Genetic Associations of Visfatin Polymorphisms with EGFR Status and Clinicopathologic Characteristics in Lung Adenocarcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Genomic DNA Extraction and EGFR Gene Sequencing
2.3. Genotyping of Visfatin Polymorphisms
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Participants
3.2. No Association of Visfatin SNP (rs11977021, rs61330082, rs2110385, and rs4730153) Distribution Frequency with EGFR Status or LUAD
3.3. Associations between Polymorphic Genotypes of visfatin rs11977021 with Clinicopathologic Characteristics and EGFR Status
3.4. Associations between Polymorphic Genotypes of visfatin rs61330082, Clinicopathologic Characteristics and EGFR Status
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Burden of Disease Cancer Collaboration; Fitzmaurice, C.; Abate, D.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdel-Rahman, O.; Abdelalim, A.; Abdoli, A.; Abdol-lahpour, I.; et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019, 5, 1749–1768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.F.; Lu, Y.H.; Tsai, H.Y. Crude extract of Desmodium gangeticum process anticancer activity via arresting cell cycle in G1 and modulating cell cycle-related protein expression in A549 human lung carcinoma cells. BioMedicine 2022, 12, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Denisenko, T.V.; Budkevich, I.N.; Zhivotovsky, B. Cell death-based treatment of lung adenocarcinoma. Cell Death Dis. 2018, 9, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barta, J.A.; Powell, C.A.; Wisnivesky, J.P. Global Epidemiology of Lung Cancer. Ann. Glob. Health 2019, 85, 8. [Google Scholar] [CrossRef] [Green Version]
- Li, J.P.; Chang, J.T.; Ju, P.C.; Hsieh, M.H.; Chao, Y.H.; Tsao, T.C.; Hsieh, M.J.; Yang, S.F. Effect of WW Domain-Containing Oxidoreductase Gene Polymorphism on Clinicopathological Characteristics of Patients with EGFR Mutant Lung Adenocarcinoma in Taiwan. Int. J. Environ. Res. Public Health 2021, 18, 13136. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Yuan, J.Q.; Wang, K.F.; Fu, X.H.; Han, X.R.; Threapleton, D.; Yang, Z.Y.; Mao, C.; Tang, J.L. The prevalence of EGFR mutation in patients with non-small cell lung cancer: A systematic review and meta-analysis. Oncotarget 2016, 7, 78985–78993. [Google Scholar] [CrossRef] [Green Version]
- Robichaux, J.P.; Le, X.; Vijayan, R.S.K.; Hicks, J.K.; Heeke, S.; Elamin, Y.Y.; Lin, H.Y.; Udagawa, H.; Skoulidis, F.; Tran, H.; et al. Structure-based classification predicts drug response in EGFR-mutant NSCLC. Nature 2021, 597, 732–737. [Google Scholar] [CrossRef]
- Gelatti, A.C.Z.; Drilon, A.; Santini, F.C. Optimizing the sequencing of tyrosine kinase inhibitors (TKIs) in epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC). Lung Cancer 2019, 137, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.H.; Lai, T.C.; Yang, P.J.; Shih, P.C.; Yang, Y.C.; Lee, K.L.; Liu, T.C.; Tsao, T.C.; Yang, S.F.; Chien, M.H. Associations of TIMP-3 Genetic Polymorphisms with EGFR Statuses and Cancer Clinicopathologic Development in Lung Adenocarcinoma Patients. Int. J. Mol. Sci. 2020, 21, 8023. [Google Scholar] [CrossRef]
