Campos, R.; Callata-Gallegos, Z.; Fuentes-López, J.; Cossio-Bolaños, M. Bibliometric Study of Scientific Productivity on the Impacts on Mental Health in Times of Pandemic. Medicina 2021, 58, 24. [Google Scholar] [CrossRef] [PubMed]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Kim, J.; Kang, S.; Lee, K.H. Evolution of digital marketing communication: Bibliometric analysis and network visualization from key articles. J. Bus. Res. 2019, 130, 552–563. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Pattnaik, D.; Lim, W.M. A bibliometric retrospection of marketing from the lens of psychology: Insights from Psychology & Marketing. Psychol. Mark. 2021, 38, 834–865. [Google Scholar] [CrossRef]
- Callon, M.; Courtial, J.-P.; Turner, W.A.; Bauin, S. From translations to problematic networks: An introduction to co-word analysis. Soc. Sci. Inf. 1983, 22, 191–235. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Pandey, N.; Pandey, N.; Mishra, A. Mapping the electronic word-of-mouth (eWOM) research: A systematic review and bibliometric analysis. J. Bus. Res. 2021, 135, 758–773. [Google Scholar] [CrossRef]
- Borthakur, A. Policy approaches on E-waste in the emerging economies: A review of the existing governance with special reference to India and South Africa. J. Clean. Prod. 2019, 252, 119885. [Google Scholar] [CrossRef]
- Pourghomi, P.; Safieddine, F.; Masri, W.; Dordevic, M. How to Stop Spread of Misinformation on Social Media: Facebook Plans vs. Right-click Authenticate Approach. In Proceeding of the International Conference on Engineering and MIS (ICEMIS), Univ. Monastir, Monastir, Tunisia, 8–10 May 2017. [Google Scholar]
- Safieddine, F.; Dordevic, M.; Pourghomi, P. Spread of misinformation online: Simulation impact of social media newsgroups. In Proceedings of the 2017 Computing Conference, Siena, Italy, 15–17 May 2017; pp. 899–906. [Google Scholar] [CrossRef]
- Hyman, J. Addressing Fake News: Open Standards & Easy Identification. In Proceeding of the 8th IEEE Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), Columbia Univ., New York, NY, USA, 19–21 October 2017. [Google Scholar]
- Acemoglu, D.; Ozdaglar, A. Opinion Dynamics and Learning in Social Networks. Dyn. Games Appl. 2010, 1, 3–49. [Google Scholar] [CrossRef]
- Lewandowsky, S.; Ecker, U.; Seifert, C.; Schwarz, N.; Cook, J. Misinformation and Its Correction: Continued Influence and Successful Debiasing. Psychol. Sci. Public Interest 2012, 13, 106–131. [Google Scholar] [CrossRef] [PubMed]
- Van Dam, N.T.; van Vugt, M.K.; Vago, D.R.; Schmalzl, L.; Saron, C.D.; Olendzki, A.; Meissner, T.; Lazar, S.W.; Kerr, C.E.; Gorchov, J.; et al. Mind the Hype: A Critical Evaluation and Prescriptive Agenda for Research on Mindfulness and Meditation. Perspect. Psychol. Sci. 2017, 13, 36–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jolley, D.; Douglas, K.M. The Effects of Anti-Vaccine Conspiracy Theories on Vaccination Intentions. PLoS ONE 2014, 9, e89177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyhan, B.; Reifler, J.; Richey, S.; Freed, G.L. Effective Messages in Vaccine Promotion: A Randomized Trial. Pediatrics 2014, 133, e835–e842. [Google Scholar] [CrossRef] [Green Version]
- Grinberg, N.; Joseph, K.; Friedland, L.; Swire-Thompson, B.; Lazer, D. Fake news on Twitter during the 2016 U.S. presidential election. Science 2019, 363, 374–378. [Google Scholar] [CrossRef]
