Nosological Characteristics in Women with Social Media Disorder: The Role of Social Functional Impairment and Agreeableness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measures
2.2. Statistical Analysis
3. Results
3.1. Prevalence of Internet-Related Disorders and Social Media Disorder
3.2. Personality Traits
3.3. Group Differences in Functional Impairment and Psychopathological Distress
3.4. Comorbidities
3.5. Relationship of Socio-Economic Data with IRD and SMD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Müller, K.W.; Beutel, M.E.; Dreier, M.; Wölfling, K. A clinical evaluation of the DSM-5 criteria for Internet Gaming Disorder and a pilot study on their applicability to further Internet-related disorders. J. Behav. Addict. 2019, 8, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Montag, C.; Bey, K.; Sha, P.; Li, M.; Chen, Y.F.; Liu, W.Y.; Keiper, J. Is it meaningful to distinguish between generalized and specific Internet addiction? Evidence from a cross-cultural study from Germany, Sweden, Taiwan and China. Asia-Pac. Psychiatry 2015, 7, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Laconi, S.; Tricard, N.; Chabrol, H. Differences between specific and generalized problematic Internet uses according to gender, age, time spent online and psychopathological symptoms. Comput. Hum. Behav. 2015, 48, 236–244. [Google Scholar] [CrossRef]
- American Psychiatric Association. DSM-5: Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; APA-Press: Washington, DC, USA, 2013. [Google Scholar]
- WHO. The ICD-11 Classification of Mental and Behavioral Disorders: Diagnostic Criteria for Research; World Health Organization: Geneva, Switzerland, 2019.
- Brand, M.; Rumpf, H.-J.; Demetrovics, Z.; Müller, A.; Stark, R.; King, D.L.; Fineberg, N.A. Which conditions should be considered as disorders in the International Classification of Diseases (ICD-11) designation of “other specified disorders due to addictive behaviors”? J. Behav. Addict. 2020, 11, 150–159. [Google Scholar] [CrossRef]
- Van Den Eijnden, R.J.; Lemmens, J.S.; Valkenburg, P.M. The social media disorder scale. Comput. Hum. Behav. 2016, 61, 478–487. [Google Scholar] [CrossRef] [Green Version]
- Kuss, D.; Griffiths, M. Social networking sites and addiction: Ten lessons learned. Int. J. Environ. Res. Public Health 2017, 14, 311. [Google Scholar] [CrossRef] [Green Version]
- Toseeb, U.; Inkster, B. Online social networking sites and mental health research. Front. Psychiatry 2015, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- McCrae, N.; Gettings, S.; Purssell, E. Social media and depressive symptoms in childhood and adolescence: A systematic review. Adolesc. Res. Rev. 2017, 2, 315–330. [Google Scholar] [CrossRef] [Green Version]
- Riehm, K.E.; Feder, K.A.; Tormohlen, K.N.; Crum, R.M.; Young, A.S.; Green, K.M.; Mojtabai, R. Associations between time spent using social media and internalizing and externalizing problems among US youth. JAMA Psychiatry 2019, 76, 1266–1273. [Google Scholar] [CrossRef]
- Jelenchick, L.A.; Eickhoff, J.C.; Moreno, M.A. “Facebook depression?” Social networking site use and depression in older adolescents. J. Adolesc. Health 2013, 52, 128–130. [Google Scholar] [CrossRef]
