Cyanobacteria and Their Metabolites in Mono- and Polidominant Shallow Eutrophic Temperate Lakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling, Physicochemical Data and Phytoplankton Analysis
2.3. Isolation and Maintenance of Cyanobacterial Isolates
2.4. Chemical Analysis of Cyanometabolites
2.5. Evaluation of the Copy Number of the Microcystin (mcyE) Gene in Field Samples (qPCR)
2.6. Molecular Analysis of Cyanobacterial Isolates
2.7. Statistical Analysis
3. Results
3.1. Environmental Variables in the Studied Lakes
3.2. Seasonal Variation of the Cyanobacteria Community in Mono- and Polidominant Temperate Lakes
3.3. Diversity and Amount of Cyanometabolites in Studied Lakes
Seasonal Variation of Cyanometabolites in Lakes
3.4. Cyanometabolites in Isolates of Cyanobacteria
3.5. Planktothrix agardhii mcyE Gene in Isolates and Environmental Samples from the Monodominant Lake
4. Discussion
4.1. Structure and Biomass of Cyanobacteria in Mono- and Polidominant Shallow Eutrophic Lakes
4.2. Cyanometabolite Producers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Funari, E.; Manganelli, M.; Sinisi, L. Impact of Climate Change on Waterborne Diseases. Ann. Ist. Super. Sanità 2012, 48, 473–487. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W.; Otten, T.G. Blooms Bite the Hand That Feeds Them. Science 2013, 342, 433–434. [Google Scholar] [CrossRef] [PubMed]
- Dembowska, E. Cyanobacterial Blooms in Shallow Lakes of the Iławskie Lake District. Limnol. Rev. 2011, 11, 69–79. [Google Scholar] [CrossRef]
- Toporowska, M.; Pawlik-Skowrońska, B.; Kalinowska, R. Mass Development of Diazotrophic Cyanobacteria (Nostocales) and Production of Neurotoxic Anatoxin-a in a Planktothrix (Oscillatoriales) Dominated Temperate Lake. Water Air Soil Pollut. 2016, 227, 321. [Google Scholar] [CrossRef] [Green Version]
- Grabowska, M.; Kobos, J.; Toruńska-Sitarz, A.; Mazur-Marzec, H. Non-Ribosomal Peptides Produced by Planktothrix Agardhii from Siemianówka Dam Reservoir SDR (Northeast Poland). Arch Microbiol. 2014, 196, 697–707. [Google Scholar] [CrossRef] [Green Version]
- Buratti, F.M.; Manganelli, M.; Vichi, S.; Stefanelli, M.; Scardala, S.; Testai, E.; Funari, E. Cyanotoxins: Producing Organisms, Occurrence, Toxicity, Mechanism of Action and Human Health Toxicological Risk Evaluation. Arch Toxicol. 2017, 91, 1049–1130. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (Ed.) Guidelines for Safe Recreational Water Environments; World Health Organization: Geneva, Switzerland, 2003; ISBN 978-92-4-154580-8.
- Sivonen, K. Cyanobacterial Toxins. In Encyclopedia of Microbiology; Elsevier: Amsterdam, The Netherlands, 2009; pp. 290–307. ISBN 978-0-12-373944-5. [Google Scholar]
- Kardinaal, W.; Janse, I.; Kamst-van Agterveld, M.; Meima, M.; Snoek, J.; Mur, L.; Huisman, J.; Zwart, G.; Visser, P. Microcystis Genotype Succession in Relation to Microcystin Concentrations in Freshwater Lakes. Aquat. Microb. Ecol. 2007, 48, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Briand, E.; Gugger, M.; François, J.-C.; Bernard, C.; Humbert, J.-F.; Quiblier, C. Temporal Variations in the Dynamics of Potentially Microcystin-Producing Strains in a Bloom-Forming Planktothrix Agardhii (Cyanobacterium) Population. Appl. Environ. Microbiol. 2008, 74, 3839–3848. [Google Scholar] [CrossRef] [Green Version]
- Neilan, B.A.; Pearson, L.A.; Muenchhoff, J.; Moffitt, M.C.; Dittmann, E. Environmental Conditions That Influence Toxin Biosynthesis in Cyanobacteria: Regulation of Cyanobacterial Toxin Biosynthesis. Environ. Microbiol. 2013, 15, 1239–1253. [Google Scholar] [CrossRef]
