Status, Trend, and Prospect of Global Farmland Abandonment Research: A Bibliometric Analysis
Abstract
:1. Introduction
2. Data Sources and Methods
2.1. Data Sources
2.2. Methods
3. Results and Discussion
3.1. Analysis of Annual Scientific Results Output and Citation Number
3.2. Journal Sources
3.3. Author Analysis
3.4. Analysis of the Distribution Characteristics of the Main Research Countries/Regions
3.5. Document Analysis
3.5.1. Analysis of Highly Cited Papers
Paper | Year | Total Citations | TC per Year | LCR | Source |
---|---|---|---|---|---|
What’s new about old fields? Land abandonment and ecosystem assembly [78] | 2008 | 531 | 35.4 | 12.81 | Trends in Ecology and Evolution |
Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model [120] | 2009 | 449 | 32.07 | 8.02 | Landscape Ecology |
Tree line shifts in the Swiss Alps: Climate change or land abandonment? [133] | 2007 | 433 | 27.06 | 0 | Journal of Vegetation Science |
The global potential of bioenergy on abandoned agriculture lands [79] | 2008 | 418 | 27.87 | 9.09 | Environmental Science & Technology |
The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands [74] | 2000 | 347 | 15.09 | 2.88 | Restoration Ecology |
Agricultural land abandonment and natural forest re-growth in the Swiss mountains: A spatially explicit economic analysis [118] | 2007 | 342 | 21.38 | 23.98 | Agriculture Ecosystems & Environment |
Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region—A review [45] | 2011 | 288 | 24 | 17.71 | Agriculture Ecosystems & Environment |
Patterns and drivers of post-socialist farmland abandonment in Western Ukraine [42] | 2011 | 287 | 23.92 | 27.87 | Land Use Policy |
Farmland abandonment: threat or opportunity for biodiversity conservation? A global review [19] | 2014 | 262 | 29.11 | 21.76 | Frontiers in Ecology and the Environment |
Policy reform and agricultural land abandonment in the EU [119] | 2013 | 259 | 25.9 | 21.24 | Land Use Policy |
3.5.2. Keyword Analysis
3.5.3. High-Frequency Keyword Cluster Analysis and Multiple Correspondence Analysis
3.5.4. Analysis of the Research Theme Evolution
3.5.5. Analysis of the Monitoring Method Evolution
4. Conclusions and Prospects
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Rank | Author Keywords (DE) | Articles | Keywords-Plus (ID) | Articles |
---|---|---|---|---|
1 | Abandonment/land abandonment/farmland Abandonment/abandoned farmland/cropland abandonment/abandoned land/abandoned cropland/agricultural abandonment/agricultural land abandonment/abandoned agricultural land | 284 | Farmland abandonment/agricultural land abandonment | 107 |
2 | Land use change | 81 | Vegetation | 90 |
3 | Land use | 42 | Dynamics | 86 |
4 | Secondary succession | 32 | Forest | 81 |
5 | Afforestation | 25 | Management | 79 |
6 | Soil erosion | 24 | Diversity | 74 |
7 | Remote sensing | 22 | Europe | 62 |
8 | Agriculture | 21 | Consequences | 61 |
9 | China | 21 | Conservation | 61 |
10 | Loess plateau | 21 | Biodiversity | 56 |
11 | Succession | 20 | Landscape | 54 |
12 | Mediterranean | 15 | Patterns | 54 |
13 | Soil organic carbon | 15 | Drivers | 46 |
14 | Biodiversity | 14 | Restoration | 46 |
15 | Reforestation | 14 | Impact | 44 |
16 | Restoration | 14 | Cover | 43 |
17 | Spain | 14 | Nitrogen | 43 |
18 | Europe | 11 | Carbon | 42 |
19 | GIS | 11 | Succession | 40 |
20 | Natural regeneration | 11 | Soil erosion | 39 |
References
- Pereira, H.M.; Leadley, P.W.; Proença, V.; Alkemade, R.; Scharlemann, J.P.; Fernandez-Manjarrés, J.F.; Araújo, M.B.; Balvanera, P.; Biggs, R.; Cheung, W.W. Scenarios for global biodiversity in the 21st century. Science 2010, 330, 1496–1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Sluis, T.; Kizos, T.; Pedroli, B. Landscape change in Mediterranean farmlands: Impacts of land abandonment on cultivation terraces in Portofino (Italy) and Lesvos (Greece). J. Landsc. Ecol. 2014, 7, 23–44. [Google Scholar] [CrossRef] [Green Version]
- Nadal-Romero, E.; Cammeraat, E.; Pérez-Cardiel, E.; Lasanta, T. Effects of secondary succession and afforestation practices on soil properties after cropland abandonment in humid Mediterranean mountain areas. Agric. Ecosyst. Environ. 2016, 228, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Leal Filho, W.; Mandel, M.; Al-Amin, A.Q.; Feher, A.; Chiappetta Jabbour, C.J. An assessment of the causes and consequences of agricultural land abandonment in Europe. Int. J. Sustain. Dev. World Ecol. 2017, 24, 554–560. [Google Scholar] [CrossRef] [Green Version]
- Keenleyside, C.; Tucker, G.; McConville, A. Farmland Abandonment in the EU: An Assessment of Trends and Prospects; Institute for European Environmental Policy: London, UK, 2010. [Google Scholar]
- Zhang, X.; Brandt, M.; Tong, X.; Ciais, P.; Yue, Y.; Xiao, X.; Zhang, W.; Wang, K.; Fensholt, R. A large but transient carbon sink from urbanization and rural depopulation in China. Nat. Sustain. 2022, 5, 321–328. [Google Scholar] [CrossRef]
- Mottet, A.; Ladet, S.; Coqué, N.; Gibon, A. Agricultural land-use change and its drivers in mountain landscapes: A case study in the Pyrenees. Agric. Ecosyst. Environ. 2006, 114, 296–310. [Google Scholar] [CrossRef]
- Viviroli, D.; Dürr, H.H.; Messerli, B.; Meybeck, M.; Weingartner, R. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res. 2007, 43, W07447. [Google Scholar] [CrossRef] [Green Version]
- Brinkert, A.; Hölzel, N.; Sidorova, T.V.; Kamp, J. Spontaneous steppe restoration on abandoned cropland in Kazakhstan: Grazing affects successional pathways. Biodivers. Conserv. 2016, 25, 2543–2561. [Google Scholar] [CrossRef]
