Interactions between Ciliate Species and Aphanizomenon flos-aquae Vary Depending on the Morphological Form and Biomass of the Diazotrophic Cyanobacterium
Abstract
:1. Introduction
2. Material and Methods
- The control sample: no cyanobacteria + 1 mL of community of ciliates + 9 mL of Żywiec brand mineral water (composition in 1 L of water: 281.00 mg/L of bicarbonate anion; 29.50 mg/L of magnesium cation; 59.30 mg/L of calcium cation; 1.70 mg/L of sodium cation; and 408.20 mg/L of total minerals).
- 2a.
- One mL of community of ciliates + 9 mL of medium (Żywiec brand mineral water) + 1 mL of culture of filamentous A. flos-aquae from strain PL (F5) (‘low’ biomass),
- 2b.
- One mL of community of ciliates + 9 mL of medium (Żywiec brand mineral water) + 1 mL of culture of filamentous A. flos-aquae from strain PL (F5) (‘high’ biomass),
- 3a.
- One mL of community of ciliates + 9 mL of medium (Żywiec brand mineral water) + 1 mL of culture of filamentous A. flos-aquae from strain LT (D3) (‘low’ biomass),
- 3b.
- One mL of community of ciliates + 9 mL of medium (Żywiec brand mineral water) + 1 mL of culture of filamentous A. flos-aquae from strain LT (D3) (‘high’ biomass),
- 4a.
- One mL of community of ciliates + 9 mL of medium (Żywiec brand mineral water) + 1 mL of culture of aggregates A. flos-aquae from strain PL (E3) (‘low’ biomass),
- 4b.
- One mL of community of ciliates + 9 mL of medium (Żywiec brand mineral water) + 1 mL of culture of aggregates A. flos-aquae from strain PL (E3) (‘high’ biomass),
- 5a.
- One mL of community of ciliates + 9 mL of medium (Żywiec brand mineral water) + 1 mL of culture of aggregates A. flos-aquae from strain LT (E8) (‘low’ biomass),
- 5b.
- One mL of community of ciliates + 9 mL of medium (Żywiec brand mineral water) + 1 mL of culture of aggregates A. flos-aquae from strain LT (E8) (‘high’ biomass).
3. Molecular Data Analysis
4. Statistical Analysis
5. Results
6. Discussion
7. Conclusions
- A substrate for the developing of bacteria that serves as food for ciliates.
- A direct source of nitrogen, carbon and other substances for bacteria that serves as food for ciliates.
- An indirect source of nitrogen, carbon and other substances for ciliates.
- An attachment surface for embedded ciliates.
- A direct source of nitrogen, carbon and other substances for ciliates (Vorticella sp.).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez-Baracaldo, P.; Bianchini, G.; Wilson, J.D.; Knoll, A.H. Cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol. 2022, 30, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Komárek, J. Modern classification of cyanobacteria. In Cyanobacteria: An Economic Perspective; Sharma, N.K., Rai, A.K., Stal, L.J., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2014; pp. 21–39. [Google Scholar]
- Díez, B.; Ininbergs, K. Ecological importance of cyanobacteria. In Cyanobacteria: An Economic Perspective; Sharma, N.K., Rai, A.K., Stal, L.J., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2014; pp. 41–63. [Google Scholar]
- Deutsch, C.; Sarmiento, J.L.; Sigman, D.M.; Gruber, N.; Dunne, J.P. Spatial coupling of nitrogen inputs and losses in the ocean. Nature 2007, 445, 163–167. [Google Scholar] [CrossRef]
- Kuznecova, J.; Šulčius, S.; Vogts, A.; Voss, M.; Jürgens, K.; Šimoliūnas, E. Nitrogen flow in diazotrophic cyanobacterium Aphanizomenon flosaquae is altered by cyanophage infection. Front. Microbiol. 2020, 11, 2010. [Google Scholar] [CrossRef] [PubMed]
- Ohlendieck, U.; Stuhr, A.; Siegmund, H. Nitrogen fixation by diazotrophic cyanobacteria in the Baltic Sea and transfer of the newly fixed nitrogen to picoplankton organisms. J. Mar. Syst. 2000, 25, 213–219. [Google Scholar] [CrossRef]
- Motwani, N.H.; Duberg, J.; Svedén, J.B.; Gorokhova, E. Grazing on cyanobacteria and transfer of diazotrophic nitrogen to zooplankton in the Baltic Sea. Limnol. Oceanogr. 2018, 63, 672–686. [Google Scholar] [CrossRef]
- Sommer, F.; Hansen, T.; Sommer, U. Transfer of diazotrophic nitrogen to mesozooplankton in Kiel Fjord, Western Baltic Sea: A mesocosm study. Mar. Ecol. Prog. Ser. 2006, 324, 105–112. [Google Scholar] [CrossRef]
