Shoulder Torque Production and Muscular Balance after Long and Short Tennis Points
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Moments
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kovacs, M.S. Applied physiology of tennis performance. Br. J. Sports Med. 2006, 40, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Moya-Ramon, M.; Nakamura, F.Y.; Teixeira, A.S.; Granacher, U.; Santos-Rosa, F.J.; Sanz-Rivas, D.; Fernandez-Fernandez, J. Effects of Resisted vs. Conventional Sprint Training on Physical Fitness in Young Elite Tennis Players. J. Hum. Kinet. 2020, 73, 181–192. [Google Scholar] [CrossRef]
- Torres-Luque, G.; Cabello-Manrique, D.; Hernandez-Garcia, R.; Garatachea, N. An analysis of competition in young tennis players. Eur. J. Sport Sci. 2011, 11, 39–43. [Google Scholar] [CrossRef]
- Genevois, C.; Reid, M.; Creveaux, T.; Rogowski, I. Kinematic differences in upper limb joints between flat and topspin forehand drives in competitive male tennis players. Sports Biomech. 2018, 19, 1–15. [Google Scholar] [CrossRef]
- Elliot, B.; Takahashi, K.; Noffal, G. The influence of grip position on iupper limb contributions to racket head velocity in a tennis forehand. J. Appl. Biomech. 1997, 13, 182–196. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.; Pfister, R.; Hager, L.R.; Hunter, I.; Seeley, M.K. Influence of tennis racquet kinematics on ball topspin angular velocity and accuracy during the forehand groundstroke. J. Sports Sci. Med. 2017, 16, 505–513. [Google Scholar]
- Shimokawa, R.; Nelson, A.; Zois, J. Does ground-reaction force influence post-impact ball speed in the tennis forehand groundstroke? Sports Biomech. 2020, 21, 850–860. [Google Scholar] [CrossRef]
- Rota, S.; Morel, B.; Saboul, D.; Rogowski, I.; Hautier, C. Influence of fatigue on upper limb muscle activity and performance in tennis. J. Electromyogr. Kinesiol. 2013, 24, 90–97. [Google Scholar] [CrossRef]
- Colomar, J.; Baiget, E.; Corbi, F. Influence of strenght, power, and muscular stiffness on stroke velocity in junior tennis players. Front. Physiol. 2020, 11, 196. [Google Scholar] [CrossRef]
- Rota, S.; Hautier, C.; Creveaux, T.; Champely, S.; Guillot, A.; Rogowski, I. Relationship between muscle coordination and forehand drive velocity in tennis. J. Electromyogr. Kinesiol. 2012, 22, 294–300. [Google Scholar] [CrossRef]
- Bakhsh, W.; Nicandri, G. Anatomy and physical examination of the shoulder. Sports Med. Arthrosc. Rev. 2018, 26, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Perez, V.M.; Elvira, J.L.; Fernandez, J.F.; Garcia, F.J. A comparative study of passive shoulder rotation range of motion, isometric rotation strength and serve speed between elite tennis playes with and without history of shoulder pain. Int. J. Sports Phys. Ther. 2018, 13, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Pezarat-Correia, P. Perfil muscular do ombro de atletas praticantes de acções de lançamento. Rev. Port. Fisiot. Desp. 2005, 4, 34–42. [Google Scholar]