- Rey-Benayas, J.M.; Galván, I.; Carrascal, L.M. Differential effects of vegetation restoration in Mediterranean abandoned cropland by secondary succession and pine plantations on bird assemblages. For. Ecol. Manag. 2010, 260, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Stanturf, J.A.; Madsen, P. Restoration concepts for temperate and boreal forests of North America and Western Europe. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2002, 136, 143–158. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Song, W. Mapping cropland abandonment in mountainous areas using an annual land-use trajectory approach. Sustainability 2019, 11, 5951. [Google Scholar] [CrossRef] [Green Version]
- Pointereau, P.; Coulon, F.; Girard, P.; Lambotte, M.; Stuczynski, T.; Sánchez Ortega, V.; Del Rio, A. Analysis of the Driving Forces Behind Farmland Abandonment and the Extent and Location of Agricultural Areas that are Actually Abandoned or are in Risk to be Abandoned; EUR-OP: Luxembourg, 2008. [Google Scholar]
- Löw, F.; Fliemann, E.; Abdullaev, I.; Conrad, C.; Lamers, J.P. Mapping abandoned agricultural land in Kyzyl-Orda, Kazakhstan using satellite remote sensing. Appl. Geogr. 2015, 62, 377–390. [Google Scholar] [CrossRef]
- Loboda, T.; Krankina, O.; Savin, I.; Kurbanov, E.; Hall, J. Land management and the impact of the 2010 extreme drought event on the agricultural and ecological systems of European Russia. In Land-Cover and Land-Use Changes in Eastern Europe after the Collapse of the Soviet Union in 1991; Springer: Cham, Switzerland, 2017; pp. 173–192. [Google Scholar] [CrossRef]
- Queiroz, C.; Beilin, R.; Folke, C.; Lindborg, R. Farmland abandonment: Threat or opportunity for biodiversity conservation? A global review. Front. Ecol. Environ. 2014, 12, 288–296. [Google Scholar] [CrossRef]
- Li, S.; Li, X. Global understanding of farmland abandonment: A review and prospects. J. Geogr. Sci. 2017, 27, 1123–1150. [Google Scholar] [CrossRef]
- Woodhouse, S.; Good, J.; Lovett, A.; Fuller, R.; Dolman, P. Effects of land-use and agricultural management on birds of marginal farmland: A case study in the Llŷn peninsula, Wales. Agric. Ecosyst. Environ. 2005, 107, 331–340. [Google Scholar] [CrossRef]
- Lark, T.J.; Spawn, S.A.; Bougie, M.; Gibbs, H.K. Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nat. Commun. 2020, 11, 4295. [Google Scholar] [CrossRef] [PubMed]
- Dantas de Miranda, M.; Pereira, H.M.; Corley, M.F.; Merckx, T. Beta diversity patterns reveal positive effects of farmland abandonment on moth communities. Sci. Rep. 2019, 9, 1549. [Google Scholar] [CrossRef] [PubMed]
- Schierhorn, F.; Müller, D.; Beringer, T.; Prishchepov, A.V.; Kuemmerle, T.; Balmann, A. Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Glob. Biogeochem. Cycles 2013, 27, 1175–1185. [Google Scholar] [CrossRef]
- Romero-Díaz, A.; Ruiz-Sinoga, J.D.; Robledano-Aymerich, F.; Brevik, E.C.; Cerdà, A. Ecosystem responses to land abandonment in Western Mediterranean Mountains. Catena 2017, 149, 824–835. [Google Scholar] [CrossRef] [Green Version]
- Benayas, J.R.; Martins, A.; Nicolau, J.M.; Schulz, J.J. Abandonment of agricultural land: An overview of drivers and consequences. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2007, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P.; Cerdà, A.; Úbeda, X.; Mataix-Solera, J.; Arcenegui, V.; Zavala, L. Modelling the impacts of wildfire on ash thickness in a short-term period. Land Degrad. Dev. 2015, 26, 180–192. [Google Scholar] [CrossRef]
- Smelansky, I.E. Biodiversity of Agricultural Lands in Russia: Current State and Trends. Available online: https://www.researchgate.net/publication/283504120_Biodiversity_of_Agricultural_Lands_in_Russia_Current_State_and_Trends (accessed on 14 October 2022).
- Wei, S.; Ying, Z. Farmland abandonment research progress: Influencing factors and simulation model. J. Resour. Ecol. 2019, 10, 345–352. [Google Scholar] [CrossRef]
- Tieskens, K.F.; Schulp, C.J.; Levers, C.; Lieskovský, J.; Kuemmerle, T.; Plieninger, T.; Verburg, P.H. Characterizing European cultural landscapes: Accounting for structure, management intensity and value of agricultural and forest landscapes. Land Use Policy 2017, 62, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Plieninger, T. Habitat loss, Fragmentation, and Alteration–Quantifying the Impactof Land-use Changes on a Spanish Dehesa Landscape by Use of Aerial Photography and GIS. Landsc. Ecol. 2006, 21, 91–105. [Google Scholar] [CrossRef]
- Ruiz-Flan, P.; Garci, J.; Ortigosa, L. Geomorphological evolution of abandoned fields. A case study in the Central Pyrenees. Catena 1992, 19, 301–308. [Google Scholar] [CrossRef]
- Saraykin, V.; Yanbykh, R.; Uzun, V. Assessing the Potential for Russian Grain Exports: A Special Focus on the Prospective Cultivation of Abandoned Land. In The Eurasian Wheat Belt and Food Security; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Shi, T.; Li, X.; Xin, L.; Xu, X. The spatial distribution of farmland abandonment and its influential factors at the township level: A case study in the mountainous area of China. Land Use Policy 2018, 70, 510–520. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Sun, L.; Cao, G.; Fischer, G.; Tramberend, S. An estimation of the extent of cropland abandonment in mountainous regions of China. Land Degrad. Dev. 2018, 29, 1327–1342. [Google Scholar] [CrossRef]
- Ioffe, G.; Nefedova, T.; Kirsten, D.B. Land abandonment in Russia. Eurasian Geogr. Econ. 2012, 53, 527–549. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Schierhorn, F.; Prishchepov, A.V.; Müller, D.; Kuemmerle, T. Drivers, constraints and trade-offs associated with recultivating abandoned cropland in Russia, Ukraine and Kazakhstan. Glob. Environ. Chang. 2016, 37, 1–15. [Google Scholar] [CrossRef]