- Kosiba, J.; Krztoń, W. Insight into the role of cyanobacterial bloom in the trophic link between ciliates and predatory copepods. Hydrobiologia 2022, 849, 1195–1206. [Google Scholar] [CrossRef]
- Suikkanen, S.; Uusitalo, L.; Lehtinen, S.; Lehtiniemi, M.; Kauppila, P.; Mäkinen, K.; Kuosa, H. Diazotrophic cyanobacteria in planktonic food webs. Food Webs 2021, 28, e00202. [Google Scholar] [CrossRef]
- Azam, F.; Fenchel, T.; Field, J.G.; Gray, J.S.; Meyer-Reil, L.A.; Thingstad, F. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 1983, 10, 257–263. [Google Scholar] [CrossRef]
- Sherr, E.B.; Sherr, B.F. High rates of consumption of bacteria by pelagic ciliates. Nature 1987, 325, 710–711. [Google Scholar] [CrossRef]
- Christoffersen, K.; Riemann, B.; Hansen, L.R.; Klysner, A.; Sørensen, H.B. Qualitative importance of the microbial loop and plankton community structure in a eutrophic lake during a bloom of cyanobacteria. Microb. Ecol. 1990, 20, 253–272. [Google Scholar] [CrossRef] [PubMed]
- Sommer, U.; Adrian, R.; De Senerpont Domis, L.; Elser, J.J.; Gaedke, U.; Ibelings, B.; Winder, M. Beyond the Plankton Ecology Group (PEG) model: Mechanisms driving plankton succession. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 429–448. [Google Scholar] [CrossRef]
- Lu, X.; Gao, Y.; Weisse, T. Functional ecology of two contrasting freshwater ciliated protists in relation to temperature. J. Eukaryot. Microbiol. 2021, 68, e12823. [Google Scholar] [CrossRef] [PubMed]
- Cires, S.; Ballot, A. A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae 2016, 54, 21–43. [Google Scholar] [CrossRef]
- Yamamoto, Y. Environmental factors that determine the occurrence and seasonal dynamics of Aphanizomenon flosaquae. J. Limnol. 2009, 68, 122–132. [Google Scholar] [CrossRef] [Green Version]
- Kosiba, J.; Wilk-Woźniak, E.; Krztoń, W.; Strzesak, M.; Pociecha, A.; Walusiak, E.; Pudaś, K.; Szarek-Gwiazda, E. What underpins the trophic networks of the plankton in shallow oxbow lakes? Microb. Ecol. 2017, 73, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Wannicke, N.; Korth, F.; Liskow, I.; Voss, M. Incorporation of diazotrophic fixed N2 by mesozooplankton-Case studies in the southern Baltic Sea. J. Mar. Syst. 2013, 117, 1–13. [Google Scholar] [CrossRef]
- Kosiba, J.; Krztoń, W.; Wilk-Woźniak, E. Effect of Microcystins on Proto- and Metazooplankton is more evident in artificial than in natural waterbodies. Microb. Ecol. 2018, 75, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Engström-Öst, J.; Autio, R.; Setälä, O.; Sopanen, S.; Suikkanen, S. Plankton community dynamics during decay of a cyanobacteria bloom: A mesocosm experiment. Hydrobiologia 2013, 701, 25–35. [Google Scholar] [CrossRef]
- Sellner, K.G. Physiology, ecology, and toxic properties of marine cyanobacteria blooms. Limnol. Oceanogr. 1997, 42, 1089–1104. [Google Scholar] [CrossRef]
- Olenina, I.; Hajdu, S.; Edler, L.; Andersson, A.; Wasmund, N.; Busch, S.; Göbel, J.; Gromisz, S.; Huseby, S.; Huttunen, M.; et al. Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea; Baltic Sea Environment Proceedings No. 106; Helsinki Commission: Helsinki, Finland, 2006; pp. 1–144. [Google Scholar]
- Olrik, K.; Blomquist, P.; Brettum, P.; Cronberg, G.; Eloranta, P. Methods for Quantitative Assessment of Phytoplankton in Freshwaters, Part 1; Naturvardsverket Forlag: Stockholm, Sweden, 1998; pp. 1–86. [Google Scholar]
- Foissner, W.; Berger, H. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshw. Biol. 1996, 35, 375–482. [Google Scholar] [CrossRef]
- Foissner, W.; Berger, H.; Schaumburg, J. Identification and ecology of limnetic plankton ciliates. In Informationsberichte des Bayer; Landesamtes für Wasserwirtschaft: Deggendorf, Germany, 1999; pp. 1–793. [Google Scholar]
- National Institute for Environmental Studies, Japan. Available online: https://www.nies.go.jp/chiiki1/protoz/morpho/ciliopho/vorticel.htm (accessed on 13 May 2022).
