Shift-Work Schedule Intervention for Extending Restart Breaks after Consecutive Night Shifts: A Non-randomized Controlled Cross-Over Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Intervention
2.4. Measurements
2.4.1. Measurement I: Subjective Variables
- Sleep log
- Self-reported outcomes
- Vital exhaustion
- Psychological detachment from work
- Psychological distress
- Vigor
- Shift schedule evaluation
2.4.2. Measurement II: Objective Variables
- Objectively recorded working-hours data
- Sleep mattress
- Psychomotor vigilance task
- Stress level
2.5. Data Analyses
3. Results
3.1. Characteristics of the Intervention Shift Schedule
3.2. Intervention Effects on Self-Reported Outcomes
3.3. The Intervention’s Effects on Salivary CRP and Hair Cortisol
3.4. The Intervention’s Effects on Objectively Measured Fatigue and Sleep during the Two-Week Observation
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Åkerstedt, T. Shift work and disturbed sleep/wakefulness. Sleep Med. Rev. 1998, 2, 117–128. [Google Scholar] [CrossRef]
- Davis, S.; Mirick, D.K.; Stevens, R.G. Night shift work, light at night, and risk of breast cancer. J. Natl. Cancer I. 2001, 93, 1557–1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kogi, K. International research needs for improving sleep and health of workers. Ind. Health 2005, 43, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marquié, J.C.; Tucker, P.; Folkard, S.; Gentil, C.; Ansiau, D. Chronic effects of shift work on cognition: Findings from the VISAT longitudinal study. Occup. Environ. Med. 2015, 72, 258–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Härmä, M.; Koskinen, A.; Sallinen, M.; Kubo, T.; Ropponen, A.; Lombardi, D.A. Characteristics of working hours and the risk of occupational injuries among hospital employees: A case-crossover study. Scand. J. Work Environ. Health 2020, 6, 570–578. [Google Scholar] [CrossRef]
- Härmä, M. Workhours in relation to work stress, recovery and health. Scand. J. Work Environ. Health 2006, 32, 502–514. [Google Scholar] [CrossRef]
- Van Dongen, H.P.; Belenky, G.; Vila, B.J. The efficacy of a restart break for recycling with optimal performance depends critically on circadian timing. Sleep 2011, 34, 917–929. [Google Scholar] [CrossRef]
- Sparrow, A.R.; Mollicone, D.J.; Kan, K.; Bartels, R.; Satterfield, B.C.; Riedy, S.M.; Unice, A.; Van Dongen, H.P.A. Naturalistic field study of the restart break in US commercial motor vehicle drivers: Truck driving, sleep, and fatigue. Accid. Anal. Prev. 2016, 93, 55–64. [Google Scholar] [CrossRef]
- Knauth, P.; Rutenfranz, J. Development of criteria for the design of shiftwork systems. J. Hum. Ergol. 1982, 11, 337–367. [Google Scholar]
- Vedaa, O.; Harris, A.; Bjorvatn, B.; Waage, S.; Sivertsen, B.; Tucker, P.; Pallesen, S. Systematic review of the relationship between quick returns in rotating shift work and health-related outcomes. Ergonomics 2016, 59, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Garde, A.H.; Begtrup, L.; Bjorvatn, B.; Bonde, J.P.; Hansen, J.; Hansen, Å.M.; Härmä, M.; Jensen, M.A.; Kecklund, G.; Kolstad, H.A.; et al. How to schedule night shift work in order to reduce health and safety risks. Scand. J. Work Environ. Health 2020, 46, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Belenky, G.; Wesensten, N.J.; Thorne, D.R.; Thomas, M.L.; Sing, H.C.; Redmond, D.P.; Russo, M.B.; Balkin, T.J. Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: A sleep dose-response study. J. Sleep Res. 2003, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Van Dongen, H.P.; Maislin, G.; Mullington, J.M.; Dinges, D.F. The cumulative cost of additional wakefulness: Dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 2003, 26, 117–126. [Google Scholar] [CrossRef]