- Khamzina, A.; Lamers, J.; Vlek, P.L. Conversion of degraded cropland to tree plantations for ecosystem and livelihood benefits. In Cotton, Water, Salts and Soums; Springer: Dordrecht, The Netherlands, 2012; pp. 235–248. [Google Scholar] [CrossRef]
- Hatna, E.; Bakker, M.M. Abandonment and expansion of arable land in Europe. Ecosystems 2011, 14, 720–731. [Google Scholar] [CrossRef] [Green Version]
- Müller, D.; Leitão, P.J.; Sikor, T. Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees. Agric. Syst. 2013, 117, 66–77. [Google Scholar] [CrossRef]
- Gellrich, M.; Zimmermann, N.E. Investigating the regional-scale pattern of agricultural land abandonment in the Swiss mountains: A spatial statistical modelling approach. Landsc. Urban Plan. 2007, 79, 65–76. [Google Scholar] [CrossRef]
- Baumann, M.; Kuemmerle, T.; Elbakidze, M.; Ozdogan, M.; Radeloff, V.C.; Keuler, N.S.; Prishchepov, A.V.; Kruhlov, I.; Hostert, P. Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy 2011, 28, 552–562. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Stellmes, M.; Röder, A.; Udelhoven, T.; Hill, J. Mapping syndromes of land change in Spain with remote sensing time series, demographic and climatic data. Land Use Policy 2013, 30, 685–702. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Lana-Renault, N. Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region–A review. Agric. Ecosyst. Environ. 2011, 140, 317–338. [Google Scholar] [CrossRef]
- Tarolli, P.; Preti, F.; Romano, N. Terraced landscapes: From an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene 2014, 6, 10–25. [Google Scholar] [CrossRef]
- Rousseau, D.M. The Oxford Handbook of Evidence-Based Management; Oxford University Press: Oxford, UK, 2012. [Google Scholar] [CrossRef]
- Bosserman, P. Invisible Colleges: Diffusion of Knowledge in Scientific Communities. Am. J. Sociol. 1973, 79, 180–182. [Google Scholar] [CrossRef]
- Garfield, E. From the science of science to Scientometrics visualizing the history of science with HistCite software. J. Informetr. 2009, 3, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Ye, Y. A Study on Mining Bibliographic Records by Designed Software SATI: Case Study on Library and Information Science. J. Inf. Resour. Manag. 2012, 2, 50–58. [Google Scholar]
- Wang, W.; Lu, C. Visualization analysis of big data research based on Citespace. Soft Comput. 2020, 24, 8173–8186. [Google Scholar] [CrossRef]
- Gagolewski, M. Bibliometric impact assessment with R and the CITAN package. J. Informetr. 2011, 5, 678–692. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, Y.; Wu, Z.; Lv, T. A bibliometric analysis on land degradation: Current status, development, and future directions. Land 2020, 9, 28. [Google Scholar] [CrossRef]
- Rodríguez-Soler, R.; Uribe-Toril, J.; Valenciano, J.D.P. Worldwide trends in the scientific production on rural depopulation, a bibliometric analysis using bibliometrix R-tool. Land Use Policy 2020, 97, 104787. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Wang, Y.; Fath, B.D. Research progress and hotspot analysis for reactive nitrogen flows in macroscopic systems based on a CiteSpace analysis. Ecol. Model. 2021, 443, 109456. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Song, W. Determinants of cropland abandonment at the parcel, household and village levels in mountain areas of China: A multi-level analysis. Land Use Policy 2014, 41, 186–192. [Google Scholar] [CrossRef]
- Song, W.; Pijanowski, B.C. The effects of China’s cultivated land balance program on potential land productivity at a national scale. Appl. Geogr. 2014, 46, 158–170. [Google Scholar] [CrossRef]
- Yin, H.; Prishchepov, A.V.; Kuemmerle, T.; Bleyhl, B.; Buchner, J.; Radeloff, V.C. Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sens. Environ. Interdiscip. J. 2018, 210, 12–24. [Google Scholar] [CrossRef]
- Quintas-Soriano, C.; Buerkert, A.; Plieninger, T. Effects of land abandonment on nature contributions to people and good quality of life components in the Mediterranean region: A review. Land Use Policy 2022, 116, 106053. [Google Scholar] [CrossRef]
- Ekundayo, T.C.; Okoh, A.I. A global bibliometric analysis of Plesiomonas-related research (1990–2017). PLoS ONE 2018, 13, e0207655. [Google Scholar] [CrossRef] [Green Version]
- Zyoud, S.H.; Waring, W.S.; Al-Jabi, S.W.; Sweileh, W.M. Global cocaine intoxication research trends during 1975-2015: A bibliometric analysis of Web of Science publications. Subst Abus. Treat Prev Policy 2017, 12, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okolie, C.C.; Ogundeji, A.A. Effect of COVID-19 on agricultural production and food security: A scientometric analysis. Humanit. Soc. Sci. Commun. 2022, 9, 64. [Google Scholar] [CrossRef]
- Waltman, L. A review of the literature on citation impact indicators. J. Informetr. 2016, 10, 365–391. [Google Scholar] [CrossRef]
- Callon, M.; Courtial, J.-P.; Turner, W.A.; Bauin, S. From translations to problematic networks: An introduction to co-word analysis. Soc. Sci. Inf. 1983, 22, 191–235. [Google Scholar] [CrossRef]
- Glänzel, W. National characteristics in international scientific co-authorship relations. Scientometrics 2001, 51, 69–115. [Google Scholar] [CrossRef]
- Zhao, D.; Strotmann, A. Evolution of research activities and intellectual influences in information science 1996–2005: Introducing author bibliographic-coupling analysis. J. Am. Soc. Inf. Sci. Technol. 2008, 59, 2070–2086. [Google Scholar] [CrossRef]