- Bigland-Ritchie, B.; Woods, J.J. Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve 1984, 7, 691–699. [Google Scholar] [CrossRef]
- Luo, G.-F.; Chang, C.-M.; Shih, Y.-F. The effects of muscle fatigue on scapulothoracic joint position sense and neuromuscular performance. Musculoskelet. Sci. Pract. 2021, 56, 102461. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.H.; Lo, K.C.; Su, F.C. Skill level and forearm muscle fatigue e!ects on ball speed in tennis serve. Sports Biomech. 2018, 20, 1–12. [Google Scholar]
- Fabre, J.; Martin, V.; Gondin, J.; Cottin, F.; Grelot, L. Effect of playing surface properties on neuromuscular fatigue in tennis. Med. Sci. Sports Exerc. 2012, 44, 2182–2189. [Google Scholar] [CrossRef]
- Hornery, D.J.; Farrow, D.; Mujika, I.; Young, W. Fatigue in tennis. Mechanisms of Fatigue and Effect on Performance. Sports Med. 2012, 37, 199–212. [Google Scholar] [CrossRef]
- Ikenaga, M.; Okuma, N.; Nishiyama, H.; Chiba, S.; Nishimo, K.; Omori, G.; Numone, H. Influence of ball impact location on racquet kinematics, forearm muscle activation and shot accuracy during the forehand groundstrokes in tennis. Multidiscip. Digit. Publ. Inst. Proc. 2020, 49, 89. [Google Scholar]
- Sarabon, N.; Smajla, D.; Maffiuletti, N.A.; Bishop, C. Strength, Jumping and Change of Direction Speed Asymmetries in Soccer, Basketball and Tennis Players. Symmetry 2020, 12, 1664. [Google Scholar] [CrossRef]
- Ellenbecker, T.; Roetert, E.P. Age specific isokinetic glenohumeral internal and external rotation strength in elite junior tennis players. J. Sci. Med. Sport 2003, 6, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Rynkiewicz, M.; Rynkiewicz, T.; Zurek, P.; Zieman, E.; Szymanik, R. Asymmetry of muscle mass distribution in tennis players. Trends Sport Sci. 2013, 1, 147–153. [Google Scholar]
- Ellenbeckert, T. Shoulder internal and external rotation strenght and range of motion of highly skilled junior tennis players. Isokinet. Exerc. Sci. 1992, 2, 65–72. [Google Scholar] [CrossRef]
- Fort-Vanmeerhaeghe, A.; Bishop, C.; Busca, B.; Aguilera-Castells, J.; Vicens-Bordas, J.; Gonzalo-Skok, O. Inter-limb asymmetries are associated with decrements in physical performance in youth elite team sports athletes. PLoS ONE 2020, 15, e0229440. [Google Scholar] [CrossRef] [Green Version]
- Johansson, F.; Gabbet, T.; Svedmark, P.; Skillgate, E. External training load and the association with back pain in competitive adolescent tennis players: Results from the smash cohort study. Sports Health 2021, 20, 111–118. [Google Scholar] [CrossRef]
- Cools, A.M.; Wilde, L.D.; Tangel, A.V.; Ceyssens, C.; Ryckewaert, R.; Cambier, D.C. Measuring shoulder external and internal rotation strength and range of motion: Comprehensive intra-rater and inter-rater reliability study of several testing protocols. J. Shoulder Elbow Surg. 2014, 23, 1454–1461. [Google Scholar] [CrossRef]