- Itani, O.; Jike, M.; Watanabe, N.; Kaneita, Y. Short sleep duration and health outcomes: A systematic review, meta-analysis, and meta-regression. Sleep Med. 2017, 32, 246–256. [Google Scholar] [CrossRef]
- Åkerstedt, T.; Trolle-Lagerros, Y.; Widman, L.; Ye, W.; Adami, H.O.; Bellocco, R. Sleep duration and mortality, influence of age, retirement, and occupational group. J. Sleep Res. 2022, 31, e13512. [Google Scholar] [CrossRef]
- Kripke, D.F.; Langer, R.D.; Elliott, J.A.; Klauber, M.R.; Rex, K.M. Mortality related to actigraphic long and short sleep. Sleep Med. 2011, 12, 28–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubo, T.; Matsumoto, S.; Sasaki, T.; Ikeda, H.; Izawa, S.; Takahashi, M.; Koda, S.; Sasaki, T.; Sakai, K. Shorter sleep duration is associated with potential risks for overwork-related death among Japanese truck drivers: Use of the Karoshi prodromes from worker’s compensation cases. Int. Arch. Occup. Environ. Health 2021, 94, 991–1001. [Google Scholar] [CrossRef]
- Cappuccio, F.P.; D’Elia, L.; Strazzullo, P.; Miller, M.A. Sleep duration and all-cause mortality: A systematic review and meta-analysis of prospective studies. Sleep 2010, 33, 585–592. [Google Scholar] [CrossRef]
- Folkard, S.; Tucker, P. Shift work, safety and productivity. Occup. Med. 2003, 53, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Ferri, P.; Guadi, M.; Marcheselli, L.; Balduzzi, S.; Magnani, D.; Di Lorenzo, R. The impact of shift work on the psychological and physical health of nurses in a general hospital: A comparison between rotating night shifts and day shifts. Risk Manag. Healthc. Policy 2016, 9, 203. [Google Scholar] [CrossRef] [Green Version]
- Vedaa, O.; Morland, E.; Larsen, M.; Harris, A.; Erevik, E.; Sivertsen, B.; Bjorvatn, B.; Waage, S.; Pallesen, S. Sleep Detriments Associated With Quick Returns in Rotating Shift Work: A Diary Study. J. Occup. Environ. Med. 2017, 59, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Kurumatani, N.; Koda, S.; Nakagiri, S.; Hisashige, A.; Sakai, K.; Saito, Y.; Aoyama, H.; Dejima, M.; Moriyama, T. The effects of frequently rotating shiftwork on sleep and the family life of hospital nurses. Ergonomics 1994, 37, 995–1007. [Google Scholar] [CrossRef] [PubMed]
- Boivin, D.B.; Boudreau, P. Impacts of shift work on sleep and circadian rhythms. Pathol. Biol. 2014, 62, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, H.; Takahashi, M.; Airto, H. Nurses’ workload associated with 16-h night shifts on the 2-shift system. I: Comparison with the 3-shift system. Psychiatry Clin. Neurosci. 1999, 53, 219–221. [Google Scholar] [CrossRef]
- Czeisler, C.A.; Moore-Ede, M.C.; Coleman, R.H. Rotating shift work schedules that disrupt sleep are improved by applying circadian principles. Science 1982, 217, 460–463. [Google Scholar] [CrossRef]
- Di Muzio, M.; Diella, G.; Di Simone, E.; Pazzaglia, M.; Alfonsi, V.; Novelli, L.; Cianciulli, A.; Scarpelli, S.; Gorgoni, M.; Giannini, A.; et al. Comparison of Sleep and Attention Metrics Among Nurses Working Shifts on a Forward- vs Backward-Rotating Schedule. JAMA Netw. Open 2021, 4, e2129906. [Google Scholar] [CrossRef]
- van Amelsvoort, L.G.; Jansen, N.W.; Swaen, G.M.; van den Brandt, P.A.; Kant, I. Direction of shift rotation among three-shift workers in relation to psychological health and work-family conflict. Scand. J. Work Environ. Health 2004, 2, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Japan Federation of Medical Worker’s Unions Night Shift Survey Report. Available online: http://irouren.or.jp/news/6d6106ab03410c6d78f0387f294e8f87a4fd219f.pdf (accessed on 30 September 2022).