- White, H.D.; Griffith, B.C. Author cocitation: A literature measure of intellectual structure. J. Am. Soc. Inf. Sci. 1981, 32, 163–171. [Google Scholar] [CrossRef]
- Yan, E.; Ding, Y. Scholarly network similarities: How bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 1313–1326. [Google Scholar] [CrossRef]
- Kessler, M.M. Bibliographic coupling between scientific papers. Am. Doc. 1963, 14, 10–25. [Google Scholar] [CrossRef]
- Yang, S.; Han, R.; Wolfram, D.; Zhao, Y. Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis. J. Informetr. 2016, 10, 132–150. [Google Scholar] [CrossRef]
- Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Gibson, C.; Watt, T.; Brown, V. The use of sheep grazing to recreate species-rich grassland from abandoned arable land. Biol. Conserv. 1987, 42, 165–183. [Google Scholar] [CrossRef]
- Silver, W.L.; Ostertag, R.; Lugo, A.E. The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. Restor. Ecol. 2000, 8, 394–407. [Google Scholar] [CrossRef]
- Lasanta, T.; Garcıa-Ruiz, J.; Pérez-Rontomé, C.; Sancho-Marcén, C. Runoff and sediment yield in a semi-arid environment: The effect of land management after farmland abandonment. Catena 2000, 38, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Cerdà, A. Soil erosion after land abandonment in a semiarid environment of southeastern Spain. Arid Land Res. Manag. 1997, 11, 163–176. [Google Scholar] [CrossRef]
- Molinillo, M.; Lasanta, T.; García-Ruiz, J.M. Managing mountainous degraded landscapes after farmland abandonment in the Central Spanish Pyrenees. Environ. Manag. 1997, 21, 587. [Google Scholar] [CrossRef]
- Cramer, V.A.; Hobbs, R.J.; Standish, R.J. What’s new about old fields? Land abandonment and ecosystem assembly. Trends Ecol. Evol. 2008, 23, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.E.; Lobell, D.B.; Genova, R.C.; Field, C.B. The global potential of bioenergy on abandoned agriculture lands. Environ. Sci. Technol. 2008, 42, 5791–5794. [Google Scholar] [CrossRef]
- Romero-Calcerrada, R.; Perry, G.L. The role of land abandonment in landscape dynamics in the SPA ‘Encinares del río Alberche y Cofio, Central Spain, 1984–1999. Landsc. Urban Plan. 2004, 66, 217–232. [Google Scholar] [CrossRef]
- Poyatos, R.; Latron, J.; Llorens, P. Land use and land cover change after agricultural abandonment. Mt. Res. Dev. 2003, 23, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Bowen, M.E.; McAlpine, C.A.; House, A.P.; Smith, G.C. Regrowth forests on abandoned agricultural land: A review of their habitat values for recovering forest fauna. Biol. Conserv. 2007, 140, 273–296. [Google Scholar] [CrossRef]
- Lugo, A.E.; Helmer, E. Emerging forests on abandoned land: Puerto Rico’s new forests. For. Ecol. Manag. 2004, 190, 145–161. [Google Scholar] [CrossRef] [Green Version]
- Koulouri, M.; Giourga, C. Land abandonment and slope gradient as key factors of soil erosion in Mediterranean terraced lands. Catena 2007, 69, 274–281. [Google Scholar] [CrossRef]
- Estel, S.; Kuemmerle, T.; Alcántara, C.; Levers, C.; Prishchepov, A.; Hostert, P. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sens. Environ. 2015, 163, 312–325. [Google Scholar] [CrossRef]
- Ustaoglu, E.; Collier, M.J. Farmland abandonment in Europe: An overview of drivers, consequences, and assessment of the sustainability implications. Environ. Rev. 2018, 26, 396–416. [Google Scholar] [CrossRef]
- Lasanta, T.; Arnáez, J.; Pascual, N.; Ruiz-Flaño, P.; Errea, M.; Lana-Renault, N. Space–time process and drivers of land abandonment in Europe. Catena 2017, 149, 810–823. [Google Scholar] [CrossRef]
- Yan, J.; Yang, Z.; Li, Z.; Li, X.; Xin, L.; Sun, L. Drivers of cropland abandonment in mountainous areas: A household decision model on farming scale in Southwest China. Land Use Policy 2016, 57, 459–469. [Google Scholar] [CrossRef] [Green Version]
- Kolecka, N.; Kozak, J.; Kaim, D.; Dobosz, M.; Ostafin, K.; Ostapowicz, K.; Wężyk, P.; Price, B. Understanding farmland abandonment in the Polish Carpathians. Appl. Geogr. 2017, 88, 62–72. [Google Scholar] [CrossRef]
- Su, G.; Okahashi, H.; Chen, L. Spatial pattern of farmland abandonment in Japan: Identification and determinants. Sustainability 2018, 10, 3676. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Song, W. Abandoned cropland: Patterns and determinants within the Guangxi karst mountainous area, China. Appl. Geogr. 2020, 122, 102245. [Google Scholar] [CrossRef]
- Xu, D.; Deng, X.; Guo, S.; Liu, S. Labor migration and farmland abandonment in rural China: Empirical results and policy implications. J. Environ. Manag. 2019, 232, 738–750. [Google Scholar] [CrossRef]
- Peters, H.; Van Raan, A. Structuring scientific activities by co-author analysis: An expercise on a university faculty level. Scientometrics 1991, 20, 235–255. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Hostert, P.; Radeloff, V.C.; van der Linden, S.; Perzanowski, K.; Kruhlov, I. Cross-border Comparison of Post-socialist Farmland Abandonment in the Carpathians. Ecosystems 2008, 11, 614–628. [Google Scholar] [CrossRef]
- Müller, D.; Munroe, D.K. Changing Rural Landscapes in Albania: Cropland Abandonment and Forest Clearing in the Postsocialist Transition. Ann. Assoc. Am. Geogr. 2008, 98, 855–876. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Müller, D.; Dubinin, M.; Baumann, M.; Radeloff, V.C. Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy 2013, 30, 873–884. [Google Scholar] [CrossRef] [Green Version]
- Lana-Renault, N.; Regüés, D. Seasonal patterns of suspended sediment transport in an abandoned farmland catchment in the Central Spanish Pyrenees. Earth Surf. Process. Landf. 2009, 34, 1291–1301. [Google Scholar] [CrossRef]
