Birth Weight < 3rd Percentile Prediction Using Additional Biochemical Markers—The Uric Acid Level and Angiogenesis Markers (sFlt-1, PlGF)—An Exploratory Study
Abstract
:1. Introduction
2. Materials and Methods
- Gestational hypertension, i.e., hypertension diagnosed beyond 20 weeks of gestation (wkGA), with values exceeding 140/90.
- Preeclampsia, i.e., hypertension with proteinuria or renal or hepatic impairment, and hematological disorders, as well as the clinical signs of uteroplacental dysfunction in the form of intrauterine death or FGR.
- HELLP syndrome, i.e., the occurrence of such signs as hemolysis, increased aminotransferase levels, and thrombocytopenia.
- Eclampsia, i.e., the occurrence of tonic-clonic seizures, is secondary to preeclampsia or not.
- FGR according to specific ultrasound criteria [10] after ruling out genetic causes (some patients had diagnostic amniocentesis performed, while others were evaluated after delivery).
- Placental abruption was diagnosed on the basis of clinical signs, bleeding, and uterine tetanus, and a final diagnosis was made postpartum.
- The Shapiro–Wilk test was used to study data normality. Non-normal distributions of the evaluated parameters were observed.
- Due to the non-normal distributions, non-parametric tests were applied. The Mann–Whitney U test was used to identify the correlations between the parameters analyzed.
- The correlations between the compounds studied and the individual clinical, biochemical, and ultrasound parameters and the perinatal outcomes were compared using a Pearson correlation test and a significance test for regression coefficients.
3. Results
4. Discussion
5. Conclusions
- There is a significant link between the uric acid concentration and low birth weight in the group of patients suffering from placental insufficiency.
- Uric acid is one of those markers that can improve the prediction of low birth weight.
- The application of an algorithm for low birth weight prognosis that makes use of biophysical (ultrasound) and biochemical (uric acid level, angiogenesis markers) parameters yields better results than using these parameters separately from each other.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sema, A.; Tesfaye, F.; Belay, Y.; Amsalu, B.; Bekele, D.; Desalew, A. Associated Factors with Low Birth Weight in Dire Dawa City, Eastern Ethiopia: A Cross-Sectional Study. Biomed. Res. Int. 2019, 2019, 2965094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nardozza, L.M.M.; Caetano, A.C.R.; Zamarian, A.C.P.; Mazzola, J.B.; Silva, C.P.; Marçal, V.M.G.; Lobo, T.F.; Peixoto, A.B.; Araujo Júnior, E. Fetal growth restriction: Current knowledge. ArchGynecol. Obstet. 2017, 295, 1061–1077. [Google Scholar] [CrossRef] [PubMed]
- McCowan, L.M.; Figueras, F.; Anderson, N.H. Evidence-based national guidelines for the management of suspected fetal growth restriction: Comparison, consensus, and controversy. Am. J. Obstet. Gynecol. 2018, 218, S855–S868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lees, C.; Visser, G.H.A.; Hecher, K.; Gandhi, R.; Marlow, N. Fetal Growth Restriction and Neonatal Outcomes. In Placental-Fetal Growth Restriction; Cambridge University Press: Cambridge, UK, 2018; pp. 237–245. [Google Scholar]