- Alexander, M.; Kim, S.Y.; Cheng, H. Update 2020: Management of Non-Small Cell Lung Cancer. Lung 2020, 198, 897–907. [Google Scholar] [CrossRef]
- Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2020, 382, 41–50. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Tsao, S.-M.; Li, Y.-T.; Lee, C.-Y.; Tsao, T.C.-Y.; Hsieh, M.-J.; Yang, S.-F. The Relationship between Long Noncoding RNA H19 Polymorphism and the Epidermal Growth Factor Receptor Phenotypes on the Clinicopathological Characteristics of Lung Adenocarcinoma. Int. J. Environ. Res. Public Health 2021, 18, 2862. [Google Scholar] [CrossRef]
- Lee, K.-L.; Lai, T.-C.; Wang, Y.-C.; Shih, P.-C.; Yang, Y.-C.; Tsao, T.C.-Y.; Liu, T.-C.; Wen, Y.-C.; Chang, L.-C.; Yang, S.-F.; et al. Potential Impacts of Interleukin-17A Promoter Polymorphisms on the EGFR Mutation Status and Progression of Non-Small Cell Lung Cancer in Taiwan. Genes 2021, 12, 427. [Google Scholar] [CrossRef]
- Samal, B.; Sun, Y.; Stearns, G.; Xie, C.; Suggs, S.; McNiece, I. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell. Biol. 1994, 14, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Heske, C.M. Beyond Energy Metabolism: Exploiting the Additional Roles of NAMPT for Cancer Therapy. Front. Oncol. 2019, 9, 1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okumura, S.; Sasaki, T.; Minami, Y.; Ohsaki, Y. Nicotinamide phosphoribosyltransferase: A potent therapeutic target in non-small cell lung cancer with epidermal growth factor receptor-gene mutation. J. Thorac. Oncol. 2012, 7, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.C. The role of visfatin in cancer proliferation, angiogenesis, metastasis, drug resistance and clinical prognosis. Cancer Manag. Res. 2019, 11, 3481–3491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, D.-V.; Park, P.-H. Tumor Metabolic Reprogramming by Adipokines as a Critical Driver of Obesity-Associated Cancer Progression. Int. J. Mol. Sci. 2021, 22, 1444. [Google Scholar] [CrossRef]
- Zhang, L.-J.; Li, X.-Q.; Wang, C.-D.; Zhuang, L.; Gong, Q.; Li, S.-J.; Liu, X.; Dong, H.; Wang, X.-C. The Correlation of Visfatin and Its Gene Polymorphism with Non-Small Cell Lung Cancer. Cancer Biother. Radiopharm. 2018, 33, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Mianabadi, F.; Mehrad-Majd, H. Circulating visfatin levels and cancers risk: A systematic review and meta-analysis. J. Cell. Physiol. 2019, 234, 5011–5022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, K.; Yao, Y.; Liu, Y.; Ni, Y.; Liao, C.; Tu, Z.; Qiu, Y.; Wang, D.; Chen, D.; et al. Dual nicotinamide phosphoribosyltransferase and epidermal growth factor receptor inhibitors for the treatment of cancer. Eur. J. Med. Chem. 2021, 211, 113022. [Google Scholar] [CrossRef]