- Khorchani, M.; Nadal-Romero, E.; Tague, C.; Lasanta, T.; Zabalza, J.; Lana-Renault, N.; Dominguez-Castro, F.; Choate, J. Effects of active and passive land use management after cropland abandonment on water and vegetation dynamics in the Central Spanish Pyrenees. Sci. Total Environ. 2020, 717, 137160. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Wang, G.-l.; Liu, G.-b.; Shangguan, Z.-p. Effects of age and land-use changes on soil carbon and nitrogen sequestrations following cropland abandonment on the Loess Plateau, China. Ecol. Eng. 2016, 90, 105–112. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, G.; Xue, S.; Zhang, C. Rhizosphere soil microbial properties on abandoned croplands in the Loess Plateau, China during vegetation succession. Eur. J. Soil Biol. 2012, 50, 127–136. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, G.; Xue, S.; Wang, G. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biol. Biochem. 2016, 97, 40–49. [Google Scholar] [CrossRef]
- Deng, L.; Shangguan, Z.P.; Sweeney, S. Changes in soil carbon and nitrogen following land abandonment of farmland on the Loess Plateau, China. PLoS ONE 2013, 8, e71923. [Google Scholar] [CrossRef]
- Deng, X.; Xu, D.; Qi, Y.; Zeng, M. Labor Off-Farm Employment and Cropland Abandonment in Rural China: Spatial Distribution and Empirical Analysis. Int. J. Env. Res. Public Health 2018, 15, 1808. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Xu, D.; Zeng, M.; Qi, Y. Does Internet use help reduce rural cropland abandonment? Evidence from China. Land Use Policy 2019, 89, 104243. [Google Scholar] [CrossRef]
- Tullus, T.; Tullus, A.; Roosaluste, E.; Lutter, R.; Tullus, H. Vascular plant and bryophyte flora in midterm hybrid aspen plantations on abandoned agricultural land. Can. J. For. Res. 2015, 45, 1183–1191. [Google Scholar] [CrossRef] [Green Version]
- Uri, V.; Lõhmus, K.; Mander, Ü.; Ostonen, I.; Aosaar, J.; Maddison, M.; Helmisaari, H.-S.; Augustin, J. Long-term effects on the nitrogen budget of a short-rotation grey alder (Alnus incana (L.) Moench) forest on abandoned agricultural land. Ecol. Eng. 2011, 37, 920–930. [Google Scholar] [CrossRef]
- Uri, V.; Lõhmus, K.; Ostonen, I.; Tullus, H.; Lastik, R.; Vildo, M. Biomass production, foliar and root characteristics and nutrient accumulation in young silver birch (Betula pendula Roth.) stand growing on abandoned agricultural land. Eur. J. For. Res. 2007, 126, 495–506. [Google Scholar] [CrossRef]
- Chaudhary, S.; Wang, Y.; Dixit, A.M.; Khanal, N.R.; Xu, P.; Yan, K.; Liu, Q.; Lu, Y.; Li, M. Eco-environmental risk evaluation for land use planning in areas of potential farmland abandonment in the high mountains of Nepal Himalayas. Sustainability 2019, 11, 6931. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, S.; Wang, Y.; Dixit, A.M.; Khanal, N.R.; Xu, P.; Fu, B.; Yan, K.; Liu, Q.; Lu, Y.; Li, M. Spatiotemporal degradation of abandoned farmland and associated eco-environmental risks in the high mountains of the Nepalese Himalayas. Land 2019, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, S.; Wang, Y.; Khanal, N.R.; Xu, P.; Fu, B.; Dixit, A.M.; Yan, K.; Liu, Q.; Lu, Y. Social impact of farmland abandonment and its eco-environmental vulnerability in the high mountain region of Nepal: A case study of Dordi River Basin. Sustainability 2018, 10, 2331. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, S.; Wang, Y.; Dixit, A.M.; Khanal, N.R.; Xu, P.; Fu, B.; Yan, K.; Liu, Q.; Lu, Y.; Li, M. A Synopsis of Farmland Abandonment and Its Driving Factors in Nepal. Land 2020, 9, 84. [Google Scholar] [CrossRef] [Green Version]
- Yamanaka, S.; Hanioka, M.; Nakamura, F. Changes in Ground Beetle and Bird Species After Farmland Abandonment. In Biodiversity Conservation Using Umbrella Species; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Hanioka, M.; Yamaura, Y.; Senzaki, M.; Yamanaka, S.; Kawamura, K.; Nakamura, F. Assessing the landscape-dependent restoration potential of abandoned farmland using a hierarchical model of bird communities. Agric. Ecosyst. Environ. 2018, 265, 217–225. [Google Scholar] [CrossRef]
- Kitazawa, M.; Yamaura, Y.; Senzaki, M.; Kawamura, K.; Hanioka, M.; Nakamura, F. An evaluation of five agricultural habitat types for openland birds: Abandoned farmland can have comparative values to undisturbed wetland. Ornithol. Sci. 2019, 18, 3–16. [Google Scholar] [CrossRef]
- Alcantara, C.; Kuemmerle, T.; Baumann, M.; Bragina, E.V.; Griffiths, P.; Hostert, P.; Knorn, J.; Müller, D.; Prishchepov, A.V.; Schierhorn, F. Mapping the extent of abandoned farmland in Central and Eastern Europe using MODIS time series satellite data. Environ. Res. Lett. 2013, 8, 035035. [Google Scholar] [CrossRef]
- Dara, A.; Baumann, M.; Kuemmerle, T.; Pflugmacher, D.; Rabe, A.; Griffiths, P.; Hölzel, N.; Kamp, J.; Freitag, M.; Hostert, P. Mapping the timing of cropland abandonment and recultivation in northern Kazakhstan using annual Landsat time series. Remote Sens. Environ. 2018, 213, 49–60. [Google Scholar] [CrossRef]
- Levers, C.; Schneider, M.; Prishchepov, A.V.; Estel, S.; Kuemmerle, T. Spatial variation in determinants of agricultural land abandonment in Europe. Sci Total Env. 2018, 644, 95–111. [Google Scholar] [CrossRef]
- Gellrich, M.; Baur, P.; Koch, B.; Zimmermann, N.E. Agricultural land abandonment and natural forest re-growth in the Swiss mountains: A spatially explicit economic analysis. Agric. Ecosyst. Environ. 2007, 118, 93–108. [Google Scholar] [CrossRef]
- Renwick, A.; Jansson, T.; Verburg, P.H.; Revoredo-Giha, C.; Britz, W.; Gocht, A.; McCracken, D. Policy reform and agricultural land abandonment in the EU. Land Use Policy 2013, 30, 446–457. [Google Scholar] [CrossRef]
