Effects of Neuromuscular Electrical Stimulation and Blood Flow Restriction in Rehabilitation after Anterior Cruciate Ligament Reconstruction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Anthropometry (Height and Weight)
2.4. The Lysholm Score and the International Knee Documentation Committee (IKDC) Subjective Score
2.5. Thigh Circumference
2.6. Isokinetic Muscle Function
2.7. Balance
2.8. Statistical Analysis
3. Results
3.1. The Lysholm Score and the IKDC Subjective Score
3.2. Thigh Circumference
3.3. Isokinetic Muscle Function
3.4. Balance
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rice, D.A.; McNair, P.J. Quadriceps arthrogenic muscle inhibition: Neural mechanisms and treatment perspectives. Semin. Arthritis Rheum. 2010, 40, 250–266. [Google Scholar] [CrossRef] [PubMed]
- Konishi, Y.; Fukubayashi, T.; Takeshita, D. Possible mechanism of quadriceps femoris weakness in patients with ruptured anterior cruciate ligament. Med. Sci. Sports Exerc. 2002, 34, 1414–1418. [Google Scholar] [CrossRef] [PubMed]
- Young, A. Current issues in arthrogenous inhibition. Ann. Rheum. Dis. 1993, 52, 829–834. [Google Scholar] [CrossRef] [Green Version]
- Keays, S.L.; Bullock-Saxton, J.E.; Newcombe, P.; Keays, A.C. The relationship between knee strength and functional stability before and after anterior cruciate ligament reconstruction. J. Orthop. Res. 2003, 21, 231–237. [Google Scholar] [CrossRef]
- Felson, D.T.; Niu, J.; McClennan, C.; Sack, B.; Aliabadi, P.; Hunter, D.J.; Guermazi, A.; Englund, M. Knee buckling: Prevalence, risk factors, and associated limitations in function. Ann. Intern. Med. 2007, 16, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Mizner, R.L.; Ramsey, D.K.; Snyder-Mackler, L. Examining outcomes from total knee arthroplasty and the relationship between quadriceps strength and knee function over time. Clin. Biomech. 2008, 23, 320–328. [Google Scholar] [CrossRef] [Green Version]
- Brandt, K.D.; Dieppe, P.; Radin, E.L. Etiopathogenesis of osteoarthritis. Rheum. Dis. Clin. North Am. 2008, 34, 531–559. [Google Scholar] [CrossRef]
- Stokes, M.; Young, A. The contribution of reflex inhibition to arthrogenous muscle weakness. Clin. Sci. 1984, 67, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Kuenze, C.M.; Hertel, J.; Weltman, A.; Diduch, D.; Saliba, S.A.; Hart, J.M. Persistent neuromuscular and corticomotor quadriceps asymmetry after anterior cruciate ligament reconstruction. J. Athl. Train. 2015, 50, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Lisee, C.; Lepley, A.S.; Birchmeier, T.; O’Hagan, K.; Kuenze, C. Quadriceps Strength and Volitional Activation After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis. Sports Health 2019, 11, 163–179. [Google Scholar] [CrossRef]
- Ithurburn, M.P.; Paterno, M.V.; Ford, K.R.; Hewett, T.E.; Schmitt, L.C. Young Athletes With Quadriceps Femoris Strength Asymmetry at Return to Sport After Anterior Cruciate Ligament Reconstruction Demonstrate Asymmetric Single-Leg Drop-Landing Mechanics. Am. J. Sports Med. 2015, 43, 2727–2737. [Google Scholar] [CrossRef] [PubMed]
- Lepley, A.S.; Grooms, D.R.; Burland, J.P.; Davi, S.M.; Kinsella-Shaw, J.M.; Lepley, L.K. Quadriceps muscle function following anterior cruciate ligament reconstruction: Systemic differences in neural and morphological characteristics. Exp. Brain Res. 2019, 237, 1267–1278. [Google Scholar] [CrossRef]