- Härmä, M.; Tarja, H.; Irja, K.; Mikael, S.; Jussi, V.; Anne, B.; Pertti, M. A controlled intervention study on the effects of a very rapidly forward rotating shift system on sleep-wakefulness and well-being among young and elderly shift workers. Int. J. Psychophysiol 2006, 59, 70–79. [Google Scholar] [CrossRef]
- Viitasalo, K.; Kuosma, E.; Laitinen, J.; Härmä, M. Effects of shift rotation and the flexibility of a shift system on daytime alertness and cardiovascular risk factors. Scand. J. Work Environ. Health 2008, 34, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Puttonen, S.; Karhula, K.; Ropponen, A.; Hakola, T.; Sallinen, M.; Härmä, M. Sleep, sleepiness and need for recovery of industrial employees after a change from an 8- to a 12-hour shift system. Ind. Health 2022, 60, 146–153. [Google Scholar] [CrossRef]
- Smith, L.; Folkard, S.; Tucker, P.; Macdonald, I. Work shift duration: A review comparing eight hour and 12 hour shift systems. Occup. Environ. Med. 1998, 55, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Sadeghniiat-Haghighi, K.; Yazdi, Z. Fatigue management in the workplace. Ind. Psychiatry J. 2015, 24, 12–17. [Google Scholar] [PubMed]
- Wong, I.S.; Popkin, S.; Folkard, S. Working Time Society consensus statements: A multi-level approach to managing occupational sleep-related fatigue. Ind. Health 2019, 57, 228–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farag, A.; Scott, L.D.; Perkhounkova, Y.; Saeidzadeh, S.; Hein, M. A human factors approach to evaluate predicators of acute care nurse occupational fatigue. Appl. Ergon. 2022, 100, 103647. [Google Scholar] [CrossRef]
- Appels, A.; Höppener, P.; Mulder, P. A questionnaire to assess premonitory symptoms of myocardial infarction. Int. J. Cardiol. 1987, 17, 15–24. [Google Scholar] [CrossRef]
- Shimazu, A.; Sonnentag, S.; Kubota, K.; Kawakami, N. Validation of the Japanese version of the recovery experience questionnaire. J. Occup. Health 2012, 54, 196–205. [Google Scholar] [CrossRef]
- Kessler, R.C.; Andrews, G.; Colpe, L.J.; Hiripi, E.; Mroczek, D.K.; Normand, S.-L.; Walters, E.E.; Zaslavsky, A.M. Short screening scales to monitor population prevalences and trends in non-specific psychological distress. Psychol. Med. 2002, 32, 959–976. [Google Scholar] [CrossRef]
- Shimazu, A.; Schaufeli, W.; Kosugi, S.; Suzuki, A.; Nashiwa, H.; Kato, A.; Sakamoto, M.; Irimajiri, H.; Amano, S.; Hirohata, K. Work engagement in Japan: Validation of the Japanese version of the Utrecht Work Engagement Scale. Appl. Psychol. 2008, 57, 510–523. [Google Scholar] [CrossRef]
- Meesters, C.; Appels, A. An interview to measure vital exhaustion. I. Development and comparison with the Maastricht Questionnaire. Psychol. Health 1996, 11, 557–571. [Google Scholar] [CrossRef]
- Watanabe, M.; Akamatsu, Y.; Furui, H.; Watanabe, T.; Isram, M.M.; Kobayashi, F. The analysis between vital exhaustion and the co-related factor. In Proceedings of the 71th Annual Mmeeting of Japan Occupational Health Society, Morioka, Japan, April 1998; p. 683. (In Japanese). [Google Scholar]