- Bon, C.; Raudrant, D.; Poloce, F.; Champion, F.; Golfier, F.; Pichot, J.; Revol, A. Étude biochimique du sang fœtal prélevé par cordocentèse au cours de 35 grossesses compliquées de retard de croissance. Pathol. Biol. 2007, 55, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Tröger, B.; Müller, T.; Faust, K.; Bendiks, M.; Bohlmann, M.K.; Thonnissen, S.; Herting, E.; Göpel, W.; Härtel, C. Intrauterine growth restriction and the innate immune system in preterm infants of ≤32 weeks gestation. Neonatology 2013, 103, 199–204. [Google Scholar] [CrossRef]
- Colella, M.; Frérot, A.; Novais, A.R.B.; Baud, O. Neonatal and Long-Term Consequences of Fetal Growth Restriction. Curr. Pediatr. Rev. 2018, 14, 212–218. [Google Scholar] [CrossRef]
- Longo, S.; Bollani, L.; Decembrino, L.; Di Comite, A.; Angelini, M.; Stronati, M. Short-term and long-term sequelae in intrauterine growth retardation (IUGR). J. Matern. Neonatal. Med. 2013, 26, 222–225. [Google Scholar] [CrossRef]
- Salomon, L.J.; Alfirevic, Z.; Da Silva Costa, F.; Deter, R.L.; Figueras, F.; Ghi, T.; Glanc, P.; Khalil, A.; Lee, W.; Napolitano, R.; et al. ISUOG Practice Guidelines: Ultrasound assessment of fetal biometry and growth. Ultrasound. Obstet. Gynecol. 2019, 53, 715–723. [Google Scholar] [CrossRef] [Green Version]
- Gordijn, S.J.; Beune, I.M.; Thilaganathan, B.; Papageorghiou, A.; Baschat, A.A.; Baker, P.N.; Silver, R.M.; Wynia, K.; Ganzevoort, W. Consensus definition of fetal growth restriction: A Delphi procedure. Ultrasound. Obstet. Gynecol. 2016, 48, 333–339. [Google Scholar] [CrossRef]
- Beune, I.M.; Bloomfield, F.H.; Ganzevoort, W.; Embleton, N.D.; Rozance, P.J.; van Wassenaer-Leemhuis, A.G.; Wynia, K.; Gordijn, S.J. Consensus Based Definition of Growth Restriction in the Newborn. J. Pediatr. 2018, 196, 71–76.e1. [Google Scholar] [CrossRef]
- National Collaborating Centre for Women’s and Children’s Health (UK). Hypertension in Pregnancy: The Management of Hypertensive Disorders During Pregnancy; RCOG Press: London, UK, 2010. [Google Scholar]
- Bednarek-Jędrzejek, M.; Kwiatkowski, S.; Ksel-Hryciów, J.; Tousty, P.; Nurek, K.; Kwiatkowska, E.; Cymbaluk-Płoska, A.; Torbé, A. The sFlt-1/PlGF ratio values within the <38, 38–85 and >85 brackets as compared to perinatal outcomes. J. Perinat. Med. 2019, 47, 732–740. [Google Scholar] [PubMed]
- Kwiatkowski, S.; Bednarek-Jędrzejek, M.; Ksel, J.; Tousty, P.; Kwiatkowska, E.; Cymbaluk, A.; Rzepka, R.; Chudecka-Głaz, A.; Dołęgowska, B.; Torbè, A. sFlt-1/PlGF and Doppler ultrasound parameters in SGA pregnancies with confirmed neonatal birth weight below 10th percentile. Pregnancy Hypertens 2018, 14, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Anderson, N.; De Laat, M.; Benton, S.; von Dadelszen, P.; McCowan, L. Placental growth factor as an indicator of fetal growth restriction in late-onset small-for-gestational age pregnancies. Aust. N. Z. J. Obstet. Gynaecol. 2019, 59, 89–95. [Google Scholar] [CrossRef]