- Liu, T.; Miao, Z.; Jiang, J.; Yuan, S.; Fang, W.; Li, B.; Chen, Y. Visfatin Mediates SCLC Cells Migration across Brain Endothelial Cells through Upregulation of CCL2. Int. J. Mol. Sci. 2015, 16, 11439–11451. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.J.; Hsieh, M.H.; Lin, Y.Y.; Chen, M.Y.; Lien, M.Y.; Yang, S.F.; Tang, C.H. Visfatin Polymorphisms, Lifestyle Risk Factors and Risk of Oral Squamous Cell Carcinoma in a Cohort of Taiwanese Males. Int. J. Med. Sci. 2022, 19, 762–768. [Google Scholar] [CrossRef]
- Wu, Z.; Sun, Y.; Huang, Y.; Zhu, S.; Feng, Y.; Ye, H.; Liu, C.; Tang, S. Genetic variant in visfatin gene promoter contributes to reduced risk of hepatocellular carcinoma in a Chinese population. Oncotarget 2016, 7, 77968–77977. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Yan, D.; Wang, S.; Xu, C.; Du, W.; Ning, T.; Liu, C.; Zhang, M.; Hou, R.; Chen, Z. Genetic polymorphisms of NAMPT related with susceptibility to esophageal squamous cell carcinoma. BMC Gastroenterol. 2015, 15, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achudhan, D.; Li-Yun Chang, S.; Liu, S.C.; Lin, Y.Y.; Huang, W.C.; Wu, Y.C.; Huang, C.C.; Tsai, C.H.; Ko, C.Y.; Kuo, Y.H.; et al. Antcin K inhibits VCAM-1-dependent monocyte adhesion in human rheumatoid arthritis synovial fibroblasts. Food Nutr. Res. 2022, 66, 8645. [Google Scholar] [CrossRef]
- Lee, K.-T.; Su, C.-H.; Liu, S.-C.; Chen, B.-C.; Chang, J.-W.; Tsai, C.-H.; Huang, W.-C.; Hsu, C.-J.; Chen, W.-C.; Wu, Y.-C.; et al. Cordycerebroside A inhibits ICAM-1-dependent M1 monocyte adhesion to osteoarthritis synovial fibroblasts. J. Food Biochem. 2022, 46, e14108. [Google Scholar] [CrossRef] [PubMed]
- Su, C.-H.; Lin, C.-Y.; Tsai, C.-H.; Lee, H.-P.; Lo, L.-C.; Huang, W.-C.; Wu, Y.-C.; Hsieh, C.-L.; Tang, C.-H. Betulin suppresses TNF-α and IL-1β production in osteoarthritis synovial fibroblasts by inhibiting the MEK/ERK/NF-κB pathway. J. Funct. Foods 2021, 86, 104729. [Google Scholar] [CrossRef]
- Isaka, T.; Yokose, T.; Ito, H.; Nagata, M.; Furumoto, H.; Nishii, T.; Katayama, K.; Yamada, K.; Nakayama, H.; Masuda, M. Correlations Between the EGFR Mutation Status and Clinicopathological Features of Clinical Stage I Lung Adenocarcinoma. Medicine 2015, 94, e1784. [Google Scholar] [CrossRef]
- Ooi, D.S.; Ong, S.G.; Heng, C.K.; Loke, K.Y.; Lee, Y.S. In-vitro function of upstream visfatin polymorphisms that are associated with adverse cardiometabolic parameters in obese children. BMC Genom. 2016, 17, 974. [Google Scholar] [CrossRef]
- Zhou, Y.; Cui, Q.; Zhou, Y. NmSEER V2.0: A prediction tool for 2′-O-methylation sites based on random forest and multi-encoding combination. BMC Bioinform. 2019, 20, 690. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhou, B.; Zhang, P.; Zhang, Z.; Chen, P.; Pu, Y.; Song, Y.; Zhang, L. Genetic variants in NAMPT predict bladder cancer risk and prognosis in individuals from southwest Chinese Han group. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2014, 35, 4031–4040. [Google Scholar] [CrossRef]