- Sonnentag, S. Psychological detachment from work during leisure time: The benefits of mentally disengaging from work. Current Directions in Psychological Science. Curr. Dir. Psychol. Sci. 2012, 21, 114–118. [Google Scholar] [CrossRef]
- Schaufeli, W.B.; Salanova, M.; González-Romá, V.; Bakker, A.B. The measurement of engagement and burnout: A two sample confirmatory factor analytic approach. J. Happiness Stud. 2002, 3, 71–92. [Google Scholar] [CrossRef]
- Kogure, T.; Shirakawa, S.; Shimokawa, M.; Hosokawa, Y. Automatic sleep/wake scoring from body motion in bed: Validation of a newly developed sensor placed under a mattress. J. Physiol. Anthropol. 2011, 30, 103–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugaya, N.; Izawa, S.; Ogawa, N.; Shirotsuki, K.; Nomura, S. Association between hair cortisol and diurnal basal cortisol levels: A 30-day validation study. Psychoneuroendocrinology 2020, 116, 104650. [Google Scholar] [CrossRef] [PubMed]
- Cori, J.M.; Downey, L.A.; Sletten, T.L.; Beatty, C.J.; Shiferaw, B.A.; Soleimanloo, S.S.; Turner, S.; Naqvi, A.; Barnes, M.; Kuo, J.; et al. The impact of 7-hour and 11-hour rest breaks between shifts on heavy vehicle truck drivers’ sleep, alertness and naturalistic driving performance. Accid. Anal. Prev. 2021, 159, 106224. [Google Scholar] [CrossRef]
- Rupp, T.L.; Wesensten, N.J.; Bliese, P.D.; Balkin, T.J. Banking sleep: Realization of benefits during subsequent sleep restriction and recovery. Sleep 2009, 32, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Patterson, P.D.; Ghen, J.D.; Antoon, S.F.; Martin-Gill, C.; Guyette, F.X.; Weiss, P.M.; Turner, R.L.; Buysse, D.J. Does evidence support “banking/extending sleep” by shift workers to mitigate fatigue, and/or to improve health, safety, or performance? A systematic review. Sleep Health 2019, 5, 359–369. [Google Scholar] [CrossRef]
- Mélan, C.; Cascino, N. Effects of a modified shift work organization and traffic load on air traffic controllers’ sleep and alertness during work and non-work activities. Appl. Ergon. 2022, 98, 103596. [Google Scholar] [CrossRef]
- Lavie, P.; Tzischinsky, O.; Epstein, R.; Zomer, J. Sleep-wake cycle in shift workers on a “clockwise” and “counter-clockwise” rotation system. Isr. J. Med. Sci. 1992, 28, 636–644. [Google Scholar]
- Orth-Gomér, K. Intervention on coronary risk factors by adapting a shift work schedule to biologic rhythmicity. Psychosom Med. 1983, 45, 407–415. [Google Scholar] [CrossRef]
- Stevens, R.G.; Brainard, G.C.; Blask, D.E.; Lockley, S.W.; Motta, M.E. Breast cancer and circadian disruption from electric lighting in the modern world. CA Cancer J. Clin. 2014, 64, 207–218. [Google Scholar] [CrossRef]