- Allcott, H.; Gentzkow, M. Social Media and Fake News in the 2016 Election. J. Econ. Perspect. 2017, 31, 211–236. [Google Scholar] [CrossRef]
- Pennycook, G.; McPhetres, J.; Zhang, Y.; Lu, J.G.; Rand, D.G. Fighting COVID-19 Misinformation on Social Media: Experimental Evidence for a Scalable Accuracy-Nudge Intervention. Psychol. Sci. 2020, 31, 770–780. [Google Scholar] [CrossRef]
- Gao, J.; Zheng, P.; Jia, Y.; Chen, H.; Mao, Y.; Chen, S.; Wang, Y.; Fu, H.; Dai, J. Mental health problems and social media exposure during COVID-19 outbreak. PLoS ONE 2020, 15, e0231924. [Google Scholar] [CrossRef]
- Chou, W.-Y.S.; Budenz, A. Considering Emotion in COVID-19 Vaccine Communication: Addressing Vaccine Hesitancy and Fostering Vaccine Confidence. Health Commun. 2020, 35, 1718–1722. [Google Scholar] [CrossRef]
- Dror, A.A.; Eisenbach, N.; Taiber, S.; Morozov, N.G.; Mizrachi, M.; Zigron, A.; Srouji, S.; Sela, E. Vaccine hesitancy: The next challenge in the fight against COVID-19. Eur. J. Epidemiol. 2020, 35, 775–779. [Google Scholar] [CrossRef]
- Loomba, S.; de Figueiredo, A.; Piatek, S.J.; de Graaf, K.; Larson, H.J. Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA. Nat. Hum. Behav. 2021, 5, 337–348, Correction in 2021, 5, 960. [Google Scholar] [CrossRef]
- Wilson, S.L.; Wiysonge, C. Social media and vaccine hesitancy. BMJ Glob. Health 2020, 5, e004206. [Google Scholar] [CrossRef]
- Chen, Q.; Srivastava, G.; Parizi, R.M.; Aloqaily, M.; Al Ridhawi, I. An incentive-aware blockchain-based solution for internet of fake media things. Inf. Process. Manag. 2020, 57, 102370. [Google Scholar] [CrossRef]
- Erku, D.A.; Belachew, S.A.; Abrha, S.; Sinnollareddy, M.; Thomas, J.; Steadman, K.J.; Tesfaye, W.H. When fear and misinformation go viral: Pharmacists’ role in deterring medication misinformation during the ‘infodemic’ surrounding COVID-19. Res. Soc. Adm. Pharm. 2020, 17, 1954–1963. [Google Scholar] [CrossRef] [PubMed]
- Aizpurua, A.; García-Bajos, E.; Migueles, M. Memory for actions of an event: Older and younger adults compared. J. Gen. Psychol. 2009, 136, 428–441. [Google Scholar] [CrossRef] [PubMed]
- Principe, G.F.; Haines, B.; Adkins, A.; Guiliano, S. False rumors and true belief: Memory processes underlying children’s errant reports of rumored events. J. Exp. Child. Psychol. 2010, 107, 407–422. [Google Scholar] [CrossRef] [PubMed]
- Roebers, C.M.; Moga, N.; Schneider, W. The Role of Accuracy Motivation on Children’s and Adults’ Event Recall. J. Exp. Child. Psychol. 2001, 78, 313–329. [Google Scholar] [CrossRef] [PubMed]
- Connolly, D.A.; Price, H.L. Children’s suggestibility for an instance of a repeated event versus a unique event: The effect of degree of association between variable details. J. Exp. Child. Psychol. 2006, 93, 207–223. [Google Scholar] [CrossRef]
- Bode, L.; Vraga, E. In Related News, That Was Wrong: The Correction of Misinformation Through Related Stories Functionality in Social Media. J. Commun. 2015, 65, 619–638. [Google Scholar] [CrossRef]