- Dakic, J.; Gosling, C.; Smith, B. Musculoskeletal injury profile in professional Women’s Tennis Association (WTA) players. J. Sci. Med. Sport 2017, 20, 132. [Google Scholar] [CrossRef]
- O’Malley, E.; Richter, C.; King, E.; Strike, S.; Moran, K.; Franklyn-Miller, A.; Moran, R. Countermovement jump and isokinetic dynamometry as measures of rehabilitation status after anterior cruciate ligament reconstruction. J. Athl. Train. 2018, 53, 687–695. [Google Scholar] [CrossRef] [Green Version]
- Zanca, G.G.; Oliveira, A.B.; Saccol, M.F.; Mattielo-Rosa, S.M. Isokinetic dynamometry applied to shoulder rotators—Velocity limitations in eccentric evaluations. J. Sci. Med. Sport 2011, 14, 541–546. [Google Scholar] [CrossRef]
- Cools, A.; Johansson, F.; Borms, D.; Maenhout, A. Prevention of shoulder injuries in overhead athletes: A science-based approach. Braz. J. Phys. Ther. 2015, 19, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Ayala, F.; Moreno-Pérez, V.; Vera-Garcia, F.J.; Moya, M.; Sanz-Rivas, D.; Fernandez-Fernandez, J. Acute and time-course effects of traditional and dynamic warm-up routines in young elite junior tennis players. PLoS ONE 2016, 11, e0152790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, D.D.; Soares, S.; Zacca, R.; Marinho, D.A.; Silva, A.J.; Pyne, D.B.; Fernandes, R.J. In-Water and On-Land Swimmers Symmetry and Force Production. Int. J. Environ. Res. Public Health 2019, 16, 5018. [Google Scholar] [CrossRef] [Green Version]
- Robinson, R.O.; Herzog, W.; Nigg, B.M. Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry. J. Manip. Physiol. Ther. 1987, 10, 172–176. [Google Scholar]
- Landlinger, J.; Stoggl, T.; Lindlinger, S.; Wagner, H.; Muller, E. Differences in ball speed and accuracy of tennis. Eur. J. Sport Sci. 2010, 12, 301–308. [Google Scholar] [CrossRef]
- Gozlan, L.; Bensoussan, L.; Coudreuse, J.-M.; Fondarai, J.; Gremeaux, V.; Viton, J.-M.; Delarque, A. Isokinetic dynamometer measurement of shoulder rotational strength in healthy elite athletes (swimming, volley-ball, tennis): Comparison between dominant and nondominant shoulder. Ann. Med. Phys. 2006, 49, 8–15. [Google Scholar]
- Tunstall, H.; Mullineaux, D.R.; Vernon, T. Criterion validity of an isokinetic dynamometer to assess shoulder function in tennis players. Sports Biomech. 2005, 4, 101–111. [Google Scholar] [CrossRef]
- Elce, A.; Cardillo, G.; Ventriglia, M.; Giordano, C.; Amirante, F.; Mazza, G.; Martiniello, L. Anthropometric characteristics of young Italian. J. Hum. Sport Exerc. 2017, 12, 651–658. [Google Scholar] [CrossRef]
- Sanchez-Munoz, C.; Sanz, D.; Zabala, M. Anthropometric characteristics, body composition and somatotype of elite junior tennis players. Br. J. Sports Med. 2007, 41, 793–799. [Google Scholar] [CrossRef] [Green Version]
- Luna-Villouta, P.; Paredes-Arias, M.; Flores-Rivera, C.; Hernandez-Mosqueira, C.; Carvalho, R.S.; Faundez-Casanova, C.; Vargas-Vitoria, R. Anthropometric Characterization and Physical Performance by age and biological maturation in young tennis players. Int. J. Environ. Res. Public Health 2021, 18, 10893. [Google Scholar] [CrossRef]