- Dolman, A.M.; Rücker, J.; Pick, F.R.; Fastner, J.; Rohrlack, T.; Mischke, U.; Wiedner, C. Cyanobacteria and Cyanotoxins: The Influence of Nitrogen versus Phosphorus. PLoS ONE 2012, 7, e38757. [Google Scholar] [CrossRef]
- Pitois, F.; Fastner, J.; Pagotto, C.; Dechesne, M. Multi-Toxin Occurrences in Ten French Water Resource Reservoirs. Toxins 2018, 10, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantzouki, E.; Lürling, M.; Fastner, J.; De Senerpont Domis, L.; Wilk-Woźniak, E.; Koreivienė, J.; Seelen, L.; Teurlincx, S.; Verstijnen, Y.; Krztoń, W.; et al. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins. Toxins 2018, 10, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantelić, D.; Svirčev, Z.; Simeunović, J.; Vidović, M.; Trajković, I. Cyanotoxins: Characteristics, Production and Degradation Routes in Drinking Water Treatment with Reference to the Situation in Serbia. Chemosphere 2013, 91, 421–441. [Google Scholar] [CrossRef] [PubMed]
- Meriluoto, J.; Blaha, L.; Bojadzija, G.; Bormans, M.; Brient, L.; Codd, G.A.; Drobac, D.; Faassen, E.J.; Fastner, J.; Hiskia, A.; et al. Toxic Cyanobacteria and Cyanotoxins in European Waters—Recent Progress Achieved through the CYANOCOST Action and Challenges for Further Research. Adv. Ocean Limnol. 2017, 8, 144–161. [Google Scholar] [CrossRef] [Green Version]
- Rohrlack, T.; Skulberg, R.; Skulberg, O.M. Distribution of Oligopeptide Chemotypes of the Cyanobacterium Planktothrix and Their Persistence in Selected Lakes in Fennoscandia1: Planktothrix Chemotypes in Fennoscanda. J. Phycol. 2009, 45, 1259–1265. [Google Scholar] [CrossRef]
- Lifshits, M.; Carmeli, S. Metabolites of Microcystis Aeruginosa Bloom Material from Lake Kinneret, Israel. J. Nat. Prod. 2012, 75, 209–219. [Google Scholar] [CrossRef]
- Lopes, V.R.; Ramos, V.; Martins, A.; Sousa, M.; Welker, M.; Antunes, A.; Vasconcelos, V.M. Phylogenetic, Chemical and Morphological Diversity of Cyanobacteria from Portuguese Temperate Estuaries. Mar. Environ. Res. 2012, 73, 7–16. [Google Scholar] [CrossRef]
- Ferranti, P.; Fabbrocino, S.; Chiaravalle, E.; Bruno, M.; Basile, A.; Serpe, L.; Gallo, P. Profiling Microcystin Contamination in a Water Reservoir by MALDI-TOF and Liquid Chromatography Coupled to Q/TOF Tandem Mass Spectrometry. Food Res. Int. 2013, 54, 1321–1330. [Google Scholar] [CrossRef]
- Gkelis, S.; Lanaras, T.; Sivonen, K. Cyanobacterial Toxic and Bioactive Peptides in Freshwater Bodies of Greece: Concentrations, Occurrence Patterns, and Implications for Human Health. Mar. Drugs 2015, 13, 6319–6335. [Google Scholar] [CrossRef] [Green Version]
- Janssen, E.M.-L. Cyanobacterial Peptides beyond Microcystins—A Review on Co-Occurrence, Toxicity, and Challenges for Risk Assessment. Water Res. 2019, 151, 488–499. [Google Scholar] [CrossRef]
- Jones, M.R.; Pinto, E.; Torres, M.A.; Dörr, F.; Mazur-Marzec, H.; Szubert, K.; Tartaglione, L.; Dell’Aversano, C.; Miles, C.O.; Beach, D.G.; et al. CyanoMetDB, a Comprehensive Public Database of Secondary Metabolites from Cyanobacteria. Water Res. 2021, 196, 117017. [Google Scholar] [CrossRef] [PubMed]
- Balevičius, A. Restauruotinų Lietuvos Ežerų Nustatymas Ir Preliminarus Restauravimo Priemonių Parinkimas Šiems Ežerams, Siekiant Pagerinti Jų Būklę. Galutinė Ataskaita, 1, 2 Dalys; Probleminių Ežerų Restauravimo Planai; Aplinkos Apsaugos Agentūra: Vilnius, Lithuania, 2009.