- Allcott, H.; Gentzkow, M.; Yu, C. Trends in the diffusion of misinformation on social media. Res. Politi. 2019, 6, 205316801984855. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.; Kamal, A.-H.M.; Kabir, A.; Southern, D.L.; Khan, S.H.; Hasan, S.M.M.; Sarkar, T.; Sharmin, S.; Das, S.; Roy, T.; et al. COVID-19 vaccine rumors and conspiracy theories: The need for cognitive inoculation against misinformation to improve vaccine adherence. PLoS ONE 2021, 16, e0251605. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Galvez, J.; Suarez-Lledo, V.; Rojas-Garcia, A. Determinants of Infodemics During Disease Outbreaks: A Systematic Review. Front. Public Health 2021, 9, 603603. [Google Scholar] [CrossRef] [PubMed]
- Cuan-Baltazar, J.Y.; Muñoz-Perez, M.J.; Robledo-Vega, C.; Pérez-Zepeda, M.F.; Soto-Vega, E. Misinformation of COVID-19 on the Internet: Infodemiology Study. JMIR Public Health Surveill. 2020, 6, e18444. [Google Scholar] [CrossRef] [Green Version]
- Dadkhah, S.; Shoeleh, F.; Yadollahi, M.M.; Zhang, X.; Ghorbani, A.A. A real-time hostile activities analyses and detection system. Appl. Soft Comput. 2021, 104, 107175. [Google Scholar] [CrossRef]
- Hakak, S.; Alazab, M.; Khan, S.; Gadekallu, T.R.; Maddikunta, P.K.R.; Khan, W.Z. An ensemble machine learning approach through effective feature extraction to classify fake news. Future Gener. Comput. Syst. 2020, 117, 47–58. [Google Scholar] [CrossRef]
- Mridha, M.F.; Keya, A.J.; Hamid, A.; Monowar, M.M.; Rahman, S. A Comprehensive Review on Fake News Detection With Deep Learning. IEEE Access 2021, 9, 156151–156170. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.-K.; Wang, W.; Hou, D.; Xu, J.; Ye, X.; Li, S. Multiplex network reconstruction for the coupled spatial diffusion of infodemic and pandemic of COVID-19. Int. J. Digit. Earth 2021, 14, 401–423. [Google Scholar] [CrossRef]
Rank | Publication | TP | Category | Countries/Regions | IF |
---|---|---|---|---|---|
1 | APPL COGNITIVE PSYCH | 118 | Psychology, Experimental | USA | 2.36 |
2 | PLOS ONE | 113 | Multidisciplinary Sciences | USA | 3.75 |
3 | J MED INTERNET RES | 102 | Medical Informatics, Health Care Sciences & Services | Canada | 7.08 |
4 | INT J ENV RES PUB HE | 83 | Public, Environmental & Occupational Health | Switzerland | 4.61 |
5 | MEMORY | 78 | Psychology, Experimental | UK | 2.52 |
6 | IEEE ACCESS | 62 | Telecommunications, Engineering, Electrical &Electronic, Computer Science, Information Systems | USA | 3.48 |
7 | SOC MEDIA SOC | 60 | Communication | UK | 4.65 |
8 | DIGIT JOURNAL | 45 | Communication | UK | 6.85 |
9 | NEW MEDIA SOC | 43 | Communication | USA | 5.31 |
10 | INT J COMMUN-US | 40 | Communication | USA | 1.64 |
11 | PHYSICA A | 40 | Physics, Multidisciplinary | The Netherlands | 3.78 |
12 | P NATL ACAD SCI USA | 38 | Multidisciplinary Sciences | USA | 12.78 |
13 | HEALTH COMMUN | 37 | Communication, Health Policy & Services | USA | 3.50 |
14 | MEM COGNITION | 36 | Psychology, Experimental | USA | 2.48 |
15 | FRONT PSYCHOL | 35 | Psychology, Multidisciplinary | Switzerland | 4.23 |
16 | INFORM COMMUN SOC | 35 | Communication, Sociology | UK | 5.05 |
17 | JOURNAL PRACT | 31 | Communication | UK | 2.33 |
18 | MEDIA COMMUN-LISBON | 31 | Communication | Portugal | 3.04 |
19 | VACCINE | 31 | Medicine, Research & Experimental, Immunology | The Netherlands | 4.17 |
20 | BMC PUBLIC HEALTH | 29 | Public, Environmental & Occupational Health | UK | 4.14 |
21 | VACCINES-BASEL | 28 | Medicine, Research & Experimental, Immunology | Switzerland | 4.96 |
22 | INFORM PROCESS MANAGE | 27 | Information Science & Library Science | UK | 7.47 |
23 | J APPL RES MEM COGN | 27 | Psychology, Experimental | The Netherlands | 4.6 |
24 | JOURNALISM | 26 | Communication | USA | 3.19 |