- Reinecke, L.; Aufenanger, S.; Beutel, M.E.; Dreier, M.; Quiring, O.; Stark, B.; Müller, K.W. Digital stress over the life span: The effects of communication load and internet multitasking on perceived stress and psychological health impairments in a German probability sample. Media Psychol. 2017, 20, 90–115. [Google Scholar] [CrossRef]
- Wang, C.-W.; Ho, R.T.; Chan, C.L.; Tse, S. Exploring personality characteristics of Chinese adolescents with internet-related addictive behaviors: Trait differences for gaming addiction and social networking addiction. Addict. Behav. 2015, 42, 32–35. [Google Scholar] [PubMed]
- Andreassen, C.S.; Pallesen, S.; Griffiths, M.D. The relationship between addictive use of social media, narcissism, and self-esteem: Findings from a large national survey. Addict. Behav. 2017, 64, 287–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, K.W.; Dreier, M.; Beutel, M.E.; Duven, E.; Giralt, S.; Wölfling, K. A hidden type of internet addiction? Intense and addictive use of social networking sites in adolescents. Comput. Hum. Behav. 2016, 55, 172–177. [Google Scholar] [CrossRef]
- Bányai, F.; Zsila, Á.; Király, O.; Maraz, A.; Elekes, Z.; Griffiths, M.D.; Demetrovics, Z. Problematic social media use: Results from a large-scale nationally representative adolescent sample. PLoS ONE 2017, 12, e0169839. [Google Scholar]
- Alabi, O.F. A survey of Facebook addiction level among selected Nigerian University undergraduates. New Media Mass Commun. 2013, 10, 70–80. [Google Scholar]
- Wolniczak, I.; Cáceres-DelAguila, J.A.; Palma-Ardiles, G.; Arroyo, K.J.; Solís-Visscher, R.; Paredes-Yauri, S.; Bernabe-Ortiz, A. Association between Facebook dependence and poor sleep quality: A study in a sample of undergraduate students in Peru. PLoS ONE 2013, 8, e59087. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Han, X.; Yu, H.; Wu, Y.; Potenza, M.N. Do men become addicted to internet gaming and women to social media? A meta-analysis examining gender-related differences in specific internet addiction. Comput. Hum. Behav. 2020, 113, 106480. [Google Scholar] [CrossRef]
- Andreassen, C.S. Online social network site addiction: A comprehensive review. Curr. Addict. Rep. 2015, 2, 175–184. [Google Scholar] [CrossRef]
- McAndrew, F.T.; Jeong, H.S. Who does what on Facebook? Age, sex, and relationship status as predictors of Facebook use. Comput. Hum. Behav. 2012, 28, 2359–2365. [Google Scholar] [CrossRef]
- Bischof, G.; Bischof, A.; Meyer, C.; John, U.; Rumpf, H.-J. Prävalenz der Internetabhängigkeit–Diagnostik und Risikoprofile (PINTA-DIARI). In Abschlussbericht an das Bundesministerium für Gesundheit; Universität zu Lübeck: Lübeck, Germany, 2013. [Google Scholar]
- Andreassen, C.S.; Billieux, J.; Griffiths, M.D.; Kuss, D.J.; Demetrovics, Z.; Mazzoni, E.; Pallesen, S. The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: A large-scale cross-sectional study. Psychol. Addict. Behav. 2016, 30, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, K. Internetbezogene Störungen bei weiblichen Betroffenen: Nosologische Besonderheiten und deren Effekte auf die Inanspruchnahme von Hilfen (IBSfemme); Bundesministerium für Gesundheit (BMG): Bonn, Germany, 2020. [Google Scholar]