- Verburg, P.H.; Overmars, K.P. Combining top-down and bottom-up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc. Ecol. 2009, 24, 1167–1181. [Google Scholar] [CrossRef]
- Pueyo, Y.; Beguería, S. Modelling the rate of secondary succession after farmland abandonment in a Mediterranean mountain area. Landsc. Urban Plan. 2007, 83, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Lesschen, J.; Cammeraat, L.; Kooijman, A.; van Wesemael, B. Development of spatial heterogeneity in vegetation and soil properties after land abandonment in a semi-arid ecosystem. J. Arid Environ. 2008, 72, 2082–2092. [Google Scholar] [CrossRef]
- MacDonald, D.; Crabtree, J.R.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Lazpita, J.G.; Gibon, A. Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- García-Ruiz, J.; Ruiz Flaño, P.; Lasanta, T. Soil erosion after farmland abandonment in submediterranean mountains: A general outlook. In Soil Degradation and Desertification in Mediterranean Environments; Geoforma Ediciones: Logroño, Spain, 1996; pp. 165–183. [Google Scholar]
- Nunes, A.; Coelho, C.d.O.A.; De Almeida, A.; Figueiredo, A. Soil erosion and hydrological response to land abandonment in a central inland area of Portugal. Land Degrad. Dev. 2010, 21, 260–273. [Google Scholar] [CrossRef]
- Duarte, F.; Jones, N.; Fleskens, L. Traditional olive orchards on sloping land: Sustainability or abandonment? J. Environ. Manag. 2008, 89, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Lesschen, J.; Cammeraat, L.; Nieman, T. Erosion and terrace failure due to agricultural land abandonment in a semi-arid environment. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2008, 33, 1574–1584. [Google Scholar] [CrossRef]
- Llorens, P.; Latron, J.; Gallart, F. Analysis of the role of agricultural abandoned terraces on the hydrology and sediment dynamics in a small mountainous basin (High Llobregat, Eastern Pyrenees). Pirineos 1992, 139, 27–46. [Google Scholar] [CrossRef] [Green Version]
- Cammeraat, L.; Imeson, A. The evolution and significance of soil–vegetation patterns following land abandonment and fire in Spain. Catena 1999, 37, 107–127. [Google Scholar] [CrossRef]
- Müller, D.; Kuemmerle, T.; Rusu, M.; Griffiths, P. Lost in transition: Determinants of post-socialist cropland abandonment in Romania. J. Land Use Sci. 2009, 4, 109–129. [Google Scholar] [CrossRef]
- Alcantara, C.; Kuemmerle, T.; Prishchepov, A.V.; Radeloff, V.C. Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sens. Environ. 2012, 124, 334–347. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Radeloff, V.C.; Baumann, M.; Kuemmerle, T.; Müller, D. Effects of institutional changes on land use: Agricultural land abandonment during the transition from state-command to market-driven economies in post-Soviet Eastern Europe. Environ. Res. Lett. 2012, 7, 024021. [Google Scholar] [CrossRef]
- Gehrig-Fasel, J.; Guisan, A.; Zimmermann, N.E. Tree line shifts in the Swiss Alps: Climate change or land abandonment? J. Veg. Sci. 2007, 18, 571–582. [Google Scholar] [CrossRef]
- Ding, Y. Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks. J. Informetr. 2011, 5, 187–203. [Google Scholar] [CrossRef] [Green Version]
- Abdi, H.; Valentin, D. Multiple correspondence analysis. Encycl. Meas. Stat. 2007, 2, 651–657. [Google Scholar]
- Zakkak, S.; Halley, J.M.; Akriotis, T.; Kati, V. Lizards along an agricultural land abandonment gradient in Pindos Mountains, Greece. Amphib. -Reptil. 2015, 36, 253–264. [Google Scholar] [CrossRef]
- Katayama, N.; Mashiko, M.; Koshida, C.; Yamaura, Y. Effects of rice-field abandonment rates on bird communities in mixed farmland–woodland landscapes in Japan. Agric. Ecosyst. Environ. 2021, 319, 107539. [Google Scholar] [CrossRef]
- Hanioka, M.; Yamaura, Y.; Yamanaka, S.; Senzaki, M.; Kawamura, K.; Terui, A.; Nakamura, F. How much abandoned farmland is required to harbor comparable species richness and abundance of bird communities in wetland? Hierarchical community model suggests the importance of habitat structure and landscape context. Biodivers. Conserv. 2018, 27, 1831–1848. [Google Scholar] [CrossRef]
- Zakkak, S.; Radovic, A.; Panitsa, M.; Vassilev, K.; Shuka, L.; Kuttner, M.; Schindler, S.; Kati, V.; Woods, K. Vegetation patterns along agricultural land abandonment in the Balkans. J. Veg. Sci. 2018, 29, 877–886. [Google Scholar] [CrossRef]
- Zhang, K.; Dang, H.; Tan, S.; Wang, Z.; Zhang, Q. Vegetation community and soil characteristics of abandoned agricultural land and pine plantation in the Qinling Mountains, China. For. Ecol. Manag. 2010, 259, 2036–2047. [Google Scholar] [CrossRef]
- Wang, G.; Liu, G.; Xu, M. Above- and belowground dynamics of plant community succession following abandonment of farmland on the Loess Plateau, China. Plant Soil 2008, 316, 227–239. [Google Scholar] [CrossRef]
- Yannelli, F.A.; Tabeni, S.; Mastrantonio, L.E.; Vezzani, N. Assessing degradation of abandoned farmlands for conservation of the Monte Desert biome in Argentina. Environ. Manag. 2014, 53, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Standish, R.J.; Cramer, V.A.; Hobbs, R.J. Land-use legacy and the persistence of invasive Avena barbata on abandoned farmland. J. Appl. Ecol. 2008, 45, 1576–1583. [Google Scholar] [CrossRef]
- Cojzer, M.; Diaci, J.; Brus, R. Tending of young forests in secondary succession on abandoned agricultural lands: An experimental study. Forests 2014, 5, 2658–2678. [Google Scholar] [CrossRef] [Green Version]