25 | SCI REP-UK | 26 | Multidisciplinary Sciences | UK | 4.99 |
26 | AM BEHAV SCI | 25 | Psychology, Clinical, Social Sciences, Interdisciplinary | USA | 2.53 |
27 | FRONT PUBLIC HEALTH | 25 | Public, Environmental & Occupational Health | Switzerland | 6.46 |
28 | JMIR PUBLIC HLTH SUR | 25 | Public, Environmental & Occupational Health | Canada | 4.11 |
29 | CONTRACEPTION | 24 | Obstetrics & Gynecology | The Netherlands | 3.05 |
30 | HUM VACC IMMUNOTHER | 24 | Biotechnology & Applied Microbiology, Immunology | USA | 4.53 |
Rank | Author | TP | TC | ACPP | H-Index | Institution | Countries/Region |
---|---|---|---|---|---|---|---|
1 | Ecker, UKH | 37 | 2468 | 66.70 | 18 | Univ Western Australia | Australia |
2 | Lewandowsky, S | 37 | 3063 | 82.78 | 21 | Univ Western Australia | Australia |
3 | Loftus, EF | 36 | 1477 | 41.03 | 17 | Univ Calif Irvine | USA |
4 | Otgaar, H | 26 | 249 | 9.58 | 9 | Maastricht Univ | The Netherlands |
5 | Pennycook, G | 20 | 1409 | 70.45 | 12 | Univ Regina | Canada |
6 | Zhu, Linhe | 20 | 228 | 11.40 | 9 | Jiangsu Univ | China |
7 | Paterson, HM | 19 | 337 | 17.74 | 8 | Univ Sydney | Australia |
8 | Rand, DG | 19 | 1409 | 74.16 | 12 | MIT | USA |
9 | Vraga, EK | 19 | 756 | 39.79 | 11 | Univ Minnesota | USA |
10 | Nyhan, B | 17 | 2269 | 133.47 | 12 | Dartmouth Coll | USA |
11 | Garry, M | 16 | 463 | 28.94 | 12 | Victoria Univ Wellington | New Zealand |
12 | Luna, K | 16 | 175 | 10.94 | 8 | Univ Minho | Portugal |
13 | van der Linden, S | 16 | 712 | 44.50 | 11 | Univ Cambridge | UK |
14 | Wright, DB | 16 | 1016 | 63.50 | 16 | Florida Int Univ | USA |
15 | Chan, JCK | 15 | 381 | 25.40 | 10 | Iowa State Univ | USA |
16 | Merckelbach, H | 15 | 217 | 14.47 | 9 | Maastricht Univ | The Netherlands |
17 | Bode, L | 14 | 581 | 41.50 | 8 | Georgetown Univ | USA |
18 | Cook, J | 14 | 2003 | 143.07 | 10 | George Mason Univ | USA |
19 | Quattrociocchi, W | 14 | 1494 | 106.71 | 11 | Ca Foscari Univ Venice | Italy |
20 | Polczyk, R | 13 | 36 | 2.77 | 4 | Jagiellonian Univ | Poland |
21 | Thomas, AK | 13 | 236 | 18.15 | 6 | Tufts Univ | USA |
22 | Zollo, F | 13 | 1250 | 96.15 | 10 | Ca Foscari Univ Venice | Italy |
23 | Gabbert, F | 12 | 956 | 79.67 | 11 | Univ Portsmouth | USA |
24 | Memon, A | 12 | 899 | 74.92 | 10 | Univ Aberdeen | UK |
25 | Sauerland, M | 12 | 78 | 6.50 | 5 | Maastricht Univ | The Netherlands |
26 | Szpitalak, M | 12 | 30 | 2.50 | 3 | Jagiellonian Univ | Poland |
27 | Hameleers, M | 11 | 111 | 10.09 | 5 | Univ Amsterdam | The Netherlands |
28 | Kemp, RI | 11 | 298 | 27.09 | 8 | UNSW Sydney | Australia |
29 | Reifler, J | 11 | 2092 | 190.18 | 9 | Univ Exeter | UK |
30 | Scala, A | 11 | 1430 | 130.00 | 11 | CNR ISC | Italy |
Rank | Institutions | TP | TC | ACPP | Countries/Regions |
---|---|---|---|---|---|
1 | Univ Washington | 235 | 4761 | 20.26 | USA |
2 | MIT | 228 | 4392 | 19.26 | USA |
3 | Boston Univ | 178 | 4867 | 27.34 | USA |
4 | Univ Cambridge | 164 | 7053 | 43.01 | UK |
5 | Univ N Carolina | 154 | 2349 | 15.25 | USA |
6 | Harvard Univ | 143 | 4723 | 33.03 | USA |
7 | Columbia Univ | 129 | 2029 | 15.73 | USA |
8 | Univ Penn | 124 | 4472 | 36.06 | USA |
9 | Univ Sydney | 121 | 2134 | 17.64 | Australia |
10 | Univ Michigan | 113 | 6647 | 58.82 | USA |
11 | Univ Oxford | 83 | 996 | 12 | UK |
12 | NYU | 83 | 3084 | 37.16 | USA |
13 | Univ Western Australia | 76 | 3416 | 44.95 | Australia |