- Olenina, I.; Hajdu, S.; Edler, L.; Andersson, A.; Wasmund, N.; Busch, S.; Göbel, J.; Gromisz, S.; Huseby, S.; Huttunen, M.; et al. Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea; Helsinki Commission Baltic Marine Environment Protection Commission: Helsinki, Finland, 2006. [Google Scholar]
- Olrik, K.; Blomquist, P.; Brettum, P.; Cronberg, G.; Eloranta, P. Methods for Quantitative Assessment of Phytoplankton in Freshwaters, Part I; Naturvårdsverket förlag: Stockholm, Sweden, 1998. [Google Scholar]
- Komárek, J.; Anagnostidis, K. Cyanoprokaryota 1. Teil: Chroococcales. In Süsswasser Flora von Mitteleuropa Band 19/1; Spektrum Akademischer Verlag: Heidelberg, Germany, 1998; p. 548. [Google Scholar]
- Komárek, J.; Anagnostidis, K. Cyanoprocaryota 2. Teil: Oscillatoriales. In Süsswasser Flora von Mitteleuropa Band 19/2; Elsevier GmbH: München, Germany, 2005; p. 759. [Google Scholar]
- Komárek, J. Cyanoprokaryota; Teil 3: Heterocytous Genera. In Süsswasser Flora von Mitteleuropa Band 19/3; Springer: Berlin, Germany, 2013; p. 1130. [Google Scholar]
- Lebret, K.; Kritzberg, E.S.; Figueroa, R.; Rengefors, K. Genetic Diversity within and Genetic Differentiation between Blooms of a Microalgal Species. Environ. Microbiol. 2012, 14, 2395–2404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khomutovska, N.; Sandzewicz, M.; Łach, Ł.; Suska-Malawska, M.; Chmielewska, M.; Mazur-Marzec, H.; Cegłowska, M.; Niyatbekov, T.; Wood, S.A.; Puddick, J.; et al. Limited Microcystin, Anatoxin and Cylindrospermopsin Production by Cyanobacteria from Microbial Mats in Cold Deserts. Toxins 2020, 12, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karosienė, J.; Savadova-Ratkus, K.; Toruńska-Sitarz, A.; Koreivienė, J.; Kasperovičienė, J.; Vitonytė, I.; Błaszczyk, A.; Mazur-Marzec, H. First Report of Saxitoxins and Anatoxin-a Production by Cyanobacteria from Lithuanian Lakes. Eur. J. Phycol. 2020, 55, 327–338. [Google Scholar] [CrossRef]
- Vaitomaa, J.; Rantala, A.; Halinen, K.; Rouhiainen, L.; Tallberg, P.; Mokelke, L.; Sivonen, K. Quantitative Real-Time PCR for Determination of Microcystin Synthetase E Copy Numbers for Microcystis and Anabaena in Lakes. Appl. Environ. Microbiol. 2003, 69, 7289–7297. [Google Scholar] [CrossRef] [Green Version]
- Rantala, A.; Rajaniemi-Wacklin, P.; Lyra, C.; Lepistö, L.; Rintala, J.; Mankiewicz-Boczek, J.; Sivonen, K. Detection of Microcystin-Producing Cyanobacteria in FinnishLakes with Genus-Specific Microcystin Synthetase Gene E ( McyE ) PCR and Associations WithEnvironmental Factors. Appl. Environ. Microbiol. 2006, 72, 6101–6110. [Google Scholar] [CrossRef] [Green Version]
- Rantala, A.; Rizzi, E.; Castiglioni, B.; de Bellis, G.; Sivonen, K. Identification of Hepatotoxin-Producing Cyanobacteria by DNA-Chip. Environ. Microbiol. 2008, 10, 653–664. [Google Scholar] [CrossRef]
- Nübel, U.; Garcia-Pichel, F.; Muyzer, G. PCR Primers to Amplify 16S RRNA Genes from Cyanobacteria. Appl. Environ. Microbiol. 1997, 63, 3327–3332. [Google Scholar] [CrossRef] [Green Version]
- Rantala-Ylinen, A.; Känä, S.; Wang, H.; Rouhiainen, L.; Wahlsten, M.; Rizzi, E.; Berg, K.; Gugger, M.; Sivonen, K. Anatoxin-a Synthetase Gene Cluster of the Cyanobacterium Anabaena Sp. Strain 37 and Molecular Methods to Detect Potential Producers. Appl. Environ. Microbiol. 2011, 77, 7271–7278. [Google Scholar] [CrossRef] [Green Version]
- Wetzel, R.G. Limnology, 2nd ed.; Saunders College Publishing: Philadelphia, PA, USA, 1983. [Google Scholar]
- Vollenweider, R.A. Das Nährstoffbelastungskonzept Als Grundlage Für Den Externen Eingriff in Den Eutrophierungsprozeß Stehender Gewässer Und Talsperren. Z. Wasser Abwasser Forsch 1979, 12, 45–56. [Google Scholar]
- World Health Organization. WHO Guidelines on Recreational Water Quality: Volume 1: Coastal and Fresh Waters; World Health Organization: Geneva, Switzerland, 2021; ISBN 978-92-4-003130-2.