- Treml, V.; Šenfeldr, M.; Chuman, T.; Ponocná, T.; Demková, K. Twentieth century treeline ecotone advance in the Sudetes Mountains (Central Europe) was induced by agricultural land abandonment rather than climate change. J. Veg. Sci. 2016, 27, 1209–1221. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, G.; Song, Z.; Qu, D.; Fang, L.; Deng, L. Natural succession on abandoned cropland effectively decreases the soil erodibility and improves the fungal diversity. Ecol. Appl. 2017, 27, 2142–2154. [Google Scholar] [CrossRef]
- Chang, X.; Chai, Q.; Wu, G.; Zhu, Y.; Li, Z.; Yang, Y.; Wang, G. Soil organic carbon accumulation in abandoned croplands on the Loess Plateau. Land Degrad. Dev. 2017, 28, 1519–1527. [Google Scholar] [CrossRef]
- Jiang, J.-P.; Xiong, Y.-C.; Jiang, H.-M.; De-You, Y.; Ya-Jie, S.; Feng-Min, L. Soil microbial activity during secondary vegetation succession in semiarid abandoned lands of Loess Plateau. Pedosphere 2009, 19, 735–747. [Google Scholar] [CrossRef]
- Yuan, Z.-Q.; Yu, K.-L.; Epstein, H.; Fang, C.; Li, J.-T.; Liu, Q.-Q.; Liu, X.-W.; Gao, W.-J.; Li, F.-M. Effects of legume species introduction on vegetation and soil nutrient development on abandoned croplands in a semi-arid environment on the Loess Plateau, China. Sci. Total Environ. 2016, 541, 692–700. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, L.; Wei, X.; Liu, X.; Shao, M. Long-term afforestation significantly improves the fertility of abandoned farmland along a soil clay gradient on the Chinese Loess Plateau. Land Degrad. Dev. 2018, 29, 3521–3534. [Google Scholar] [CrossRef]
- Pazúr, R.; Lieskovský, J.; Feranec, J.; Oťaheľ, J. Spatial determinants of abandonment of large-scale arable lands and managed grasslands in Slovakia during the periods of post-socialist transition and European Union accession. Appl. Geogr. 2014, 54, 118–128. [Google Scholar] [CrossRef]
- Janus, J.; Bozek, P. Aerial laser scanning reveals the dynamics of cropland abandonment in Poland. J. Land Use Sci. 2019, 14, 378–396. [Google Scholar] [CrossRef]
- Díaz, G.I.; Nahuelhual, L.; Echeverría, C.; Marín, S. Drivers of land abandonment in Southern Chile and implications for landscape planning. Landsc. Urban Plan. 2011, 99, 207–217. [Google Scholar] [CrossRef]
- Zgłobicki, W.; Karczmarczuk, K.; Baran-Zgłobicka, B. Intensity and driving forces of land abandonment in Eastern Poland. Appl. Sci. 2020, 10, 3500. [Google Scholar] [CrossRef]
- Tremblay, S.; Ouimet, R. White spruce plantations on abandoned agricultural land: Are they more effective as C sinks than natural succession? Forests 2013, 4, 1141–1157. [Google Scholar] [CrossRef]
- Terres, J.-M.; Scacchiafichi, L.N.; Wania, A.; Ambar, M.; Anguiano, E.; Buckwell, A.; Coppola, A.; Gocht, A.; Källström, H.N.; Pointereau, P. Farmland abandonment in Europe: Identification of drivers and indicators, and development of a composite indicator of risk. Land Use Policy 2015, 49, 20–34. [Google Scholar] [CrossRef]
- Rajpar, H.; Zhang, A.; Razzaq, A.; Mehmood, K.; Pirzado, M.B.; Hu, W. Agricultural land abandonment and farmers’ perceptions of land use change in the indus plains of Pakistan: A case study of Sindh province. Sustainability 2019, 11, 4663. [Google Scholar] [CrossRef] [Green Version]
- Dax, T.; Schroll, K.; Machold, I.; Derszniak-Noirjean, M.; Schuh, B.; Gaupp-Berghausen, M. Land abandonment in mountain areas of the EU: An inevitable side effect of farming modernization and neglected threat to sustainable land use. Land 2021, 10, 591. [Google Scholar] [CrossRef]
- Orlandi, S.; Probo, M.; Sitzia, T.; Trentanovi, G.; Garbarino, M.; Lombardi, G.; Lonati, M. Environmental and land use determinants of grassland patch diversity in the western and eastern Alps under agro-pastoral abandonment. Biodivers. Conserv. 2016, 25, 275–293. [Google Scholar] [CrossRef]
- Vuichard, N.; Ciais, P.; Belelli, L.; Smith, P.; Valentini, R. Carbon sequestration due to the abandonment of agriculture in the former USSR since 1990. Glob. Biogeochem. Cycles 2008, 22, GB4018. [Google Scholar] [CrossRef]
- Hunziker, M. The spontaneous reafforestation in abandoned agricultural lands: Perception and aesthetic assessment by locals and tourists. Landsc. Urban Plan. 1995, 31, 399–410. [Google Scholar] [CrossRef]
- Rivera, L.; Zimmerman, J.; Aide, T. Forest recovery in abandoned agricultural lands in a karst region of the Dominican Republic. Plant Ecol. 2000, 148, 115–125. [Google Scholar] [CrossRef]
- Smaliychuk, A.; Müller, D.; Prishchepov, A.V.; Levers, C.; Kruhlov, I.; Kuemmerle, T. Recultivation of abandoned agricultural lands in Ukraine: Patterns and drivers. Glob. Environ. Chang. 2016, 38, 70–81. [Google Scholar] [CrossRef]
- Yin, H.; Brandão Jr, A.; Buchner, J.; Helmers, D.; Iuliano, B.G.; Kimambo, N.E.; Lewińska, K.E.; Razenkova, E.; Rizayeva, A.; Rogova, N. Monitoring cropland abandonment with Landsat time series. Remote Sens. Environ. 2020, 246, 111873. [Google Scholar] [CrossRef]
- Næss, J.S.; Cavalett, O.; Cherubini, F. The land–energy–water nexus of global bioenergy potentials from abandoned cropland. Nat. Sustain. 2021, 4, 525–536. [Google Scholar] [CrossRef]
- Sluiter, R.; de Jong, S.M. Spatial patterns of Mediterranean land abandonment and related land cover transitions. Landsc. Ecol. 2006, 22, 559–576. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Radeloff, V.C.; Dubinin, M.; Alcantara, C. The effect of Landsat ETM/ETM + image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sens. Environ. 2012, 126, 195–209. [Google Scholar] [CrossRef]
Rank | Total | Articles | H Index | TC |
---|---|---|---|---|
1 | Land Use Policy | 32 | 17 | 1856 |
2 | Sustainability | 26 | 12 | 423 |
3 | Catena | 25 | 14 | 1462 |
4 | Land Degradation & Development | 24 | 14 | 690 |
5 | Land | 24 | 9 | 190 |