- Grindem, H.; Snyder-Mackler, L.; Moksnes, H.; Engebretsen, L.; Risberg, M.A. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: The Delaware-Oslo ACL cohort study. Br. J. Sports Med. 2016, 50, 804–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pamukoff, D.N.; Montgomery, M.M.; Moffit, T.J.; Vakula, M.N. Quadriceps Function and Knee Joint Ultrasonography after ACL Reconstruction. Med. Sci. Sports Exerc. 2018, 50, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Žargi, T.G.; Drobnič, M.; Vauhnik, R.; Koder, J.; Kacin, A. Factors predicting quadriceps femoris muscle atrophy during the first 12weeks following anterior cruciate ligament reconstruction. Knee 2017, 24, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Lewek, M.; Rudolph, K.; Axe, M.; Snyder-Mackler, L. The effect of insufficient quadriceps strength on gait after anterior cruciate ligament reconstruction. Clin. Biomech. 2002, 17, 56–63. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Vivodtzev, I.; Minetto, M.A.; Place, N. A new paradigm of neuromuscular electrical stimulation for the quadriceps femoris muscle. Eur. J. Appl. Physiol. 2014, 114, 1197–1205. [Google Scholar] [CrossRef]
- Paillard, T. Combined application of neuromuscular electrical stimulation and voluntary muscular contractions. Sports Med. 2008, 38, 161–177. [Google Scholar] [CrossRef] [PubMed]
- Hauger, A.V.; Reiman, M.P.; Bjordal, J.M.; Sheets, C.; Ledbetter, L.; Goode, A.P. Neuromuscular electrical stimulation is effective in strengthening the quadriceps muscle after anterior cruciate ligament surgery. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 399–410. [Google Scholar] [CrossRef]
- Fitzgerald, G.K.; Piva, S.R.; Irrgang, J.J. A modified neuromuscular electrical stimulation protocol for quadriceps strength training following anterior cruciate ligament reconstruction. J. Orthop. Sports Phys. Ther. 2003, 33, 492–501. [Google Scholar] [CrossRef]
- Tarum, J.; Folkesson, M.; Atherton, P.J.; Kadi, F. Electrical pulse stimulation: An in vitro exercise model for the induction of human skeletal muscle cell hypertrophy. A proof-of-concept study. Exp. Physiol. 2017, 1, 1405–1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halback, J.; Straus, D. Comparison of Electro-Myo Stimulation to lsokinetic Training in Increasing -Power of the Knee Extensor Mechanism. J. Orthop. Sports Phys. Ther. 1980, 2, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Petersen, N.T.; Taylor, J.L.; Gandevia, S.C. The effect of electrical stimulation of the corticospinal tract on motor units of the human biceps brachii. J. Physiol. 2002, 1, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Wackerhage, H.; Schoenfeld, B.J.; Hamilton, D.L.; Lehti, M.; Hulmi, J.J. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J. Appl. Physiol. 2019, 1, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Saatmann, N.; Zaharia, O.P.; Loenneke, J.P.; Roden, M.; Pesta, D.H. Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes. Trends Endocrinol. Metab. 2021, 32, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Hughes, L.; Rosenblatt, B.; Haddad, F.; Gissane, C.; McCarthy, D.; Clarke, T.; Ferris, G.; Dawes, J.; Paton, B.; Patterson, S.D. Comparing the Effectiveness of Blood Flow Restriction and Traditional Heavy Load Resistance Training in the Post-Surgery Rehabilitation of Anterior Cruciate Ligament Reconstruction Patients: A UK National Health Service Randomised Controlled Trial. Sports Med. 2019, 49, 1787–1805. [Google Scholar] [CrossRef]
- Pearson, S.J.; Hussain, S.R. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 2015, 45, 187–200. [Google Scholar] [CrossRef]
- Feil, S.; Newell, J.; Minogue, C.; Paessler, H.H. The Effectiveness of Supplementing a Standard Rehabilitation Program With Superimposed Neuromuscular Electrical Stimulation After Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2011, 39, 1238–1247. [Google Scholar] [CrossRef]
- Hughes, L.; Paton, B.; Rosenblatt, B.; Gissane, C.; Patterson, S.D. Blood flow restriction training in clinical musculoskeletal rehabilitation: A systematic review and meta-analysis. Br. J. Sports Med. 2017, 51, 1003–1011. [Google Scholar] [CrossRef]