- Bonato, M.; Maggioni, A.; Rossi, C.; Rampichini, S.; Torre, A.; Merati, G. Relationship between anthropometric or functional characteristics and maximal serve velocity in professional tennis players. J. Sports Med. Phys. Fit. 2014, 55, 1157–1165. [Google Scholar]
- Kalata, M.; Maly, T.; Hank, M.; Michalek, J.; Bujnovsky, D.; Kunzmann, E.; Zahalka, F. Unilateral and bilateral strength asymmetry among young elite athletes of various sports. Med. J. 2020, 56, 683. [Google Scholar] [CrossRef] [PubMed]
- Pontaga, I. Shoulder external/internal rotation peak torques ratio side-asymmetry, mean work and power ratios balance worsening due to different fatigue resistance of the rotator muscles in male handball players. Muscles Ligaments Tendons J. 2018, 8, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Saccol, M.F.; Silva, R.T.; Gracitelli, G.; Laurino, C.F. Concentric and eccentric isokinetic strength profile of shoulder rotators in elite junior tennis players. In Proceedings of the XXV ISBS Symposium, Ouro Preto, Brazil, 23–27 August 2007; pp. 608–610. [Google Scholar]
- Fernandez-Fernandez, J.; Moya-Ramon, M.; Santos-Rosa, F.J.; Gantois, P.; Nakamura, F.; Sanz-Rivas, D.; Granacher, U. Within-session sequence of the tennis serve training in youth elite players. Int. J. Environ. Res. Public Health 2021, 18, 244. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Perez, V.; Lopez-Samanes, A.; Dominguez, R.; Fernandez-Elias, V.E.; Gonzalez-Frutos, P.; Fernandez-Ruiz, V.; Fernandez-Fernandez, J. Acute effects of a single tennis match on passive shoulder rotation range of motion, isometric strength and serve speed in professional tennis players. PLoS ONE 2019, 14, e0215015. [Google Scholar] [CrossRef]
- Julienne, R.; Gauthier, A.; Davenne, D. Fatigue-resistance of the internal rotator muscles in the tennis player’s shoulder: Isokinetic and electromyographic analysis. Phys. Ther. Sport 2012, 13, 22–26. [Google Scholar] [CrossRef]
- Seeley, M.K.; Funk, M.D.; Denning, W.M.; Hager, R.L.; Hopkins, J.T. Tennis forehand kinematics change as post-impact ball speed is altered. Sports Biomech. 2011, 10, 415–426. [Google Scholar] [CrossRef]
- Knudson, D.V. Intrasubject variability of upper extremity angular kinematics in the tennis forehand drive. Int. J. Sport Biomech. 1990, 6, 415–421. [Google Scholar] [CrossRef]
- Zusa, A.; Lanka, J.; Vagin, A.; Cicchella, A. Body segments cooperation during forehand stroke production in young and adult tennis players. J. Hum. Sport. Exerc. 2014, 10, 161–168. [Google Scholar]
Variables | Male | Female | Total |
---|---|---|---|
Age (years) | 20.1 (5.4) * | 14.4 (0.5) | 18.7 (5.3) |
Training frequency (sessions/week) | 5.1 (1.5) | 5.0 (0.0) | 5.1 (1.3) |
Training volume (h/week) | 10.7 (2.7) | 10.0 (0.0) | 10.5 (2.4) |
Height (cm) | 177.2 (8.2) | 161.7 (4.4) | 173.7 (10.0) |