- 1Akahori, Y.; Masuyama, H.; Hiramatsu, Y. The Correlation of Maternal Uric Acid Concentration with Small-for-Gestational-Age Fetuses in Normotensive Pregnant Women. Gynecol. Obstet. Investig. 2012, 73, 162–167. [Google Scholar] [CrossRef]
- Zhou, G.; Holzman, C.; Luo, Z.; Margerison, C. Maternal serum uric acid levels in pregnancy and fetal growth. J. Matern. Neonatal. Med. 2020, 33, 24–32. [Google Scholar] [CrossRef]
- Fenton, T.R.; Kim, J.H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013, 13, 59. [Google Scholar] [CrossRef] [Green Version]
- Carreras, L.O.; Vermylen, J.; Spitz, B.; Van Assche, A. “Lupus” Anticoagulant And Inhibition of Prostacyclin Formation in Patients with Repeated Abortion, Intrauterine Growth Retardation and Intrauterine Death. BJOG Int. J. Obstet. Gynaecol. 1981, 88, 890–894. [Google Scholar] [CrossRef]
- Little, R.E.; Streissguth, A.P.; Barr, H.M.; Herman, C.S. Decreased birth weight in infants of alcoholic women who abstained during pregnancy. J. Pediatr. 1980, 96, 974–977. [Google Scholar] [CrossRef]
- Haworth, J.C.; Ellestad-Sayed, J.J.; King, J.; Dilling, L.A. Fetal growth retardation in cigarette-smoking mothers is not due to decreased maternal food intake. Am. J. Obstet. Gynecol. 1980, 137, 719–723. [Google Scholar] [CrossRef]
- Whetham, J.C.G.; Muggah, H.; Davidson, S. Assessment of intrauterine growth retardation by diagnostic ultrasound. Am. J. Obstet. Gynecol. 1976, 125, 577–580. [Google Scholar] [CrossRef]
- Kunz, J.; Keller, P.J. Ultrasound and biochemical findings in intrauterine growth retardation. J. Perinat. Med. 1976, 4, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, K.; Grant, J.M.; Tweedie, I.; Aitchison, T.; Gallagher, F. Measurement of fundal height as a screening test for fetal growth retardation. BJOG Int. J. Obstet. Gynaecol. 1982, 89, 447–450. [Google Scholar] [CrossRef] [PubMed]
- Gohari, P.; Berkowitz, R.L.; Hobbins, J.C. Prediction of intrauterine growth retardation by determination of total intrauterine volume. Am. J. Obstet. Gynecol. 1977, 127, 255–260. [Google Scholar] [CrossRef]
- Scott, J.M.; Jordan, J.M. Placental insufficiency and the small-for-dates baby. Am. J. Obstet. Gynecol. 1972, 113, 823–832. [Google Scholar] [CrossRef]
- Wolfrum, R.; Bordasch, C.H.; Holweg, J. An endocrine model for the diagnosis of intrauterine growth retardation as demonstrated by the determination of total estrogen and pregnandiol 24-h urinary excretion in 222 at risk pregnancies. J. Perinat. Med. 1975, 3, 248–259. [Google Scholar] [CrossRef] [Green Version]
- Briese, V.; Straube, W. Detection of pregnancy-specific beta 1-glycoproteins (SP1) and pregnancy-associated plasma protein A (PAPP-A) in maternal serum. Diagnostic significance in intrauterine fetal retardation. Zentralbl. Gynakol. 1984, 106, 517–523. [Google Scholar]
- Westergaard, J.G.; Teisner, B.; Hau, J.; Grudzinskas, J.G. Placental protein measurements in complicated pregnancies. I. Intrauterine growth retardation. BJOG Int. J. Obstet. Gynaecol. 1984, 91, 1216–1223. [Google Scholar] [CrossRef]