- Poniewozik, M.; Lenard, T. Phytoplankton Composition and Ecological Status of Lakes with Cyanobacteria Dominance. IJERPH 2022, 19, 3832. [Google Scholar] [CrossRef] [PubMed]
- Pełechata, A.; Pełechaty, M.; Pukacz, A. Cyanoprokaryota of Shallow Lakes of Lubuskie Lakeland (Mid-Western Poland). Oceanol. Hydrobiol. Stud. 2006, 35, 3–14. [Google Scholar]
- Yéprémian, C.; Gugger, M.F.; Briand, E.; Catherine, A.; Berger, C.; Quiblier, C.; Bernard, C. Microcystin Ecotypes in a Perennial Planktothrix Agardhii Bloom. Water Res. 2007, 41, 4446–4456. [Google Scholar] [CrossRef] [PubMed]
- Mur, L.R. Some Aspects of the Ecophysiology of Cyanobacteria. Ann. Inst. Pasteur/Microbiol. 1983, 134, 61–72. [Google Scholar] [CrossRef]
- Rücker, J.; Wiedner, C.; Zippel, P. Factors Controlling the Dominance of Planktothrix Agardhii and Limnothrix Redekei in Eutrophic Shallow Lakes. In Shallow Lakes ’95; Kufel, L., Prejs, A., Rybak, J.I., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 107–115. ISBN 978-94-010-6382-1. [Google Scholar]
- Rücker, J.; Stüken, A.; Nixdorf, B.; Fastner, J.; Chorus, I.; Wiedner, C. Concentrations of Particulate and Dissolved Cylindrospermopsin in 21 Aphanizomenon-Dominated Temperate Lakes. Toxicon 2007, 50, 800–809. [Google Scholar] [CrossRef] [PubMed]
- Mischke, U.; Nixdorf, B. Equilibrium Phase Conditions in Shallow German Lakes: How Cyanoprokaryota Species Establish a Steady State Phase in Late Summer. In Phytoplankton and Equilibrium Concept: The Ecology of Steady-State Assemblages; Naselli-Flores, L., Padisák, J., Dokulil, M.T., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 123–132. ISBN 978-90-481-6433-2. [Google Scholar]
- Zębek, E. Quantitative Changes of Planktolyngbya Brevicellularis, Limnothrix Redekei and Aphanizomenon Gracile in the Annual Cycle vs. Physicochemical Water Parameters in the Urban Lake Jeziorak Mały. Oceanol. Hydrobiol. Stud. 2006, 35, 69–84. [Google Scholar]
- Kobos, J.; Błaszczyk, A.; Hohlfeld, N.; Toruńska-Sitarz, A.; Krakowiak, A.; Hebel, A.; Sutryk, K.; Grabowska, M.; Toporowska, M.; Kokociński, M.; et al. Cyanobacteria and Cyanotoxins in Polish Freshwater Bodies. Oceanol. Hydrobiol. Stud. 2013, 42, 358–378. [Google Scholar] [CrossRef] [Green Version]
- Sabart, M.; Pobel, D.; Briand, E.; Combourieu, B.; Salençon, M.J.; Humbert, J.F.; Latour, D. Spatiotemporal Variations in Microcystin Concentrations and in the Proportions of Microcystin-Producing Cells in Several Microcystis Aeruginosa Populations. Appl. Environ. Microbiol. 2010, 76, 4750–4759. [Google Scholar] [CrossRef] [Green Version]
- Papadimitriou, T.; Katsiapi, M.; Kormas, K.A.; Moustaka-Gouni, M.; Kagalou, I. Artificially-Born “Killer” Lake: Phytoplankton Based Water Quality and Microcystin Affected Fish in a Reconstructed Lake. Sci. Total Environ. 2013, 452–453, 116–124. [Google Scholar] [CrossRef]
- Kurmayer, R.; Christiansen, G.; Fastner, J.; Borner, T. Abundance of Active and Inactive Microcystin Genotypes in Populations of the Toxic Cyanobacterium Planktothrix Spp. Environ. Microbiol. 2004, 6, 831–841. [Google Scholar] [CrossRef]