Body mass (kg) | 67.0 (10.8) * | 48.9 (4.3) | 62.5 (11.7) |
Body mass index (kg/m2) | 21.3 (2.0) * | 18.7 (1.2) | 20.6 (2.2) |
Biacromial breadth (cm) | 39.2 (2.9) * | 35.4 (1.6) | 38.3 (3.1) |
Bicristal breadth (cm) | 27.2 (1.9) * | 24.3 (1.3) | 26.5 (2.2) |
Humeral breadth (cm) | 6.6 (0.3) * | 6.0 (0.5) | 6.5 (0.4) |
Wrist breadth (cm) | 5.4 (0.2) * | 4.8 (0.3) | 5.2 (0.3) |
Palmar transverse breadth (cm) | 20.6 (3.5) | 19.8 (1.5) | 20.4 (3.1) |
Palmar longitudinal breadth (cm) | 19.4 (1.3) * | 17.9 (0.6) | 19.1 (1.3) |
Stretched arm circumference (cm) | 30.3 (3.2) * | 24.8 (0.7) | 28.9 (3.7) |
Relaxed arm circumference (cm) | 28.6 (2.8) * | 23.8 (0.7) | 27.4 (3.2) |
Forearm circumference (cm) | 25.8 (2.2) * | 22.5 (1.5) | 25.0 (2.5) |
Upper arm length (cm) | 57.2 (2.4) * | 50.9 (1.9) | 55.7 (6.2) |
Upper arm length (cm) | 26.6 (3.4) * | 23.5 (0.7) | 25.9 (3.3) |
Arm length (cm) | 30.2 (1.9) | 28.8 (1.4) | 29.9 (1.9) |
Bicipital folds (mm) | 5.5 (1.5) * | 6.8 (1.6) | 5.5 (1.7) |
Tricipital folds (mm) | 10.2 (3.5) * | 13.4 (1.7) | 11.0 (3.4) |
Variables | Dominant Upper Limb | Non-Dominant Upper Limb | t Test | Cohen’s d | ||
---|---|---|---|---|---|---|
t | ρ | |||||
90°/s angular velocity | ||||||
Peak torque (N.m) | ER | 21.9 (6.6) | 20.2 (6.3) | 2.56 | 0.01 * | 0.57 |
IR | 40.0 (14.9) | 29.1 (10.1) | 6.45 | 0.00 * | 1.44 | |
Peak torque/body weight (%) | ER | 34.9 (6.1) | 32.1 (5.9) | 2.83 | 0.01 * | 0.63 |
IR | 63.1 (15.6) | 45.9 (9.8) | 7.28 | 0.00 * | 1.63 | |
Total work (J) | ER | 263.2 (84.7) | 243.3 (88.0) | 1.38 | 0.18 | 0.30 |
IR | 541.6 (224.9) | 390.2 (143.2) | 4.74 | 0.00 * | 1.06 | |
Maximal repetition total work (J) | ER | 30.3 (9.6) | 27.3 (9.4) | 1.88 | 0.07 | 0.42 |
IR | 62.3 (23.0) | 44.6 (15.3) | 5.30 | 0.00 * | 1.18 | |
Average power (W) | ER | 18.3 (6.5) | 17.0 (7.1) | 1.40 | 0.00 * | 0.31 |
IR | 37.4 (7.1) | 27.0 (11.6) | 5.26 | 0.00 * | 1.17 | |
Average peak torque (N.m) | ER | 19.1 (5.9) | 18.0 (6.3) | 1.49 | 0.15 | 0.33 |
IR | 35.3 (14.5) | 25.8 (9.7) | 5.78 | 0.00 * | 1.29 | |
Range of motion (°) | 121.2 (11.9) | 120.7 (12.8) | 0.24 | 0.80 | 0.05 | |
External/internal rotation ratios (%) | 57.7 (13.2) | 70.9 (10.6) | −5.26 | 0.00 * | 1.17 | |
180º/s angular velocity | ||||||
Peak torque (N.m) | ER | 21.4 (7.9) | 19.1 (6.8) | 2.15 | 0.04 * | 0.48 |
IR | 39.9 (16.4) | 28.1 (11.5) | 6.71 | 0.00 * | 1.50 | |
Peak torque/body weight (%) | ER | 33.7 (7.8) | 29.9 (6.0) | 2.45 | 0.02 * | 0.55 |
IR | 62.5 (17.3) | 44.0 (12.6) | 8.15 | 0.00 * | 1.82 | |
Total work (J) | ER | 219.8 (84.3) | 193.6 (89.0) | 2.07 | 0.05 | 0.46 |
IR | 534.4 (244.5) | 363.8 (161.3) | 5.36 | 0.00 * | 1.20 | |
Maximal repetition total work (J) | ER | 25.1 (8.9) | 23.0 (9.7) | 1.46 | 0.15 | 0.32 |
IR | 60.3 (25.4) | 41.8 (17.7) | 5.60 | 0.00 * | 1.25 | |
Average power (W) | ER | 25.4 (10.9) | 22.4 (12.1) | 1.90 | 0.07 | 0.42 |
IR | 63.3 (33.2) | 42.1 (22.2) | 5.22 | 0.00 * | 1.16 | |