- Wölfling, K.; Beutel, M.E.; Müller, K.W. OSV-S–Skala zum Onlinesuchtverhalten. In Diagnostische Verfahren in der Psychotherapie (Diagnostik für Klinik und Praxis); Geue, K., Strauß, B., Brähler, E., Eds.; Göttingen: Hogrefe, Germany, 2016; Volume 362–366. [Google Scholar]
- Müller, K.W.; Gläsmer, H.; Brähler, E.; Wölfling, K.; Beutel, M.E. Prevalence of internet addiction in the general population: Results from a German population-based survey. Behav. Inf. Technol. 2014, 33, 757–766. [Google Scholar] [CrossRef]
- Sheehan, D. The Sheehan Disability Scales. The Anxiety Disease and How to Overcome It; Charles Scribner and Sons: New York, NY, USA, 1983; Volume 151. [Google Scholar]
- Leon, A.C.; Olfson, M.; Portera, L.; Farber, L.; Sheehan, D.V. Assessing psychiatric impairment in primary care with the Sheehan Disability Scale. Int. J. Psychiatry Med. 1997, 27, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Derogatis, L.R.; Lipman, R.S.; Rickels, K.; Uhlenhuth, E.H.; Covi, L. The Hopkins Symptom Checklist (HSCL): A self-report symptom inventory. Behav. Sci. 1974, 19, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Schmalbach, B.; Zenger, M.; Tibubos, A.N.; Kliem, S.; Petrowski, K.; Brähler, E. Psychometric Properties of Two Brief Versions of the Hopkins Symptom Checklist: HSCL-5 and HSCL-10. Assessment 2019, 28, 617–631. [Google Scholar] [CrossRef]
- John, O.P.; Donahue, E.M.; Kentle, R.L. The Big Five Inventory—Versions 4a and 54; University of California, Berkeley, Institute of Personality: Berkeley, CA, USA, 1991. [Google Scholar]
- Rammstedt, B.; John, O.P. Measuring personality in one minute or less: A 10-item short version of the Big Five Inventory in English and German. J. Res. Personal. 2007, 41, 203–212. [Google Scholar] [CrossRef]
- Rumpf, H.-J.; Vermulst, A.A.; Bischof, A.; Kastirke, N.; Gürtler, D.; Bischof, G.; Meerkerk, G.; John, U.; Meyer, C. Occurence of internet addiction in a general population sample: A latent class analysis. Eur. Addict. Res. 2013, 20, 159–166. [Google Scholar] [CrossRef]
- Kuss, D.J.; Griffiths, M.D.; Pontes, H.M. Chaos and confusion in DSM-5 diagnosis of Internet Gaming Disorder: Issues, concerns, and recommendations for clarity in the field. J. Behav. Addict. 2017, 6, 103–109. [Google Scholar]
- Pawlikowski, M.; Nader, I.W.; Burger, C.; Stieger, S.; Brand, M. Pathological Internet use–It is a multidimensional and not a unidimensional construct. Addict. Res. Theory 2014, 22, 166–175. [Google Scholar] [CrossRef]
- Müller, K.W.; Dreier, M.; Duven, E.; Giralt, S.; Beutel, M.E.; Woelfling, K. Adding clinical validity to the statistical power of large-scale epidemiological surveys on internet addiction in adolescence: A combined approach to investigate psychopathology and development-specific personality traits associated with internet addiction. J. Clin. Psychiatry 2017, 78, e244–e251. [Google Scholar] [CrossRef]
- Kayiş, A.R.; Satici, S.A.; Yilmaz, M.F.; Şimşek, D.; Ceyhan, E.; Bakioğlu, F. Big five-personality trait and internet addiction: A meta-analytic review. Comput. Hum. Behav. 2016, 63, 35–40. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Griffiths, M.D.; Gjertsen, S.R.; Krossbakken, E.; Kvam, S.; Pallesen, S. The relationships between behavioral addictions and the five-factor model of personality. J. Behav. Addict. 2013, 2, 90–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dufour, M.; Brunelle, N.; Khazaal, Y.; Tremblay, J.; Leclerc, D.; Cousineau, M.-M.; Berbiche, D. Gender difference in online activities that determine problematic internet use. J. Thér. Comport. Cogn. 2017, 27, 90–98. [Google Scholar] [CrossRef]