- Sharma, A.; Laurenti, M.C.; Dalla Man, C.; Varghese, R.T.; Cobelli, C.; Rizza, R.A.; Matveyenko, A.; Vella, A. Glucose metabolism during rotational shift-work in healthcare workers. Diabetologia 2017, 60, 1483–1490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neil-Sztramko, S.E.; Pahwa, M.; Demers, P.A.; Gotay, C.C. Health-related interventions among night shift workers: A critical review of the literature. Scand. J. Work Environ. Health 2014, 40, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Åkerstedt, T.; Gillberg, M. Subjective and Objective Sleepiness in the Active Individual. Int. J. Neurosci. 1990, 52, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Krupp, L.B.; LaRocca, N.G.; Muir-Nash, J.; Steinberg, A.D. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch. Neurol. 1989, 46, 1121–1123. [Google Scholar] [CrossRef] [PubMed]
- Barton, J.; Spelten, E.; Totterdell, P.; Smith, L.; Folkard, S.; Costa, G. The Standard Shiftwork Index: A battery of questionnaires for assessing shiftwork-related problems. Work Stress 1995, 9, 4–30. [Google Scholar] [CrossRef]
Control | Intervention | Multilevel Analysis | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Marginal Mean | SEM | Marginal Mean | SEM | Condition | Time | Interaction | |||||
F | p | F | p | F | p | ||||||
Payroll data (N = 30) | |||||||||||
Working hours | T1 | 9.7 | 0.2 | 9.9 | 0.2 | 1.297 | 0.258 | 14.736 | <0.001 | 0.747 | 0.390 |
(including overtime) | T2 | 10.1 | 0.2 | 10.2 | 0.2 | ||||||
Monthly total working hours | T1 | 163.5 | 4.7 | 161.8 | 4.7 | <0.001 | 0.997 | 13.289 | <0.001 | 0.252 | 0.617 |
(including overtime) | T2 | 174.2 | 4.7 | 175.9 | 4.6 | ||||||
Quick returns (times; | T1 | 0.5 | 0.3 | 0.2 | 0.3 | 0.775 | 0.381 | 2.008 | 0.160 | 0.531 | 0.468 |
<11 h shift interval) | T2 | 0.6 | 0.3 | 0.6 | 0.2 | ||||||
Sleep log (N = 30) | |||||||||||
Monthly total sleep hours (hours) | T1 | 204.7 | 9.3 | 206.3 | 9.2 | 0.731 | 0.395 | 8.808 | 0.004 | 1.604 | 0.209 |
T2 | 197.8 | 9.2 | 189.1 | 9.1 |
From N to E | NE (Control) | NOE (Intervention) | t Test | |||
---|---|---|---|---|---|---|
Mean | SEM | Mean | SEM | t | p | |
Payroll data (N = 27) | ||||||
Shift interval length (hours) | 29.1 | 0.7 | 53.1 | 0.9 | −156.179 | <0.001 |
Sleep log (N = 25) | ||||||
Total sleep hours (hours) a | 13.7 | 2.2 | 21.8 | 2.9 | −14.261 | <0.001 |
Mean Sleep duration (hours) b | 7.0 | 1.9 | 7.4 | 2.2 | −1.079 | 0.291 |
Number of sleep opportunities (times) c | 2.1 | 0.5 | 3.2 | 0.7 | −8.406 | <0.001 |
Shift Schedule Evaluation (N = 28) | Control | Intervention | t Test | |||
---|---|---|---|---|---|---|
(1 = low, 4 = high) | Mean | SEM | Mean | SEM | t | p |
Fatigue | 3.4 | 0.6 | 2.2 | 0.4 | 10.2 | <0.001 |
Stress | 3.2 | 0.6 | 2.2 | 0.7 | 5.9 | <0.001 |
Sleepiness | 3.2 | 0.8 | 2.2 | 0.7 | 4.9 | <0.001 |
Quality of sleep | 2.0 | 0.7 | 2.9 | 0.6 | −6.4 | <0.001 |
Quality of care | 2.3 | 0.5 | 2.3 | 0.7 | 0.0 | 1.000 |
Day-off satisfaction | 2.0 | 0.7 | 3.4 | 0.6 | −7.9 | <0.001 |
Work satisfaction | 2.3 | 0.5 | 2.8 | 0.5 | −4.5 | <0.001 |
Shift Type | Control | Intervention | Condition | Shift Type | Interaction | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Marginal Mean | SEM | Marginal Mean | SEM | F | p | F | p | F | p | ||