Average peak torque (N.m) | ER | 19.0 (7.0) | 16.6 (6.4) | 2.40 | 0.02 * | 0.53 |
IR | 36.2 (15.7) | 25.1 (10.4) | 6.24 | 0.00 * | 1.39 | |
Range of motion (°) | 122.5 (10.5) | 124.1 (12.8) | −0.99 | 0.33 | 0.22 | |
External/internal rotation ratios (%) | 56.7 (16.2) | 70.6 (13.4) | −5.90 | 0.00 * | 1.32 |
Variables | Dominant Upper Limb | Non-Dominant Upper Limb | |||||||
---|---|---|---|---|---|---|---|---|---|
Before Five Forehands | After Five Forehands | Before Ten Forehands | After Ten Forehands | Before Five Forehands | After Five Forehands | Before Ten Forehands | After Ten Forehands | ||
Peak torque (N.m) | ER | 26.4 (9.3) | 26.3 (8.3) | 27.4 (8.5) | 26.6 (9.1) | 21.1 (6.9) 4 | 20.9 (7.1) 4 | 21.3 (6.3) 4 | 22.1 (5.7) 4 |
IR | 38.3 (15.8) | 38.2 (15.8) | 39.3 (16.1) | 38.1 (15.6) 3 | 30.5 (12.0) 4 | 31.0 (12.1) 4 | 30.0 (12.5) 4 | 30.4 (12.3) 1,4 | |
Peak torque/body weight (%) | ER | 42.5 (10.7) | 42.0 (8.5) 2 | 43.9 (9.3) | 42.7 (10.6) | 34.1 (7.3) 4 | 33.5 (7.9) 4 | 34.1 (6.9) 4 | 35.7 (5.1) 4 |
IR | 60.3 (16.7) | 59.5 (16.1) 2 | 61.5 (16.9) | 60.4 (16.8) 3 | 48.5 (13.6) 4 | 49.0 (13.3) 4 | 47.5 (14.6) 4 | 48.4 (13.2) 4 | |
Total work (J) | ER | 273.4 (108.0) | 265.6 (94.6) 2 | 263.7 (91.4) | 238.8 (84.0) 1,3 | 223.5 (83.4) 4 | 225.4 (85.1) 4 | 226.9 (85.9) 4 | 214.8 (72.9) 1 |
IR | 580.9 (285.4) | 584.1 (268.5) | 579.6 (259.8) | 529.9 (265.9) 1,3 | 403.5 (197.9) 4 | 416.4 (192.5) 2,4 | 394.1 (184.4) 4 | 385.2 (174.6) 4 | |
Maximal repetition total work (J) | ER | 30.7 (12.1) | 29.6 (10.6) 2 | 29.3 (10.1) | 26.5 (9.2) 1,3 | 24.7 (8.9) 4 | 25.2 (9.2) 4 | 25.3 (9.0) 4 | 24.2 (8.4) |
IR | 65.4 (29.4) | 65.1 (28.4) | 66.0 (28.2) | 60.5 (29.3) 3 | 45.8 (21.1) 4 | 47.3 (20.5) 4 | 44.9 (19.7) 4 | 44.3 (19.6)4 | |
Average power (W) | ER | 31.8 (14.7) | 48.1 (30.2) 2 | 30.3 (11.9) | 28.1 (11.8) 1,3 | 26.0 (11.4) 4 | 25.7 (11.5) 4 | 26.7 (11.9) 4 | 25.8 (10.9) |
IR | 69.8 (37.5) | 67.8 (34.4) | 68.6 (34.2) | 63.9 (35.4) 3 | 47.0 (25.6) 4 | 47.5 (24.5) 4 | 46.4 (24.1) 4 | 46.4 (23.3) 4 | |
Average peak torque (N.m) | ER | 22.6 (8.3) | 22.9 (7.7) | 23.3 (7.4) | 22.8 (7.7) | 17.7 (5.4) 4 | 18.1 (6.2) 4 | 18.3 (5.6) 4 | 18.8 (5.1) 4 |
IR | 34.9 (15.5) | 34.4 (14.8) | 35.1 (14.5) | 33.6 (14.2) 1 | 26.9 (11.2) 4 | 26.9 (11.2) 4 | 26.4 (11.4) 4 | 26.3 (10.9) 4 | |
Range of motion (°) | 124.0 (9.2) | 125.9 (10.5) | 124.3 (12.1) | 121.6 (9.8) 1,3 | 118.7 (9.8) 4 | 121.9 (10.2) 4 | 118.8 (10.7) 4 | 116.9 (11.2) 1,4,3 | |
External/internal rotation ratios (%) | 71.3 (14.5) | 73.2 (15.2) | 71.9 (11.6) | 72.8 (14.6) | 73.4 (16.7) | 70.6 (16.3) | 74.2 (15.0) | 76.1 (14.0) |
Variables | Five Forehands | Ten Forehands | t-Test | Cohen’s d | |
---|---|---|---|---|---|
t | ρ | ||||
Ball speed (km/h) | 122.2 (17.5) | 120.4 (15.3) | 0.95 | 0.35 | 0.21 |
Ball accuracy (0–2 scale) 1 | 1.0 (0.2) | 1.0 (0.1) | 0.29 | 0.76 | 0.06 |
Handgrip angle in the preparation phase (°) | 134.4 (16.6) | 132.1 (13.8) | 0.76 | 0.45 | 0.17 |