- Ooi, S.Q.; Chan, R.M.; Poh, L.K.; Loke, K.Y.; Heng, C.K.; Chan, Y.H.; Gan, S.U.; Lee, K.O.; Lee, Y.S. Visfatin and its genetic variants are associated with obesity-related morbidities and cardiometabolic risk in severely obese children. Pediatr. Obes. 2014, 9, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Kyrgiou, M.; Kalliala, I.; Markozannes, G.; Gunter, M.J.; Paraskevaidis, E.; Gabra, H.; Martin-Hirsch, P.; Tsilidis, K.K. Adiposity and cancer at major anatomical sites: Umbrella review of the literature. BMJ 2017, 356, j477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidayat, K.; Du, X.; Chen, G.; Shi, M.; Shi, B. Abdominal Obesity and Lung Cancer Risk: Systematic Review and Meta-Analysis of Prospective Studies. Nutrients 2016, 8, 810. [Google Scholar] [CrossRef]
- Audrito, V.; Messana, V.G.; Deaglio, S. NAMPT and NAPRT: Two Metabolic Enzymes with Key Roles in Inflammation. Front. Oncol. 2020, 10, 358. [Google Scholar] [CrossRef] [Green Version]
- Kaminska, A.; Kopczynska, E.; Bronisz, A.; Zmudzinska, M.; Bielinski, M.; Borkowska, A.; Tyrakowski, T.; Junik, R. An evaluation of visfatin levels in obese subjects. Endokrynol. Pol. 2010, 61, 169–173. [Google Scholar] [PubMed]
- Chang, Y.H.; Chang, D.M.; Lin, K.C.; Shin, S.J.; Lee, Y.J. Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: A meta-analysis and systemic review. Diabetes Metab. Res. Rev. 2011, 27, 515–527. [Google Scholar] [CrossRef]
Variable | EGFR Wild-Type (n = 111) n (%) | EGFR Mutation (n = 166) n (%) | p Value |
---|---|---|---|
Age | |||
Mean ± SD | 65.36 ± 13.42 | 65.90 ± 13.64 | p = 0.420 |
Sex, n (%) | |||
Male | 67 (60.4%) | 59 (35.5%) | p < 0.001 |
Female | 44 (39.6%) | 107 (64.5%) | |
Cigarette smoking status, n (%) | |||
Never-smoker | 50 (45.0%) | 128 (77.1%) | p < 0.001 |
Ever-smoker | 61 (55.0%) | 38 (22.9%) | |
Stage, n (%) | |||
I/II | 26 (23.4%) | 46 (27.7%) | p = 0.425 |
III/IV | 85 (76.6%) | 120 (72.3%) | |
Tumor status, n (%) | |||
T1/T2 | 60 (54.1%) | 107 (64.5%) | p = 0.083 |
T3/T4 | 51 (45.9%) | 59 (35.5%) | |
Lymph node status, n (%) | |||
Negative | 29 (26.1%) | 54 (32.5%) | p = 0.254 |
Positive | 82 (73.9%) | 112 (67.5%) | |
Distant metastases, n (%) | |||
Negative | 54 (48.6%) | 78 (47.0%) | p = 0.786 |
Positive | 57 (51.4%) | 88 (53.0%) | |
Cell differentiation, n (%) | |||
Well | 8 (7.2%) | 19 (11.4%) | p = 0.001 |
Moderate | 80 (72.1%) | 137 (82.5%) | |
Poor | 23 (20.7%) | 10 (6.0%) |
Genotypes | Control (n = 277) | LUAD (n = 277) | AOR (95% CI) | p Value |
---|---|---|---|---|
rs11977021 | ||||
CC | 71 (25.6%) | 72 (26.0%) | 1.000 (reference) | |
CT | 130 (46.9%) | 133 (48.0%) | 1.022 (0.527–1.980) | 0.950 |
TT | 76 (27.5%) | 72 (26.0%) | 0.672 (0.309–1.458) | 0.314 |
CT + TT | 206 (74.4%) | 205 (74.0%) | 0.888 (0.475–1.659) | 0.709 |
rs61330082 | ||||
GG | 69 (24.9%) | 71 (25.6%) | 1.000 (reference) | |
GA | 131 (47.3%) | 129 (46.6%) | 0.926 (0.473–1.813) | 0.822 |
AA | 77 (27.8%) | 77 (27.8%) | 0.676 (0.313–1.461) | 0.320 |
GA + AA | 208 (75.1%) | 206 (74.4%) | 0.829 (0.440–1.562) | 0.563 |
rs2110385 | ||||