14 | Univ Toronto | 73 | 2413 | 33.05 | Canada |
15 | Univ Wisconsin | 73 | 1854 | 25.4 | USA |
16 | Univ Illinois | 72 | 2050 | 28.47 | USA |
17 | Yale Univ | 62 | 1938 | 31.26 | USA |
18 | Univ Calif Irvine | 60 | 1952 | 32.53 | USA |
19 | Univ Bristol | 57 | 1853 | 32.51 | UK |
20 | Univ Maryland | 56 | 664 | 11.86 | USA |
21 | Univ Minnesota | 55 | 695 | 12.64 | USA |
22 | Duke Univ | 55 | 1193 | 21.69 | USA |
23 | Univ Calif San Francisco | 54 | 603 | 11.17 | USA |
24 | Maastricht Univ | 50 | 511 | 10.22 | The Netherlands |
25 | Stanford Univ | 49 | 2298 | 46.9 | USA |
26 | Northwestern Univ | 48 | 804 | 16.75 | USA |
27 | Nanyang Technol Univ | 46 | 1108 | 24.09 | Singapore |
28 | Univ Texas Austin | 45 | 572 | 12.71 | USA |
29 | Arizona State Univ | 44 | 643 | 14.61 | USA |
30 | Ohio State Univ | 43 | 923 | 21.47 | USA |
Rank | Title | Keywords | Journal | TC | Countries/Regions |
---|---|---|---|---|---|
1 | Social Media and Fake News in the 2016 Election | partisan bias, polarization, online, accuracy, beliefs, impact | J ECON PERSPECT | 1043 | USA |
2 | Misinformation and Its Correction: Continued Influence and Successful Debiasing | misinformation, false beliefs, memory updating, debiasing | PSYCHOL SCI PUBL INT | 921 | USA, Australia |
3 | Why do humans reason? Arguments for an argumentative theory | argumentation, confirmation bias, decision making, dual process theory, evolutionary psychology, motivated reasoning, reason-based choice, reasoning | BEHAV BRAIN SCI | 806 | USA, France |
4 | Opioid Epidemic in the United States | opioid abuse, opioid misuse, nonmedical use of psychotherapeutic drugs, nonmedical use of opioids, national survey on drug use and health, opioid guidelines | PAIN PHYSICIAN | 673 | USA |
5 | The spreading of misinformation online | misinformation, virality, Facebook, rumor spreading, cascades | P NATL ACAD SCI USA | 604 | USA, Italy |
6 | Effective Messages in Vaccine Promotion: A Randomized Trial | vaccines, myths, rumor, autism, false, misperceptions, misinformation | PEDIATRICS | 583 | USA |
7 | DEFINING FAKE NEWS, A typology of scholarly definitions | facts, fake news, false news, misinformation, news, parody, satire | DIGIT JOURNAL | 502 | Singapore |
8 | Anti-vaccine activists, Web 2.0, and the postmodern paradigm—An overview of tactics and tropes used online by the anti-vaccination movement | anti-vaccination, health communication, internet, postmodernism, vaccines, web 2.0 | VACCINE | 444 | Canada |
9 | Mind the Hype: A Critical Evaluation and Prescriptive Agenda for Research on Mindfulness and Meditation | mindfulness, meditation, psychotherapy, neuroimaging, contemplative science, adverse effects, media hype, misinformation | PERSPECT PSYCHOL SCI | 440 | Australia, The Netherlands, USA |
10 | Mental health problems and social media exposure during COVID-19 outbreak | PLOS ONE | 413 | China | |
11 | Attitudes to vaccination: A critical review | Europe, vaccination, immunization, public health, choice, attitude, perception, hesitancy | SOC SCI MED | 364 | UK |
12 | The Effects of Anti-Vaccine Conspiracy Theories on Vaccination Intentions | continued influence, African Americans, beliefs, attitudes, misinformation, HIV/aids, impact, online | PLOS ONE | 362 | UK |