- Schwarzenberger, A.; Kurmayer, R.; Martin-Creuzburg, D. Toward Disentangling the Multiple Nutritional Constraints Imposed by Planktothrix: The Significance of Harmful Secondary Metabolites and Sterol Limitation. Front. Microbiol. 2020, 11, 586120. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.; Pimentel, J.; Bird, D.; Giani, A. Changes in Oligopeptide Production by Toxic Cyanobacterial Strains under Iron Deficiency. Aquat. Microb. Ecol. 2015, 74, 205–214. [Google Scholar] [CrossRef]
- Wejnerowski, Ł.; Rzymski, P.; Kokociński, M.; Meriluoto, J. The Structure and Toxicity of Winter Cyanobacterial Bloom in a Eutrophic Lake of the Temperate Zone. Ecotoxicology 2018, 27, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Fastner, J.; Erhard, M.; von Döhren, H. Determination of Oligopeptide Diversity within a Natural Population of Microcystis Spp. (Cyanobacteria) by Typing Single Colonies by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry. Appl. Environ. Microbiol. 2001, 67, 5069–5076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohrlack, T.; Edvardsen, B.; Skulberg, R.; Halstvedt, C.B.; Utkilen, H.C.; Ptacnik, R.; Skulberg, O.M. Oligopeptide Chemotypes of the Toxic Freshwater Cyanobacterium Planktothrix Can Form Sub-Populations with Dissimilar Ecological Traits. Limnol. Oceanogr. 2008, 53, 1279–1293. [Google Scholar] [CrossRef]
- Casero, M.C.; Ballot, A.; Agha, R.; Quesada, A.; Cirés, S. Characterization of Saxitoxin Production and Release and Phylogeny of Sxt Genes in Paralytic Shellfish Poisoning Toxin-Producing Aphanizomenon Gracile. Harmful Algae 2014, 37, 28–37. [Google Scholar] [CrossRef]
- Via-Ordorika, L.; Fastner, J.; Kurmayer, R.; Hisbergues, M.; Dittmann, E.; Komarek, J.; Erhard, M.; Chorus, I. Distribution of Microcystin-Producing and Non-Microcystin-Producing Microcystis Sp. in European Freshwater Bodies: Detection of Microcystins and Microcystin Genes in Individual Colonies. Syst. Appl. Microbiol. 2004, 27, 592–602. [Google Scholar] [CrossRef] [Green Version]
- Farkas, O.; Gyémant, G.; Hajdú, G.; Gonda, S.; Parizsa, P.; Horgos, T.; Mosolygó, Á.; Vasas, G. Variability of Microcystins and Its Synthetase Gene Cluster in Microcystis and Planktothrix Waterblooms in Shallow Lakes of Hungary. Acta Biol. Hung. 2014, 65, 227–239. [Google Scholar] [CrossRef]
- Pekar, H.; Westerberg, E.; Bruno, O.; Lääne, A.; Persson, K.M.; Sundström, L.F.; Thim, A.-M. Fast, Rugged and Sensitive Ultra High Pressure Liquid Chromatography Tandem Mass Spectrometry Method for Analysis of Cyanotoxins in Raw Water and Drinking Water—First Findings of Anatoxins, Cylindrospermopsins and Microcystin Variants in Swedish Source Waters and Infiltration Ponds. J. Chromatogr. A 2016, 1429, 265–276. [Google Scholar] [CrossRef]
- Harke, M.J.; Steffen, M.M.; Gobler, C.J.; Otten, T.G.; Wilhelm, S.W.; Wood, S.A.; Paerl, H.W. A Review of the Global Ecology, Genomics, and Biogeography of the Toxic Cyanobacterium, Microcystis Spp. Harmful Algae 2016, 54, 4–20. [Google Scholar] [CrossRef] [Green Version]
- Rohrlack, T.; Henning, M.; Kohl, J.G. Isolation and Characterization of Colony-Forming Microcystis Aeruginosa Strains. In Cyanotoxins: Occurrence, Causes, Consequences; Chorus, I., Ed.; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Kosol, S.; Schmidt, J.; Kurmayer, R. Variation in Peptide Net Production and Growth among Strains of the Toxic Cyanobacterium Planktothrix Spp. Eur. J. Phycol. 2009, 44, 49–62. [Google Scholar] [CrossRef]