Limb abduction angle in the preparation phase (°) | 39.9 (10.7) | 38.6 (11.9) | 0.84 | 0.41 | 0.18 |
Ball to racket angle in the phase before the swing (°) | 94.0 (5.0) | 91.9 (5.3) | −0.78 | 0.44 | −0.17 |
Forearm flexion angle in the phase before the swing (°) | 112.1 (16.5) | 114.4 (18.1) | 3.23 | 0.00 * | 0.72 |
Angle between the ball/racket in the phase before swing (°) | 97.8 (5.6) | 97.7 (4.9) | 0.16 | 0.86 | 0.03 |
Forearm flexion angle in the final phase (°) | 113.0 (11.9) | 113.6 (13.1) | −0.32 | 0.75 | 0.07 |
Angle of the wrist in the final phase (°) | 139.6 (7.6) | 150.1 (9.5) | −3.35 | 0.00 * | 0.75 |
Horizontal racquet displacement (cm) | 160.9 (26.4) | 181.1 (24.2) | −2.76 | 0.01 * | 0.61 |
Vertical racket displacement (cm) | 86.4 (24.8) | 95.6 (16.0) | −2.51 | 0.02 * | 0.56 |
Horizontal shoulder displacement (cm) | 44.1 (15.2) | 45.6 (16.1) | −0.50 | 0.62 | 0.11 |
Vertical shoulder displacement (cm) | 12.9 (3.8) | 17.2 (4.4) | −6.17 | 0.00 * | 1.38 |
Horizontal wrist displacement (cm) | 97.7 (23.5) | 100.6 (15.9) | −0.49 | 0.62 | 0.11 |
Vertical wrist displacement (cm) | 41.6 (11.7) | 47.8 (9.3) | −3.44 | 0.00 * | 0.77 |
Horizontal hip displacement (cm) | 42.5 (18.2) | 44.8 (15.7) | −0.66 | 0.51 | 0.14 |
Vertical hip displacement (cm) | 9.6 (3.4) | 11.9 (3.5) | −3.90 | 0.00 * | 0.87 |
Horizontal racket speed (m·s−1) | 16.4 (3.7) | 19.5 (3.2) | −3.03 | 0.00 * | 0.67 |
Horizontal shoulder speed (m·s−1) | 1.9 (0.8) | 2.1 (0.7) | −0.82 | 0.42 | 0.18 |
Horizontal wrist speed (m·s−1) | 6.1 (1.5) | 6.9 (1.7) | −2.37 | 0.02 * | 0.53 |
Horizontal hip speed (m·s−1) | 1.6 (0.5) | 1.6 (0.5) | −0.42 | 0.67 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brito, A.V.; Carvalho, D.D.; Fonseca, P.; Monteiro, A.S.; Fernandes, A.; Fernández-Fernández, J.; Fernandes, R.J. Shoulder Torque Production and Muscular Balance after Long and Short Tennis Points. Int. J. Environ. Res. Public Health 2022, 19, 15857. https://doi.org/10.3390/ijerph192315857
Brito AV, Carvalho DD, Fonseca P, Monteiro AS, Fernandes A, Fernández-Fernández J, Fernandes RJ. Shoulder Torque Production and Muscular Balance after Long and Short Tennis Points. International Journal of Environmental Research and Public Health. 2022; 19(23):15857. https://doi.org/10.3390/ijerph192315857
Chicago/Turabian StyleBrito, André V., Diogo D. Carvalho, Pedro Fonseca, Ana S. Monteiro, Aléxia Fernandes, Jaime Fernández-Fernández, and Ricardo J. Fernandes. 2022. "Shoulder Torque Production and Muscular Balance after Long and Short Tennis Points" International Journal of Environmental Research and Public Health 19, no. 23: 15857. https://doi.org/10.3390/ijerph192315857
APA StyleBrito, A. V., Carvalho, D. D., Fonseca, P., Monteiro, A. S., Fernandes, A., Fernández-Fernández, J., & Fernandes, R. J. (2022). Shoulder Torque Production and Muscular Balance after Long and Short Tennis Points. International Journal of Environmental Research and Public Health, 19(23), 15857. https://doi.org/10.3390/ijerph192315857