13 | Vaccine hesitancy: the next challenge in the fight against COVID-19 | COVID-19, SARS-CoV-2 vaccine, vaccine hesitancy, healthcare staff, vaccine safety, Israel | EUR J EPIDEMIOL | 338 | Israel |
14 | Beyond Misinformation: Understanding and Coping with the Post-Truth Era | misinformation, fake news, post-truth politics, demagoguery | J APPL RES MEM COGN | 327 | UK, Australia, USA |
15 | Opinion Dynamics and Learning in Social Networks | Bayesian updating, consensus, disagreement, learning, misinformation, non-Bayesian models, rule of thumb behavior, social networks | DYN GAMES APPL | 320 | USA |
16 | Lazy, not biased: Susceptibility to partisan fake news is better explained by lack of reasoning than by motivated reasoning | fake news, news media, social media, analytic thinking, cognitive reflection test, intuition, dual process theory | COGNITION | 306 | USA |
17 | Fake news on Twitter during the 2016 US presidential election | SCIENCE | 284 | USA | |
18 | Fighting COVID-19 Misinformation on social media: Experimental Evidence for a Scalable Accuracy-Nudge Intervention | social media, decision making, policy making, reflectiveness, social cognition, open data, open materials, preregistered | PSYCHOL SCI | 283 | Canada, USA |
19 | Motivational pathways to STEM career choices: Using expectancy-value perspective to understand individual and gender differences in STEM fields | career choices, stem, individual and gender differences, expectancy-value theory | DEV REV | 268 | USA |
20 | NASA Faked the Moon Landing-Therefore, (Climate) Science Is a Hoax: An Anatomy of the Motivated Rejection of Science | scientific communication, policymaking, climate science | PSYCHOL SCI | 268 | Australia, Switzerland |
Rank | Title | Keywords | Journal | TC | Countries/Regions |
---|---|---|---|---|---|
1 | Mental health problems and social media exposure during COVID-19 outbreak | PLOS ONE | 413 | China | |
2 | Vaccine hesitancy: the next challenge in the fight against COVID-19 | COVID-19, SARS-CoV-2 vaccine, Vaccine hesitancy, Healthcare staff, Vaccine safety, Israel | EUR J EPIDEMIOL | 338 | Israel |
3 | Fighting COVID-19 misinformation on social media: experimental evidence for a scalable accuracy-nudge intervention | social media, decision making, policy making, reflectiveness, social cognition, open data, open materials, preregistered | PSYCHOL SCI | 283 | Canada, USA |
4 | Systematic literature review on the spread of health-related misinformation on social media | Misinformation, Fake news, Health, Social media | SOC SCI MED | 244 | UK, Italy |
5 | A comprehensive review of the COVID-19 pandemic and the role of IoT, Drones, Ai, Blockchain, and 5G in managing its impact | Coronavirus, COVID-19, pandemic, transmission stages, global economic impact, UAVs for disaster management, Blockchain, IoMT applications, IoT, AI, 5G | IEEE ACCESS | 219 | India, Qatar |
6 | The digital transformation of innovation and entrepreneurship: Progress, challenges, and key themes | Digital transformation, Innovation, Entrepreneurship, Digital innovation, Digital platforms, Openness, Generativity, Affordance | RES POLICY | 191 | USA, UK |
7 | Health-protective behavior, social media usage, and conspiracy belief during the COVID-19 public health emergency | Conspiracy beliefs, COVID-19, health-protective behaviors, public health, social media | PSYCHOL MED | 168 | UK |
8 | Transmission of SARS-CoV-2: a review of viral, host, and environmental factors | attack rate, infections | ANN INTERN MED | 155 | USA |