- Dukhovny, S.; Zera, C.; Little, S.E.; McElrath, T.; Wilkins-Haug, L. Eliminating first trimester markers: Will replacing PAPP-A and βhCG miss women at risk for small for gestational age? J. Matern. Neonatal. Med. 2014, 27, 1761–1764. [Google Scholar] [CrossRef]
- Spencer, K.; Cowans, N.J.; Avgidou, K.; Molina, F.; Nicolaides, K.H. First-trimester biochemical markers of aneuploidy and the prediction of small-for-gestational age fetuses. Ultrasound. Obstet. Gynecol. 2008, 31, 15–19. [Google Scholar] [CrossRef]
- Kwik, M.; Morris, J. Association between first trimester maternal serum pregnancy associated plasma protein-A and adverse pregnancy outcome. Aust. N. Z. J. Obstet. Gynaecol. 2003, 43, 438–442. [Google Scholar] [CrossRef]
- Pedroso, M.A.; Palmer, K.R.; Hodges, R.J.; Costa, F.d.S.; Rolnik, D.L. Uterine artery doppler in screening for preeclampsia and fetal growth restriction. Rev. Bras. Ginecol. Obstet. 2018, 40, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Visan, V.; Scripcariu, I.S.; Socolov, D.; Costescu, A.; Rusu, D.; Socolov, R.; Avasiloaiei, A.; Boiculese, L.; Dimitriu, C. Better prediction for FGR (fetal growth restriction) with the sFlt-1/PIGF ratio: A case-control study. Medicine 2019, 98, e16069. [Google Scholar] [CrossRef]
- Sovio, U.; Goulding, N.; McBride, N.; Cook, E.; Gaccioli, F.; Charnock-Jones, D.S.; Lawlor, D.A.; Smith, G. A maternal serum metabolite ratio predicts fetal growth restriction at term. Nat. Med. 2020, 26, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Gaccioli, F.; Sovio, U.; Cook, E.; Hund, M.; Charnock-Jones, D.S.; Smith, G.C.S. Screening for fetal growth restriction using ultrasound and the sFLT1/PlGF ratio in nulliparous women: A prospective cohort study. Lancet Child Adolesc. Health 2018, 2, 569–581. [Google Scholar] [CrossRef]
- Lind, T.; Godfrey, K.A.; Otun, H.; Philips, P.R. Changes in serum uric acid concentrations during normal pregnancy. BJOG Int. J. Obstet. Gynaecol. 1984, 91, 128–132. [Google Scholar] [CrossRef]
- Gao, Y.; Jia, J.; Liu, X.; Guo, S.; Ming, L. Trimester-Specific Reference Intervals of Serum Urea, Creatinine, and Uric Acid Among Healthy Pregnant Women in Zhengzhou, China. Lab. Med. 2020, 52, 267–272. [Google Scholar] [CrossRef]
- Ryu, A.; Cho, N.J.; Kim, Y.S.; Lee, E.Y. Predictive value of serum uric acid levels for adverse perinatal outcomes in preeclampsia. Medicine 2019, 98, e15462. [Google Scholar] [CrossRef]
- Nair, A.; Savitha, C. Estimation of Serum Uric Acid as an Indicator of Severity of Preeclampsia and Perinatal Outcome. J. Obstet. Gynecol. India 2017, 67, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Singh, A.K.; Maini, B. Impact of maternal serum uric acid on perinatal outcome in women with hypertensive disorders of pregnancy: A prospective study. Pregnancy Hypertens. 2017, 10, 220–225. [Google Scholar] [CrossRef]
- Escudero, C.; Bertoglia, P.; Acurio, J.; Escudero, A. PP026. Hyperuricemia in the prognosis of adverse perinatal outcomes. Pregnancy Hypertens Int. J. Women’s Cardiovasc. Health 2012, 2, 256–257. [Google Scholar] [CrossRef]