Morphometric Data | Širvys | Jieznas |
---|---|---|
Coordinates | 54°59′16.27″, 25°12′54.13″ | 54°35′33.67″, 24°10′48.95″ |
Altitude (m) | 125.8 | 95.8 |
Max depth (m) | 4.5 | 4.4 |
Mean depth (m) | 1.4 | 2.8 |
Catchment area consisted of (%) *: | ||
Natural biotopes | 47.4 | 4.0 |
Agriculture | 48.3 | 83.6 |
Villages | 4.3 | 12.4 |
Variable | Širvys | Jieznas 2015 | |
---|---|---|---|
2014 | 2015 | ||
Water temperature, °C | 17.6 ± 5.5 | 16.8 ± 5.2 | 16.9 ± 5.3 |
Secchi depth, m | 1.15 ± 0.60 | 1.30 ± 0.70 | 0.55 ± 0.10 |
pH | 8.3 ± 0.3 | 8.3 ± 0.3 | 8.3 ± 0.2 |
Conductivity, µS cm−1 | 444.1 ± 7.2 | 445.4 ± 8.5 | 441.7 ± 10.6 |
Dissolved oxygen, mg L−1 | 10.4 ± 2.0 | 10.5 ± 2.8 | 10.9 ± 1.5 |
TP, mg P L−1 | 0.034 ± 0.012 | 0.035 ± 0.017 | 0.059 ± 0.026 |
TN, mg N L−1 | 1.25 ± 0.2 | 1.23 ± 0.3 | 1.84 ± 0.3 |
Chlorophyll-a, µg L−1 | 35.8 ± 17.0 | 34.5 ± 15.8 | 61.4 ± 11.2 |
Trophic status * | eutrophic | eutrophic | eutrophic |
Variables | Monodominant Lake Širvys | Polidominant Lake Jieznas |
---|---|---|
Number of dominants | 1 | 3 |
Number of species potential cyanotoxins producers | 14 | 14 |
Average (±SD) biomass of potential cyanotoxins producers, mg L−1 | ||
Average (±SD) total concentration of cyanotoxins, µg L−1 | ||
Average concentration of MCs, ATX, STX, µg L−1 | ||
Average NRPs amount, area L−1 | ||
Isoforms of MCs detected in the field samples | dmMC-RR, MC-RR, MC-YR, dmMC-LR, MC-LR | MC-RR, MC-YR, MC-LR |
NRPs groups detected in field samples, area L−1 | ||
Common NRPs | APs (A, B, F, Oscillamide Y), AERs (aeruginosamide) | |
Specific NRPs | APs (753, D, G, 916) | APs (902), AERs (636) |
AERs (658, 682, 692, 704, 716), CPs (996) | CPs (850), MRs (658, FR3, 771) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savadova-Ratkus, K.; Mazur-Marzec, H.; Karosienė, J.; Sivonen, K.; Suurnäkki, S.; Kasperovičienė, J.; Paškauskas, R.; Koreivienė, J. Cyanobacteria and Their Metabolites in Mono- and Polidominant Shallow Eutrophic Temperate Lakes. Int. J. Environ. Res. Public Health 2022, 19, 15341. https://doi.org/10.3390/ijerph192215341
Savadova-Ratkus K, Mazur-Marzec H, Karosienė J, Sivonen K, Suurnäkki S, Kasperovičienė J, Paškauskas R, Koreivienė J. Cyanobacteria and Their Metabolites in Mono- and Polidominant Shallow Eutrophic Temperate Lakes. International Journal of Environmental Research and Public Health. 2022; 19(22):15341. https://doi.org/10.3390/ijerph192215341
Chicago/Turabian StyleSavadova-Ratkus, Ksenija, Hanna Mazur-Marzec, Jūratė Karosienė, Kaarina Sivonen, Suvi Suurnäkki, Jūratė Kasperovičienė, Ričardas Paškauskas, and Judita Koreivienė. 2022. "Cyanobacteria and Their Metabolites in Mono- and Polidominant Shallow Eutrophic Temperate Lakes" International Journal of Environmental Research and Public Health 19, no. 22: 15341. https://doi.org/10.3390/ijerph192215341
APA StyleSavadova-Ratkus, K., Mazur-Marzec, H., Karosienė, J., Sivonen, K., Suurnäkki, S., Kasperovičienė, J., Paškauskas, R., & Koreivienė, J. (2022). Cyanobacteria and Their Metabolites in Mono- and Polidominant Shallow Eutrophic Temperate Lakes. International Journal of Environmental Research and Public Health, 19(22), 15341. https://doi.org/10.3390/ijerph192215341