9 | Conspiracy theories as barriers to controlling the spread of COVID-19 in the US | Conspiracy theories, COVID-19, Prevention, Vaccination, Political ideology, Media use, Vaccination misinformation | SOC SCI MED | 152 | USA |
10 | Social media and vaccine hesitancy | vaccines | BMJ GLOB HEALTH | 108 | USA, South Africa |
11 | Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA | public-health, hesitancy, exposure, opinion, news | NAT HUM BEHAV | 107 | USA, UK, Belgium |
12 | Considering emotion in COVID-19 vaccine communication: addressing vaccine hesitancy and fostering vaccine confidence | fear, misinformation, metanalysis, appeals | HEALTH COMMUN | 104 | USA |
13 | A survey on fake news and rumor detection techniques | Fake news, Rumors, Natural language processing, Data mining, Text mining, Classification, Machine learning, Deep learning | INFORM SCIENCES | 90 | Italy |
14 | Fact-checking as risk communication: the multi-layered risk of misinformation in times of COVID-19 | Risk communication, misinformation, trust, uncertainty | J RISK RES | 79 | USA, Germany |
15 | An incentive-aware blockchain-based solution for internet of fake media things | Blockchain, Fake news, Internet of fake media things, Proof-of-authority | INFORM PROCESS MANAG | 57 | Canada, Taiwan (China), USA, Kuwait |
16 | When fear and misinformation go viral: Pharmacists’ role in deterring medication misinformation during the ‘infodemic’ surrounding COVID-19 | Coronavirus, Misinformation, COVID-19, Pandemics, Pharmacists | RES SOC ADMIN PHARM | 55 | Australia, Ethiopia |
Stage | Keywords | Theme |
---|---|---|
Before the emergence of WWW | misinformation, age-difference, recall, memory, children, adults, suggestibility, judgment, memory conformity, false memory | group heterogeneity of misinformation in memory |
After the emergence of social networking sites and before the outbreak of COVID-19 | social media, media, fake news, communication, Facebook, credibility, trust, bias, disinformation, journalism, truth | disinformation mechanism in social media |
After the outbreak of COVID-19 | COVID-19, vaccination, health, management, knowledge, prevalence, pandemic | public health related to the COVID-19 |
infodemic, coronavirus, infodemiology, crisis, infoveillance, Twitter, machine learning, deep learning, social networks, fake news detection, diffusion, fact-checking, blogs, dynamics | application of big data technology in infodemic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Su, F.; Ye, L.; Jing, Y. Disinformation: A Bibliometric Review. Int. J. Environ. Res. Public Health 2022, 19, 16849. https://doi.org/10.3390/ijerph192416849
Wang S, Su F, Ye L, Jing Y. Disinformation: A Bibliometric Review. International Journal of Environmental Research and Public Health. 2022; 19(24):16849. https://doi.org/10.3390/ijerph192416849
Chicago/Turabian StyleWang, Shixiong, Fangfang Su, Lu Ye, and Yuan Jing. 2022. "Disinformation: A Bibliometric Review" International Journal of Environmental Research and Public Health 19, no. 24: 16849. https://doi.org/10.3390/ijerph192416849
APA StyleWang, S., Su, F., Ye, L., & Jing, Y. (2022). Disinformation: A Bibliometric Review. International Journal of Environmental Research and Public Health, 19(24), 16849. https://doi.org/10.3390/ijerph192416849