- Wright, A.G.; Pincus, A.L.; Thomas, K.M.; Hopwood, C.J.; Markon, K.E.; Krueger, R.F. Conceptions of narcissism and the DSM-5 pathological personality traits. Assessment 2013, 20, 339–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saulsman, L.M.; Page, A.C. The five-factor model and personality disorder empirical literature: A meta-analytic review. Clin. Psychol. Rev. 2004, 23, 1055–1085. [Google Scholar] [CrossRef] [PubMed]
- Lis, S.; Bohus, M. Social interaction in borderline personality disorder. Curr. Psychiatry Rep. 2013, 15, 338. [Google Scholar] [CrossRef] [PubMed]
- Scherer, L.; Mader, L.; Woelfling, K.; Beutel, M.E.; Dieris-Hirche, J.; Müller, K.W. Nicht diagnostizierte internetbezogene Störungen im psychotherapeutischen Versorgungssystem: Prävalenz und geschlechtsspezifische Besonderheiten. Psychiatr. Prax. 2021, 48, 423–429. [Google Scholar] [CrossRef]
Women Total | SMD-Group | gIRD-Group | Comparison-Group | |
---|---|---|---|---|
N | 294 | 37 | 30 | 227 |
age (M, SD) | 36.88 (13.87) | 25.41 (7.69) | 30.73 (12.96) | 39.58 (13.59) |
marital status (%, N) | ||||
unmarried, single | 35.6 (101) | 61.8 (21) | 46.7 (14) | 30.0 (66) |
unmarried, partnership | 21.1 (60) | 23.5 (8) | 20.0 (6) | 20.9 (46) |
married | 20.4 (58) | 5.9 (2) | 16.7 (5) | 23.2 (51) |
separated | 22.9 (65) | 8.8 (3) | 16.7 (5) | 25.9 (57) |
housing situation (%, N) | ||||
alone | 32.8 (86) | 11.1 (4) | 24.1 (7) | 38.1 (75) |
with partner | 27.5 (72) | 5.6 (2) | 24.1 (7) | 32.0 (63) |
with other | 39.7 (104) | 83.3 (30) | 51.7 (15) | 29.9 (59) |
graduation (%, N) | ||||
without | 3.5 (10) | 11.1 (4) | 6.7 (2) | 1.8 (4) |
still in school | 5.5 (16) | 11.1 (4) | 6.7 (2) | 4.5 (10) |
lower secondary school | 23.2 (67) | 25.0 (9) | 10.0 (3) | 24.7 (55) |
secorndary school | 38.1 (110) | 36.1 (13) | 26.7 (8) | 39.9 (89) |
high school | 25.6 (74) | 11.1(4) | 43.3 (13) | 25.6 (57) |
other | 4.2 (12) | 5.6 (2) | 6.7 (2) | 3.6 (8) |
occupational status (%, N) | ||||
employed | 38.7 (99) | 22.2 (6) | 37.5 (9) | 41.0 (84) |
housewife/-man | 6.3 (16) | 0 (0) | 8.3 (2) | 6.8 (14) |
student | 10.5 (27) | 7.4 (2) | 25.0 (6) | 9.3 (19) |
unemployed | 38.7 (99) | 70.4 (19) | 25.0 (6) | 36.1 (74) |
retired | 5.9 (15) | 0 (0) | 4.2 (1) | 6.8 (14) |
migration background (%, N) | ||||
yes | 10.8 (31) | 8.6 (3) | 10.7 (3) | 11.2 (25) |
Women Total | SMD-Group | gIRD-Group | Comparison-Group | Statistics | |
---|---|---|---|---|---|
Neuroticism | F(2,228) = 4.72 | ||||
(M, SD) | 3.71 (0.903) | 3.73 (0.865) B | 4.26 (0.619) A | 3.67 (0.890) B | p = 0.010 |
η2 = 0.040 | |||||
Extraversion | |||||
(M, SD) | 2.94 (1.004) | 2.83 (0.792) | 2.65 (1.049) | 3.06 (1.037) | n.s. |
openness | |||||
(M, SD) | 3.45 (1.045) | 3.13 (0.982) | 3.39 (1.065) | 3.54 (1.073) | n.s. |
agreeableness | F(2,228) = 4.36 | ||||
(M, SD) | 3.31 (0.912) | 2.90 (0.868) A | 3.06 (1.141) | 3.35 (0.856) B | p = 0.014 |
η2 = 0.037 | |||||
conscientiousness | F(2,228) = 13.09 | ||||
(M, SD) | 3.75 (0.825) | 3.23 (0.769) A | 3.34 (0.789) A | 3.88 (0.799) B | p < 0.001 |
η2 = 0.103 |