- Merviel, P.; Ba, R.; Beaufils, M.; Breart, G.; Salat-Baroux, J.; Uzan, S. Lone hyperuricemia during pregnancy: Maternal and fetal outcomes. Eur. J. Obstet. Gynecol. Reprod. Biol. 1998, 77, 145–150. [Google Scholar] [CrossRef]
- Sun, W.Y.; Li, C.G.; Zhang, H.; Ren, W.; Cui, L.L.; Yuan, X. The correlation between serum uric acid levels in the third trimester of pregnancy and adverse pregnancy outcomes. Zhonghua Nei Ke Za Zhi 2021, 60, 446–452. [Google Scholar] [PubMed]
Birth Weight Percentile | |||
---|---|---|---|
<3 pc Median (Min–Max) | ≥3 pc Median (Min–Max) | 95% CI | |
Parity | n = 97 | n = 568 | 1.529–1.723 |
1 (1–7) | 2 (1–9) | ||
Gravidity | n = 97 | n = 569 | 1.27–1.422 |
1 (1–6) | 1 (1–7) | ||
Weight, kg | n = 85 | n = 473 | 79.284–81.883 |
73 (50.4–140) | 78 (47–142) | ||
Height, cm | n = 87 | n = 466 | 164.808–165.699 |
164 (150–179) | 165 (151–182) | ||
UAPI | n = 80 | n = 366 | 0.707–0.82 |
1.11 (0.56–4.59) | 0.91 (0.51–7.48) | ||
UtAPI | n = 48 | n = 164 | 0.699–0.839 |
1.02 (0.36–2.94) | 0.87 (0.22–2.51) | ||
Mean arterial pressure | n = 87 | n = 494 | 103.96–106.459 |
105 (72–150) | 105.67 (65–159) | ||
Uric acid, umol/L | n = 85 | n = 490 | 4.795–5.015 |
5 (2.8–9.4) | 5.1 (2.3–11.6) | ||
AST, U/L | n = 82 | n = 508 | 20.561–26.044 |
19 (10–128) | 18 (8–807) | ||
ALT, U/L | n = 82 | n = 508 | 19.075–24.369 |
15 (5–159) | 15 (3–574) | ||
LDH, U/L | n = 31 | n = 348 | 204.045–214.18 |
202 (140–296) | 201 (118–1020) | ||
PLT, ×109/L | n = 97 | n = 568 | 215.021–224.426 |
210 (91–421) | 217 (57–445) | ||
RBC, ×1012/L | n = 97 | n = 568 | 3.849–3.944 |
4.12 (3.37–5.24) | 4.16 (2.62–8.6) | ||
Hb, mmol/L | n = 97 | n = 568 | 7.275–7.41 |
7.6 (6–9.2) | 7.6 (0.37–9.7) | ||
Ht, % | n = 97 | n = 568 | 35.129–35.581 |
0.35 (0.29–0.42) | 0.36 (0.22–0.5) | ||
WBC, ×109/L | n = 97 | n = 568 | 10.579–11.027 |
10.92 (5.79–17.82) | 10.65 (4.32–31.55) | ||
Fibrynogen, g/L | n = 79 | n = 438 | 4.162–4.351 |
4.5 (2–7.1) | 4.4 (1.6–16) | ||
APTT, s | n = 95 | n = 548 | 26.821–27.193 |
27.8 (21.4–32.6) | 26.95 (20.4–40.9) | ||
PT, s | n = 93 | n = 550 | 10.157–10.27 |
10.3 (9.2–12.2) | 10.5 (9.1–12.5) | ||
D-dimers, ng/mL | n = 27 | n = 261 | 1597.849–1848.991 |
1190 (381–3445) | 1317 (246–10,000) | ||
sFlt-1, pg/L | n = 97 | n = 568 | 5354.455–6057.637 |
5513 (942–31,097) | 4176.5 (215.1–31,877) | ||
PlGF, pg/L | n = 97 | n = 568 | 178.992–219.485 |
86.4 (14.59–994) | 133 (7.23–2616) | ||
sFlt-1/PlGF ratio | n = 97 | n = 568 | 75.07–97.598 |
70.93 (1.96–816.93) | 34.83 (0.5–1479) | ||
Delivery week | n = 97 | n = 566 | 36.079–36.55 |
35 (26–40) | 38 (25–41) | ||
Cord blood, pH | n = 71 | n = 477 | 6.999–7.075 |
7.31 (7.13–7.49) | 7.31 (6.8–7.53) |
Parameter | Correlation Coefficient | p-Value |
---|---|---|
Weight | R = 0.393 | <0.001 |
Height | R = 0.177 | <0.001 |
UA-PI | R = −0.476 | <0.001 |
UtA-PI | R = −0.553 | <0.001 |
Uric acid | R = −0.193 | <0.001 |
AST | R = −0.100 | 0.032 |
LDH | R = −0.208 | <0.001 |
RBC | R = 0.131 | 0.002 |
Fibrinogen | R = 0.124 | 0.013 |