- National Institute for Environmental Studies, Japan. Available online: https://www.nies.go.jp/chiiki1/protoz/morpho/ciliopho/parameci.htm (accessed on 13 May 2022).
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Morgulis, A.; Coulouris, G.; Raytselis, Y.; Madden, T.L.; Agarwala, R.; Schäffer, R. Database indexing for production MegaBLAST searches. Bioinformatics 2008, 24, 1757–1764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing [Internet]; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Ploug, H. Cyanobacterial surface blooms formed by Aphanizomenon sp. and Nodularia spumigena in the Baltic Sea: Small-scale fluxes, pH, and oxygen microenvironments. Limnol. Oceanogr. 2008, 53, 914–921. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Liu, Z.; Gulati, R.D. Cyanobacterial carbon supports the growth and reproduction of Daphnia: An experimental study. Hydrobiologia 2015, 743, 211–220. [Google Scholar] [CrossRef]
- Gilbert, P.M.; Bronk, D.A. Release of dissolved organic nitrogen by marine diazotrophic cyanobacteria, Trichodesmium spp. Appl. Environ. Microbiol. 1994, 60, 3996–4000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shazib SU, A.; Vďačný, P.; Slovák, M.; Gentekaki, E.; Shin, M.K. Deciphering phylogenetic relationships and delimiting species boundaries using a Bayesian coalescent approach in protists: A case study of the ciliate genus Spirostomum (Ciliophora, Heterotrichea). Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Fenchel, T.; Finlay, B.J.; Gianni, A. Microaerophily in ciliates: Responses of an Euplotes species (Hypotrichida) to oxygen tension. Arch. Für Protistenkd. 1989, 137, 317–330. [Google Scholar] [CrossRef]
- Kerr, S.J. Colonization of blue-green algae by Vorticella (Ciliata: Peritrichida). Trans. Am. Microsc. Soc. 1983, 102, 38–47. [Google Scholar] [CrossRef]
- Canter, H.M.; Heaney, S.I.; Lund, J.W.G. The ecological significance of grazing on planktonic populations of cyanobacteria by the ciliate Nassula. New Phytol. 1990, 114, 247–263. [Google Scholar] [CrossRef]
- Canter, H.M.; Walsby, A.E.; Kinsman, R.; Ibelings, B.W. The effect of attached vorticellids on the buoyancy of the colonial cyanobacterium Anabaena lemmermannii. Br. Phycol. J. 1992, 27, 65–74. [Google Scholar] [CrossRef]
- Pratt, J.R.; Rosen, B.H. Associations of species of Vorticella (Peritrichida) and planktonic algae. Trans. Am. Microsc. Soc. 1983, 102, 48–54. [Google Scholar] [CrossRef]
Species of Ciliates | Df | Deviance | Resid. Df | Resid. Dev | Pr (>Chi) | |
---|---|---|---|---|---|---|
Spirostomum minus | NULL (control probe) | 44 | 7063.4 | |||
CYANO_BIOMASS | 2 | 1632.46 | 42 | 5431.0 | <0.001 | |
CYANO_MORPHOL | 1 | 279.64 | 41 | 5151.3 | <0.001 | |
Euplotes aediculatus | NULL (control probe) | 44 | 103.128 | |||
CYANO_BIOMASS | 2 | 12.32 | 42 | 1112.8 | 0.002 | |
CYANO_MORPHOL | 1 | 27.71 | 41 | 1085.1 | <0.001 | |
Strobilidium sp. | NULL (control probe) | 44 | 2807.2 | |||
CYANO_BIOMASS | 2 | 171.89 | 42 | 2635.3 | <0.001 | |
CYANO_MORPHOL | 1 | 241.21 | 41 | 2394.1 | <0.001 | |
Vorticella sp. | NULL (control probe) | 44 | 244.06 | |||
CYANO_BIOMASS | 2 | 12.253 | 42 | 231.81 | 0.002 | |
CYANO_MORPHOL | 1 | 2.331 | 41 | 229.48 | 0.127 | |
Paramecium tetraurelia | NULL (control probe) | 44 | 71.818 | |||
CYANO_BIOMASS | 2 | 2.070 | 42 | 69.749 | 0.3553 | |
CYANO_MORPHOL | 1 | 0.485 | 41 | 69.263 | 0.4861 |
Species of Ciliates | Treatment | Estimate | Std Error | t Value | p (>|t|) |
---|---|---|---|---|---|
Spirostomum minus | (Intercept) Control (no biomass) | 3.353 | 0.084 | 40.101 | <0.001 |