- Kim, K.M.; Croy, T.; Hertel, J.; Saliba, S. Efects of neuromuscular electrical stimulation after anterior cruciate ligament reconstruction on quadriceps strength, function, and patient-oriented outcomes: A systematic review. J. Orthop. Sports Phys. Ther. 2010, 40, 383–391. [Google Scholar] [CrossRef]
- Curran, M.T.; Bedi, A.; Mendias, C.L.; Wojtys, E.M.; Kujawa, M.V.; Palmieri-Smith, R.M. Blood flow restriction training applied with high-intensity exercise does not improve quadriceps muscle function after anterior cruciate ligament reconstruction: A randomized controlled trial. Am. J. Sports Med. 2020, 48, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Rywacka, A.; Stefanska, M.; Dziuba-Słonina, A. Assessment of the Strength Parameters of the Quadriceps Femoris Muscles in Polish University Students after a 3-Week Program of Neuromuscular Electrical Stimulation Using the RSQ1 Method. Int. J. Environ. Res. Public Health 2021, 8, 11717. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.Y.; Kim, H.S.; Lee, K.S.; Kim, Y.M. The effects of bodyweight-based exercise with blood flow restriction on isokinetic knee muscular function and thigh circumference in college students. J. Phys. Ther. Sci. 2015, 27, 2709–2712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowman, E.N.; Elshaar, R.; Milligan, H.; Jue, G.; Mohr, K.; Brown, P.; Watanabe, D.M.; Limpisvasti, O. Proximal, Distal, and Contralateral Effects of Blood Flow Restriction Training on the Lower Extremities: A Randomized Controlled Trial. Sports Health 2019, 11, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Paternostro-Sluga, T.; Fialka, C.; Alacamliogliu, Y.; Saradeth, T.; Fialka-Moser, V. Neuromuscular electrical stimulation after anterior cruciate ligament surgery. Clin. Orthop. Relat. Res. 1999, 368, 166–175. [Google Scholar] [CrossRef]
- Imoto, A.M.; Peccin, S.; Almeida, G.J.M.; Saconato, H.; Atallah, Á.N. Efectiveness of electrical stimulation on rehabilitation after ligament and meniscal injuries: A systematic review. Sao Paulo Med. J. 2011, 129, 414–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, R.W.; Preston, E.; Fleming, B.C.; Amendola, A.; Andrish, J.T.; Bergfeld, J.A.; Dunn, W.R.; Kaeding, C.; Kuhn, J.E.; Marx, R.G.; et al. A systematic review of anterior cruciate ligament reconstruction rehabilitation: Part II: Open versus closed kinetic chain exercises, neuromuscular electrical stimulation, accelerated rehabilitation, and miscellaneous topics. J. Knee Surg. 2008, 21, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Takarada, Y.; Takazawa, H.; Ishii, N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med. Sci. Sports Exerc. 2000, 32, 2035–2039. [Google Scholar] [CrossRef] [Green Version]
- Ohta, H.; Kurosawa, H.; Ikeda, H.; Iwase, Y.; Satou, N.; Nakamura, S. Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction. Acta Orthop. Scand. 2003, 74, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Kacin, A.; Drobnič, M.; Marš, T.; Miš, K.; Petrič, M.; Weber, D.; Žargi, T.T.; Martinčič, D.; Pirkmajer, S. Functional and molecular adaptations of quadriceps and hamstring muscles to blood flow restricted training in patients with ACL rupture. Scand. J. Med. Sci. Sports. 2021, 31, 1636–1646. [Google Scholar] [CrossRef]
- Ladlow, P.; Coppack, R.J.; Dharm-Datta, S.; Conway, D.; Sellon, E.; Patterson, S.D.; Bennett, A.N. Low-load resistance training with blood flow restriction improves clinical outcomes in musculoskeletal rehabilitation: A single-blind randomized controlled trial. Front. Physiol. 2018, 9, 1269. [Google Scholar] [CrossRef] [PubMed]