PT | R = 0.191 | <0.001 |
D-dimers | R = 0.121 | 0.040 |
Sflt-1 | R = −0.224 | <0.001 |
PlGF | R = 0.358 | <0.001 |
Sflt-1/PlGF | R = −0.375 | <0.001 |
Week of labor | R = 0.749 | <0.001 |
Parameter | Correlation Coefficient | p-Value |
---|---|---|
UA-PI | R = −0.414 | 0.019 |
Uric acid | R = −0.317 | 0.049 |
Week of labor | R = 0.718 | <0.001 |
Parametr | Correlation Coefficient | p-Value |
---|---|---|
UAPI | R = 0.126 | 0.040 |
MAP | R = 0.262 | <0.0001 |
AST | R = 0.153 | 0.0001 |
ALT | R = 0.095 | 0.048 |
LDH | R = 0.248 | <0.0001 |
PLT | R = −0.12 | 0.008 |
PT | R = −0.286 | <0.0001 |
Sflt-1 | R = 0.382 | <0.0001 |
PlGF | R = −0.413 | <0.0001 |
sFlt-1/PlGF | R = 0.487 | <0.0001 |
Week of labor | R = −0.216 | <0.0001 |
Fetal weight | R = −0.193 | <0.0001 |
pH | R = −0.121 | <0.018 |
Parameter | Correlation Coefficient | p-Value |
---|---|---|
MAP | R = 0.441 | 0.012 |
Sflt-1 | R = 0.499 | 0.001 |
PlGF | R = −0.32 | 0.028 |
Sflt-1/PlGF | R = 0.479 | 0.002 |
Fetal weight | R = −0.317 | 0.049 |
Parameter | Coefficient of Determination R2 | p-Value |
---|---|---|
Mean UtA-PI | R2= 0.31 | p < 0.0001 |
UA-PI Mean UtA-PI | R2= 0.37 | p < 0.0001 |
UA-PI Mean UtA-PI PlGF | R2= 0.43 | p < 0.0001 |
UA-PI Mean UtA-PI sFlt-1/PlGF | R2= 0.45 | p < 0.0001 |
UA-PI Mean UtA-PI sFlt-1/PlGF Uric acid | R2 = 0.53 | p < 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bednarek-Jędrzejek, M.; Dzidek, S.; Tousty, P.; Kwiatkowska, E.; Cymbaluk-Płoska, A.; Góra, T.; Czuba, B.; Torbé, A.; Kwiatkowski, S. Birth Weight < 3rd Percentile Prediction Using Additional Biochemical Markers—The Uric Acid Level and Angiogenesis Markers (sFlt-1, PlGF)—An Exploratory Study. Int. J. Environ. Res. Public Health 2022, 19, 15059. https://doi.org/10.3390/ijerph192215059
Bednarek-Jędrzejek M, Dzidek S, Tousty P, Kwiatkowska E, Cymbaluk-Płoska A, Góra T, Czuba B, Torbé A, Kwiatkowski S. Birth Weight < 3rd Percentile Prediction Using Additional Biochemical Markers—The Uric Acid Level and Angiogenesis Markers (sFlt-1, PlGF)—An Exploratory Study. International Journal of Environmental Research and Public Health. 2022; 19(22):15059. https://doi.org/10.3390/ijerph192215059
Chicago/Turabian StyleBednarek-Jędrzejek, Magdalena, Sylwia Dzidek, Piotr Tousty, Ewa Kwiatkowska, Aneta Cymbaluk-Płoska, Tomasz Góra, Bartosz Czuba, Andrzej Torbé, and Sebastian Kwiatkowski. 2022. "Birth Weight < 3rd Percentile Prediction Using Additional Biochemical Markers—The Uric Acid Level and Angiogenesis Markers (sFlt-1, PlGF)—An Exploratory Study" International Journal of Environmental Research and Public Health 19, no. 22: 15059. https://doi.org/10.3390/ijerph192215059
APA StyleBednarek-Jędrzejek, M., Dzidek, S., Tousty, P., Kwiatkowska, E., Cymbaluk-Płoska, A., Góra, T., Czuba, B., Torbé, A., & Kwiatkowski, S. (2022). Birth Weight < 3rd Percentile Prediction Using Additional Biochemical Markers—The Uric Acid Level and Angiogenesis Markers (sFlt-1, PlGF)—An Exploratory Study. International Journal of Environmental Research and Public Health, 19(22), 15059. https://doi.org/10.3390/ijerph192215059