PVT (N = 29) | |||||||||||
Δ Mean RRT | Day shift | −0.33 | 0.09 | −0.38 | 0.09 | 3.284 | 0.073 | 1.113 | 0.332 | 1.670 | 0.193 |
Evening shift | −0.26 | 0.09 | −0.29 | 0.09 | |||||||
Night shift | −0.24 | 0.10 | −0.52 | 0.10 | |||||||
Δ Lapse | Day shift | 0.84 | 0.32 | 0.83 | 0.33 | 1.415 | 0.237 | 2.254 | 0.110 | 1.207 | 0.303 |
(SQRT) | Evening shift | 0.89 | 0.33 | 1.00 | 0.36 | ||||||
Night shift | 1.01 | 0.37 | 1.82 | 0.37 | |||||||
Sleep mattress (N = 29) | |||||||||||
Δ TST (hr) | Day shift | −0.05 | 0.51 | 0.12 | 0.51 | 0.109 | 0.742 | 1.095 | 0.352 | .221 | 0.882 |
Evening shift | −0.27 | 0.57 | −0.55 | 0.55 | |||||||
Night shift | −0.83 | 0.56 | −0.28 | 0.60 | |||||||
Day off | 0.18 | 0.50 | 0.25 | 0.52 | |||||||
Δ SL (min) | Day shift | 0.66 | 2.66 | 5.13 | 2.65 | 0.239 | 0.625 | 1.908 | 0.131 | .612 | 0.608 |
Evening shift | 1.87 | 2.95 | 1.52 | 2.84 | |||||||
Night shift | −0.55 | 2.90 | 0.45 | 3.08 | |||||||
Day off | −1.62 | 2.62 | −2.99 | 2.69 | |||||||
Δ SE (%) | Day shift | −1.24 | 1.30 | −1.36 | 1.30 | 0.690 | 0.408 | 1.072 | 0.363 | 0.163 | 0.921 |
Evening shift | −2.92 | 1.46 | −1.64 | 1.40 | |||||||
Night shift | −1.48 | 1.43 | −0.03 | 1.53 | |||||||
Day off | −0.41 | 1.29 | 0.20 | 1.32 | |||||||
ΔWASO (min) | Day shift | −2.04 | 7.80 | 0.50 | 7.80 | 0.510 | 0.476 | 1.270 | 0.287 | 0.810 | 0.490 |
Evening shift | 8.42 | 8.61 | 0.64 | 8.29 | |||||||
Night shift | 3.65 | 8.48 | 18.20 | 8.96 | |||||||
Day off | −4.27 | 7.72 | 1.92 | 7.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubo, T.; Matsumoto, S.; Izawa, S.; Ikeda, H.; Nishimura, Y.; Kawakami, S.; Tamaki, M.; Masuda, S. Shift-Work Schedule Intervention for Extending Restart Breaks after Consecutive Night Shifts: A Non-randomized Controlled Cross-Over Study. Int. J. Environ. Res. Public Health 2022, 19, 15042. https://doi.org/10.3390/ijerph192215042
Kubo T, Matsumoto S, Izawa S, Ikeda H, Nishimura Y, Kawakami S, Tamaki M, Masuda S. Shift-Work Schedule Intervention for Extending Restart Breaks after Consecutive Night Shifts: A Non-randomized Controlled Cross-Over Study. International Journal of Environmental Research and Public Health. 2022; 19(22):15042. https://doi.org/10.3390/ijerph192215042
Chicago/Turabian StyleKubo, Tomohide, Shun Matsumoto, Shuhei Izawa, Hiroki Ikeda, Yuki Nishimura, Sayaka Kawakami, Masako Tamaki, and Sanae Masuda. 2022. "Shift-Work Schedule Intervention for Extending Restart Breaks after Consecutive Night Shifts: A Non-randomized Controlled Cross-Over Study" International Journal of Environmental Research and Public Health 19, no. 22: 15042. https://doi.org/10.3390/ijerph192215042
APA StyleKubo, T., Matsumoto, S., Izawa, S., Ikeda, H., Nishimura, Y., Kawakami, S., Tamaki, M., & Masuda, S. (2022). Shift-Work Schedule Intervention for Extending Restart Breaks after Consecutive Night Shifts: A Non-randomized Controlled Cross-Over Study. International Journal of Environmental Research and Public Health, 19(22), 15042. https://doi.org/10.3390/ijerph192215042