‘HIGH’ BIOMASS of cyanobacteria | 1.698 | 0.086 | 19.860 | <0.001 | |
‘LOW’ BIOMASS of cyanobacteria | 0.454 | 0.090 | 5.048 | <0.001 | |
Euplotes aediculatus | (Intercept) Control (no biomass) | 3.509 | 0.077 | 45.341 | <0.001 |
‘HIGH’ BIOMASS of cyanobacteria | 0.165 | 0.085 | 1.939 | 0.053 | |
‘LOW’ BIOMASS of cyanobacteria | −0.012 | 0.087 | −0.139 | 0.889 | |
Strobilidium sp. | (Intercept) Control (no biomass) | 4.489 | 0.047 | 94.688 | <0.001 |
‘HIGH’ BIOMASS of cyanobacteria | −0.059 | 0.053 | −1.107 | 0.268 | |
‘LOW’ BIOMASS of cyanobacteria | −0.059 | 0.057 | −9.347 | <0.001 | |
Vorticella sp. | (Intercept) Control (no biomass) | 0.693 | 0.316 | 2.192 | <0.001 |
‘HIGH’ BIOMASS of cyanobacteria | 0.574 | 0.338 | 1.699 | 0.089 | |
‘LOW’ BIOMASS of cyanobacteria | 0.926 | 0.332 | 2.794 | 0.005 | |
Paramecium tetraurelia | (Intercept) Control (no biomass) | 1.099 | 0.258 | 4.255 | <0.001 |
‘HIGH’ BIOMASS of cyanobacteria | −0.034 | 0.290 | −0.117 | 0.907 | |
‘LOW’ BIOMASS of cyanobacteria | 0.210 | 0.283 | 0.741 | 0.459 |
Species of Ciliates | Treatment | Estimate | Std Error | t Value | p (>|t|) |
---|---|---|---|---|---|
Spirostomum minus | (Intercept) Control (no cells) | 3.353 | 0.084 | 40.10 | <0.001 |
AGGREGATES | 0.955 | 0.088 | 10.90 | <0.001 | |
FILAMENTS | 1.491 | 0.086 | 17.35 | <0.001 | |
Euplotes aediculatus | (Intercept) Control (no cells) | 3.509 | 0.077 | 45.341 | <0.001 |
AGGREGATES | −0.068 | 0.087 | −0.782 | 0.434 | |
FILAMENTS | 0.210 | 0.085 | 2.473 | 0.013 | |
Strobilidium sp. | (Intercept) Control (no cells) | 4.489 | 0.047 | 94.688 | <0.001 |
AGGREGATES | −0.616 | 0.057 | −10.75 | <0.001 | |
FILAMENTS | −0.008 | 0.053 | −0.149 | 0.882 | |
Vorticella sp. | (Intercept) Control (no cells) | 0.693 | 0.316 | 2.192 | 0.028 |
AGGREGATES | 0.876 | 0.332 | 2.635 | 0.008 | |
FILAMENTS | 0.642 | 0.336 | 1.908 | 0.056 | |
Paramecium tetraurelia | (Intercept) Control (no cells) | 1.099 | 0.258 | 4.255 | <0.001 |
AGGREGATES | 0.033 | 0.288 | 0.114 | 0.909 | |
FILAMENTS | 0.154 | 0.285 | 0.542 | 0.588 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosiba, J.; Krztoń, W.; Koreiviené, J.; Tarcz, S.; Wilk-Woźniak, E. Interactions between Ciliate Species and Aphanizomenon flos-aquae Vary Depending on the Morphological Form and Biomass of the Diazotrophic Cyanobacterium. Int. J. Environ. Res. Public Health 2022, 19, 15097. https://doi.org/10.3390/ijerph192215097
Kosiba J, Krztoń W, Koreiviené J, Tarcz S, Wilk-Woźniak E. Interactions between Ciliate Species and Aphanizomenon flos-aquae Vary Depending on the Morphological Form and Biomass of the Diazotrophic Cyanobacterium. International Journal of Environmental Research and Public Health. 2022; 19(22):15097. https://doi.org/10.3390/ijerph192215097
Chicago/Turabian StyleKosiba, Joanna, Wojciech Krztoń, Judita Koreiviené, Sebastian Tarcz, and Elżbieta Wilk-Woźniak. 2022. "Interactions between Ciliate Species and Aphanizomenon flos-aquae Vary Depending on the Morphological Form and Biomass of the Diazotrophic Cyanobacterium" International Journal of Environmental Research and Public Health 19, no. 22: 15097. https://doi.org/10.3390/ijerph192215097
APA StyleKosiba, J., Krztoń, W., Koreiviené, J., Tarcz, S., & Wilk-Woźniak, E. (2022). Interactions between Ciliate Species and Aphanizomenon flos-aquae Vary Depending on the Morphological Form and Biomass of the Diazotrophic Cyanobacterium. International Journal of Environmental Research and Public Health, 19(22), 15097. https://doi.org/10.3390/ijerph192215097