GG | 225 (81.2%) | 228 (82.3%) | 1.000 (reference) | |
GT | 52 (18.8%) | 45 (16.2%) | 0.570 (0.259–1.254) | 0.162 |
TT | 0 (0.0%) | 4 (1.4%) | - | - |
GT + TT | 52 (18.8%) | 49 (17.7%) | 0.637 (0.299–1.356) | 0.242 |
rs4730153 | ||||
GG | 223 (80.5%) | 230 (83.0%) | 1.000 (reference) | |
GA | 54 (19.5%) | 44 (15.9%) | 0.630 (0.297–1.336) | 0.228 |
AA | 0 (0.0%) | 3 (1.1%) | - | - |
GA + AA | 54 (19.5%) | 47 (17.0%) | 0.667 (0.319–1.393) | 0.281 |
Visfatin Genotypes | EGFR Wild-Type (n = 111) | EGFR Mutation (n = 166) | AOR (95% CI) | p Value |
---|---|---|---|---|
rs11977021 | ||||
CC | 30 (27.0%) | 42 (25.3%) | 1.000 (reference) | |
CT | 54 (48.6%) | 79 (47.6%) | 1.126 (0.608–2.088) | 0.706 |
TT | 27 (24.4%) | 45 (27.1%) | 1.247 (0.613–2.535) | 0.542 |
CT + TT | 81 (73.0%) | 124 (74.7%) | 1.080 (0.809–1.442) | 0.601 |
rs61330082 | ||||
GG | 28 (25.2%) | 43 (25.9%) | 1.000 (reference) | |
GA | 54 (48.6%) | 75 (45.2%) | 0.992 (0.531–1.857) | 0.981 |
AA | 29 (26.2%) | 48 (28.9%) | 1.116 (0.554–2.250) | 0.759 |
GA + AA | 83 (74.8%) | 123 (74.1%) | 1.018 (0.760–1.363) | 0.904 |
rs2110385 | ||||
GG | 93 (83.8%) | 135 (81.3%) | 1.000 (reference) | |
GT | 17 (15.3%) | 28 (16.9%) | 1.065 (0.530–2.140) | 0.859 |
TT | 1 (0.9%) | 3 (1.8%) | 3.833 (0.370–39.768) | 0.260 |
GT + TT | 18 (16.2%) | 31 (18.7%) | 1.089 (0.777–1.527) | 0.619 |
rs4730153 | ||||
GG | 93 (83.8%) | 137 (82.5%) | 1.000 (reference) | |
GA | 17 (15.3%) | 27 (16.3%) | 1.027 (0.509–2.072) | 0.941 |
AA | 1 (0.9%) | 2 (1.2%) | 3.241 (0.281–37.379) | 0.346 |
GA + AA | 18 (16.2%) | 29 (17.5%) | 1.057 (0.751–1.487) | 0.751 |
Variable | All (N = 277) | EGFR Wild-Type (N = 111) | EGFR Mutation (N = 166) | ||||||
---|---|---|---|---|---|---|---|---|---|
CC (n = 72) | CT + TT (n = 205) | p Value | CC (n = 30) | CT + TT (n = 81) | p Value | CC (n = 42) | CT + TT (n = 124) | p Value | |
Stage | |||||||||
I/II | 21 (29.2%) | 51 (24.9%) | p = 0.475 | 11 (36.7%) | 15 (18.5%) | p = 0.045 b | 10 (23.8%) | 36 (29.0%) | p = 0.513 |
III/IV | 51 (70.8%) | 154 (75.1%) | 19 (63.3%) | 66 (81.5%) | 32 (76.2%) | 88 (71.0%) | |||
Tumor status | |||||||||
T1/T2 | 52 (72.2%) | 115 (56.1%) | p = 0.016 a | 22 (73.3%) | 38 (46.9%) | p = 0.013 c | 30 (71.4%) | 77 (62.1%) | p = 0.275 |
T3/T4 | 20 (27.8%) | 90 (43.9%) | 8 (26.7%) | 43 (53.1%) | 12 (28.6%) | 47 (37.9%) | |||
Lymph node status | |||||||||
Negative | 22 (30.6%) | 61 (29.8%) | p = 0.899 | 10 (33.3%) | 19 (23.5%) | p = 0.293 | 12 (28.6%) | 42 (33.9%) | p = 0.526 |
Positive | 50 (69.4%) | 144 (70.2%) | 20 (66.7%) | 62 (76.5%) | 30 (71.4%) | 82 (66.1%) | |||
Distant metastases | |||||||||
Negative | 41 (56.9%) | 91 (44.4%) | p = 0.067 | 20 (66.7%) | 34 (42.0%) | p = 0.021 d | 21 (50.0%) | 57 (46.0%) | p = 0.651 |
Positive | 31 (43.1%) | 114 (55.6%) | 10 (33.3%) | 47 (58.0%) | 21 (50.0%) | 67 (54.0%) | |||
Cell differentiation | |||||||||
Well/Moderate | 65 (90.3%) | 179 (87.3%) | p = 0.505 | 25 (83.3%) | 63 (77.8%) | p = 0.521 | 40 (95.2%) | 116 (93.5%) | p = 0.691 |