Functional Impairment Level | Women Total | SMD-Group | gIRD-Group | Comparison-Group | Statistics |
---|---|---|---|---|---|
SDS occupational | |||||
score (M, SD) | 6.26 (3.093) | 6.76 (2.230) | 7.09 (2.937) | 6.20 (3.159) | n.s. |
not impaired (%) | 28.1 | 11.8 | 13.0 | 31.3 | p = 0.019 |
impaired (%) | 71.9 | 88.2 | 87.0 | 68.7 | Cramer-V = 0.188 χ2 = 7.921 |
SDS social | |||||
score (M, SD) | 6.25 (2.867) | 7.17 (1.732) | 6.13 (2.881) | 6.17 (2.983) | n.s. |
not impaired (%) | 24.1 | 5.6 | 26.1 | 26.2 | p = 0.026 |
impaired (%) | 75.9 | 94.4 | 73.9 | 73.8 | Cramer-V = 0.178 χ2 = 7.293 |
SDS family | |||||
score (M, SD) | 6.28 (2.818) | 7.11 (1.894) | 6.52 (2.410) | 6.09 (3.017) | n.s. |
not impaired (%) | 22.2 | 8.3 | 13.0 | 26.7 | p = 0.029 |
impaired (%) | 77.8 | 91.7 | 87.0 | 73.3 | Cramer-V = 0.175 χ2 = 7.097 |
Women Total | SMD-Group | gIRD-Group | Comparison-Group | Statistics | |
---|---|---|---|---|---|
F1x (%) Mental and behavioural disorders due to psychoactive substance use | 58.8 (173) | 54.1 (20) | 33.3 (10) | 63.0 (143) | p = 0.007 Cramer-V = 0.185 χ2 = 10.028 |
F2x (%) Schizophrenia, schizotypal and delusional disorders | 6.5 (19) | 13.5 (5) | 13.3 (4) | 4.4 (10) | p = 0.031 Cramer-V = 0.154 χ2 = 6.975 |
F3x (%) Mood [affective] disorders | 39.1 (115) | 32.4 (12) | 56.7 (17) | 37.9 (86) | n.s. |
F4x (%) Neurotic, stress-related and somatoform disorders | 23.1 (68) | 16.2 (6) | 23.3 (7) | 24.2 (55) | n.s. |
F5x (%) Behavioural syndromes associated with physiological disturbances and physical factors | 10.5 (31) | 5.4 (2) | 23.3 (7) | 9.7 (22) | p = 0.040 Cramer-V = 0.148 χ2 = 6.413 |
F6x (%) Disorders of adult personality and behaviour * | 13.3 (39) | 21.6 (8) | 26.7 (8) | 10.1 (23) | p = 0.012 Cramer-V = 0.174 χ2 = 8.865 |
F9x (%) Behavioural and emotional disorders with onset usually occurring in childhood and adolescence | 5.1 (15) | 10.8 (4) | 6.7 (2) | 4.0 (9) | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scherer, L.; Mader, L.; Wölfling, K.; Beutel, M.E.; Egloff, B.; Müller, K.W. Nosological Characteristics in Women with Social Media Disorder: The Role of Social Functional Impairment and Agreeableness. Int. J. Environ. Res. Public Health 2022, 19, 15016. https://doi.org/10.3390/ijerph192215016
Scherer L, Mader L, Wölfling K, Beutel ME, Egloff B, Müller KW. Nosological Characteristics in Women with Social Media Disorder: The Role of Social Functional Impairment and Agreeableness. International Journal of Environmental Research and Public Health. 2022; 19(22):15016. https://doi.org/10.3390/ijerph192215016
Chicago/Turabian StyleScherer, Lara, Lisa Mader, Klaus Wölfling, Manfred E. Beutel, Boris Egloff, and Kai W. Müller. 2022. "Nosological Characteristics in Women with Social Media Disorder: The Role of Social Functional Impairment and Agreeableness" International Journal of Environmental Research and Public Health 19, no. 22: 15016. https://doi.org/10.3390/ijerph192215016
APA StyleScherer, L., Mader, L., Wölfling, K., Beutel, M. E., Egloff, B., & Müller, K. W. (2022). Nosological Characteristics in Women with Social Media Disorder: The Role of Social Functional Impairment and Agreeableness. International Journal of Environmental Research and Public Health, 19(22), 15016. https://doi.org/10.3390/ijerph192215016