- Tennent, D.J.; Burns, T.C.; Johnson, A.E.; Owens, J.G.; Hylden, C.M. Blood flow restriction training for postoperative lower-extremity weakness: A report of three cases. Curr. Sports Med. Rep. 2018, 17, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Evangelidis, P.E.; Massey, G.J.; Ferguson, R.A.; Wheeler, P.C.; Pain, M.T.G.; Folland, J.P. The functional significance of hamstrings composition: Is it really a “fast” muscle group? Scand. J. Med. Sci. Sports 2017, 27, 1181–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kacin, A.; Strazar, K. Frequent low-load ischemic resistance exerecise to failure enhances muscle oxygen delivery and endurance capacity. Scand. J. Med. Sci. Sports 2011, 21, e231–e241. [Google Scholar] [CrossRef]
- Zargi, T.; Drobnic, M.; Strazar, K.; Kacin, A. Short-term preconditioning with blood flow restricted exercise preserves quadriceps muscle endurance in patients after anterior cruciate ligament reconstruction. Front. Physiol. 2018, 9, 1150. [Google Scholar] [CrossRef] [Green Version]
- Myers, H.; Christopherson, Z.; Butler, R.J. Relationship between the lower quarter Y-Balance test scores and isokinetic strength testing in patients status post acl reconstruction. Int. J. Sports Phys. Ther. 2018, 13, 152–159. [Google Scholar] [CrossRef]
- Hallagin, C.; Garrison, J.C.; Creed, K.; Bothwell, J.M.; Goto, S.; Hannon, J. The relationship between preoperative and twelve-week post-operative y-balance and quadriceps strength in athletes with an anterior cruciate ligament tear. Int. J. Sports Phys. Ther. 2017, 12, 986. [Google Scholar] [CrossRef] [Green Version]
- Butler, R.J.; Lehr, M.E.; Fink, M.L.; Kiesel, K.B.; Plisky, P.J. Dynamic balance performance and noncontact lower extremity injury in college football players: An initial study. Sports Health 2013, 5, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Clagg, S.; Paterno, M.V.; Hewett, T.E.; Schmitt, L.C. Performance on the modified star excursion balance test at the time of return to sport following anterior cruciate ligament reconstruction. J. Orthop. Sports Phys. Ther. 2015, 45, 444–452. [Google Scholar] [CrossRef] [Green Version]
- Park, W.I.; Park, H.Y. New Trend of Physical Activity and Exercise for Health Promotion and Functional Ability. Int. J. Environ. Res. Public Health 2022, 19, 7939. [Google Scholar] [CrossRef]
Variable | CON (n = 15) | NMES (n = 15) | BFR (n = 15) | p-Value |
---|---|---|---|---|
Sex (male/female) | 11/4 | 12/3 | 11/4 | - |
Age (years) | 27.53 ± 8.43 | 29.13 ± 9.07 | 29.60 ± 7.60 | 0.780 |
Height (cm) | 170.41 ± 76.83 | 173.47 ± 6.50 | 170.96 ± 7.63 | 0.495 |
Weight (kg) | 76.83 ± 17.14 | 74.51 ± 11.72 | 70.79 ± 10.95 | 0.476 |
ACL leg (right/left) | 6/9 | 8/7 | 4/11 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, D.-H.; Jung, W.-S.; Yang, S.-J.; Kim, J.-G.; Park, H.-Y.; Kim, J. Effects of Neuromuscular Electrical Stimulation and Blood Flow Restriction in Rehabilitation after Anterior Cruciate Ligament Reconstruction. Int. J. Environ. Res. Public Health 2022, 19, 15041. https://doi.org/10.3390/ijerph192215041
Kong D-H, Jung W-S, Yang S-J, Kim J-G, Park H-Y, Kim J. Effects of Neuromuscular Electrical Stimulation and Blood Flow Restriction in Rehabilitation after Anterior Cruciate Ligament Reconstruction. International Journal of Environmental Research and Public Health. 2022; 19(22):15041. https://doi.org/10.3390/ijerph192215041
Chicago/Turabian StyleKong, Doo-Hwan, Won-Sang Jung, Sang-Jin Yang, Jin-Goo Kim, Hun-Young Park, and Jisu Kim. 2022. "Effects of Neuromuscular Electrical Stimulation and Blood Flow Restriction in Rehabilitation after Anterior Cruciate Ligament Reconstruction" International Journal of Environmental Research and Public Health 19, no. 22: 15041. https://doi.org/10.3390/ijerph192215041
APA StyleKong, D. -H., Jung, W. -S., Yang, S. -J., Kim, J. -G., Park, H. -Y., & Kim, J. (2022). Effects of Neuromuscular Electrical Stimulation and Blood Flow Restriction in Rehabilitation after Anterior Cruciate Ligament Reconstruction. International Journal of Environmental Research and Public Health, 19(22), 15041. https://doi.org/10.3390/ijerph192215041