Poor | 7 (9.7%) | 26 (12.7%) | 5 (16.7%) | 18 (22.2%) | 2 (4.8%) | 8 (6.5%) |
Variable | All (N = 277) | EGFR Wild-Type (N = 111) | EGFR Mutation (N = 166) | ||||||
---|---|---|---|---|---|---|---|---|---|
GG (n = 71) | GA + AA (n = 206) | p Value | GG (n = 28) | GA + AA (n = 83) | p Value | GG (n = 43) | GA + AA (n = 123) | p Value | |
Stage | |||||||||
I/II | 20 (28.2%) | 52 (25.2%) | p = 0.628 | 10 (35.7%) | 16 (19.3%) | p = 0.076 | 10 (23.3%) | 36 (29.3%) | p = 0.448 |
III/IV | 51 (71.8%) | 154 (74.8%) | 18 (64.3%) | 67 (80.7%) | 33 (76.7%) | 87 (70.7%) | |||
Tumor status | |||||||||
T1/T2 | 51 (71.8%) | 116 (56.3%) | p = 0.021 a | 21 (75.0%) | 39 (47.0%) | p = 0.010 b | 30 (69.8%) | 77 (62.6%) | p = 0.398 |
T3/T4 | 20 (28.2%) | 90 (43.7%) | 7 (25.0%) | 44 (53.0%) | 13 (30.2%) | 46 (37.4%) | |||
Lymph node status | |||||||||
Negative | 21 (29.6%) | 62 (30.1%) | p = 0.934 | 9 (32.1%) | 20 (24.1%) | p = 0.402 | 12 (27.9%) | 42 (34.1%) | p = 0.452 |
Positive | 50 (70.4%) | 144 (69.9%) | 19 (67.9%) | 63 (75.9%) | 31 (72.1%) | 81 (65.9%) | |||
Distant metastases | |||||||||
Negative | 40 (56.3%) | 92 (44.7%) | p = 0.089 | 19 (67.9%) | 35 (42.2%) | p = 0.019 c | 21 (48.8%) | 57 (46.3%) | p = 0.778 |
Positive | 31 (43.7%) | 114 (55.3%) | 9 (32.1%) | 48 (57.8%) | 22 (51.2%) | 66 (53.7%) | |||
Celldifferentiation | |||||||||
Well/Moderate | 65 (91.5%) | 179 (86.9%) | p = 0.296 | 25 (89.3%) | 63 (75.9%) | p = 0.131 | 40 (93.0%) | 116 (94.3%) | p = 0.760 |
Poor | 6 (8.5%) | 27 (13.1%) | 3 (10.7%) | 20 (24.1%) | 3 (7.0%) | 7 (5.7%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, S.L.-Y.; Yang, P.-J.; Lin, Y.-Y.; Jiang, Y.-J.; Liu, P.-I.; Huang, C.-L.; Yang, S.-F.; Tang, C.-H. Genetic Associations of Visfatin Polymorphisms with EGFR Status and Clinicopathologic Characteristics in Lung Adenocarcinoma. Int. J. Environ. Res. Public Health 2022, 19, 15172. https://doi.org/10.3390/ijerph192215172
Chang SL-Y, Yang P-J, Lin Y-Y, Jiang Y-J, Liu P-I, Huang C-L, Yang S-F, Tang C-H. Genetic Associations of Visfatin Polymorphisms with EGFR Status and Clinicopathologic Characteristics in Lung Adenocarcinoma. International Journal of Environmental Research and Public Health. 2022; 19(22):15172. https://doi.org/10.3390/ijerph192215172
Chicago/Turabian StyleChang, Sunny Li-Yun, Po-Jen Yang, Yen-You Lin, Ya-Jing Jiang, Po-I Liu, Chang-Lun Huang, Shun-Fa Yang, and Chih-Hsin Tang. 2022. "Genetic Associations of Visfatin Polymorphisms with EGFR Status and Clinicopathologic Characteristics in Lung Adenocarcinoma" International Journal of Environmental Research and Public Health 19, no. 22: 15172. https://doi.org/10.3390/ijerph192215172
APA StyleChang, S. L. -Y., Yang, P. -J., Lin, Y. -Y., Jiang, Y. -J., Liu, P. -I., Huang, C. -L., Yang, S. -F., & Tang, C. -H. (2022). Genetic Associations of Visfatin Polymorphisms with EGFR Status and Clinicopathologic Characteristics in Lung Adenocarcinoma. International Journal of Environmental Research and Public Health, 19(22), 15172. https://doi.org/10.3390/ijerph192215172