6 | Agriculture Ecosystems & Environment | 23 | 14 | 1170 |
7 | Forest Ecology and Management | 23 | 17 | 970 |
8 | Science of the Total Environment | 23 | 13 | 527 |
9 | Remote Sensing | 14 | 7 | 165 |
10 | Ecological Engineering | 13 | 10 | 357 |
Rank | Authors | Articles | AF | H Index | TC |
---|---|---|---|---|---|
1 | Guobin Liu | 19 | 4.12 | 12 | 789 |
2 | Teodoro Lasanta | 18 | 4.28 | 12 | 949 |
3 | Tobias Kuemmerle | 16 | 2.8 | 15 | 1813 |
4 | Estela Nadal-Romero | 15 | 3.43 | 9 | 359 |
5 | Alexander V Prishchepov | 15 | 2.6 | 12 | 1505 |
6 | Daniel Muller | 12 | 2.92 | 12 | 1197 |
7 | Sha Xue | 12 | 2.63 | 8 | 527 |
8 | Artemi Cerda | 11 | 3.16 | 10 | 612 |
9 | Volker C Radeloff | 11 | 1.78 | 11 | 1453 |
10 | Ju-Ying Jiao | 9 | 1.83 | 7 | 229 |
Country | Articles | Total Citations | Average Citations |
---|---|---|---|
China | 193 | 3997 | 20.71 |
USA | 105 | 3936 | 37.49 |
Spain | 83 | 2856 | 34.41 |
Italy | 42 | 1223 | 29.12 |
Germany | 39 | 2325 | 59.62 |
Japan | 34 | 484 | 14.24 |
Poland | 30 | 423 | 14.1 |
Canada | 26 | 990 | 38.08 |
Netherlands | 25 | 2422 | 96.88 |
Australia | 20 | 1164 | 58.2 |
United Kingdom | 18 | 1021 | 56.72 |
France | 17 | 723 | 42.53 |
Estonia | 16 | 418 | 26.12 |
Sweden | 15 | 833 | 55.53 |
Switzerland | 14 | 1331 | 95.07 |
Russia | 13 | 61 | 4.69 |
Greece | 12 | 376 | 31.33 |
Slovakia | 12 | 146 | 12.17 |
Korea | 11 | 81 | 7.36 |
Portugal | 11 | 310 | 28.18 |
Countries and Regions | Data Source | Research Methods | Notes |
---|---|---|---|
Cal Rodo catchment (southern margin of the Pyrenees) | Two aerial photos from 1957 and 1996 (20 m) | Visual interpretation | Poyatos et al., 2003 |
Swiss mountains | Land use survey data during the 1980s and 1990s | Field survey | Gellrich and Zimmermann, 2006 |
Peyne in France | Aerial photos (1 m) from 1946, 1954, 1970, 1971, 1983, and 1988, field geographic data | Field survey, visual interpretation | Sluiter and Jong, 2006 |
Ijuez River Valley (Central Spanish Pyrenees) | Aerial photos from 1957, 1977, and 2002 (1 m) | Visual interpretation | Pueyo and Beguería, 2007 |
Poland, Slovakia, and Ukraine | Landsat TM/ETM+ images from 1986, 1988, and 2000 (30 m) | Support Vector Machines | Kuemmerle et al., 2008 |
Galicia (Spain) | Aerial photographs from 1956 and 1957, and land use of the plot size specified in SIGPAC (2004) | Visual interpretation | Corbelle et al., 2011 |
Western Ukraine | Landsat TM images from 1986, 1989, 2006, and 2008 (30 m) | Support Vector Machines | Baumann et al., 2011 |
Smolensk, Kaluga, Tula, Rjazan, and Vladimir in European Russia | Landsat TM/ETM+ satellite images from 1990 and 2000 (30 m) | Support Vector Machines | Prishchepov et al., 2012 |
Baltic countries, Belarus, and Poland | MODIS NDVI time series from 2003 to 2008 (250 m) | Vegetation index change detection, Support Vector Machines | Alcantara et al., 2012 |
Belarus, Lithuania, and Poland | Landsat TM/ETM+ satellite images from 1989 and 1999 (30 m) | Support Vector Machines | Prishchepov et al., 2012 |
Poland, Belarus, Latvia, Lithuania, and European Russia | Landsat TM/ETM+ satellite images from 1990 and 2000 (30 m) | Support Vector Machines | Prishchepov et al., 2012 |
Covering 6.4 Mkm2 across central and eastern Europe and the Balkan Peninsula, including 30 countries fully or partly | MODIS NDVI time series from 2004 to 2006 (250 m) | Vegetation index change detection, Support Vector Machines | Alcantara et al., 2013 |
European Russia, Ukraine, and Belarus | GLC2000, MODIS, national sown area statistics (1 km) | A spatial allocation model was developed to allocate national area statistics to remote sensing image data | Schierhorn et al., 2013 |
Throughout Europe | MODIS NDVI time series from 2000 to 2012 (250 m) | Vegetation index change detection, Random Forest | Estel et al., 2015 |
Mountainous areas in China | Household survey data of 262 counties from 2011 to 2012 | Field survey | Li et al., 2017 |
Parts of Georgia and the North Caucasian Federal District of Russia | Landsat images from 1985 to 2015 (30 m) | LandTrendr time series change detection, object-oriented classification | Yin et al., 2018 |
Northern Kazakhstan | Landsat images from 1988 to 2013 (30 m) | LandTrendr time series change detection, Random Forest | Dara et al., 2018 |
14 regions in the world (Iraq, Nebraska, Shaanxi, Orenburg, Uganda, Belarus, Bosnia and Herzegovina, Sardinia, Volgograd, Wisconsin, Chongqing, Goias, Mato Grosso, Nepal) | Landsat images from 1987 to 2017 (30 m) | Time series change detection, Random Forest | Yin et al., 2020 |
Global | CCI-LC data from 1992 and 2015 (300 m) | Change detection after classification | Næss et al., 2021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Song, W.; Sun, Q. Status, Trend, and Prospect of Global Farmland Abandonment Research: A Bibliometric Analysis. Int. J. Environ. Res. Public Health 2022, 19, 16007. https://doi.org/10.3390/ijerph192316007
Liu B, Song W, Sun Q. Status, Trend, and Prospect of Global Farmland Abandonment Research: A Bibliometric Analysis. International Journal of Environmental Research and Public Health. 2022; 19(23):16007. https://doi.org/10.3390/ijerph192316007
Chicago/Turabian StyleLiu, Bo, Wei Song, and Qian Sun. 2022. "Status, Trend, and Prospect of Global Farmland Abandonment Research: A Bibliometric Analysis" International Journal of Environmental Research and Public Health 19, no. 23: 16007. https://doi.org/10.3390/ijerph192316007
APA StyleLiu, B., Song, W., & Sun, Q. (2022). Status, Trend, and Prospect of Global Farmland Abandonment Research: A Bibliometric Analysis. International Journal of Environmental Research and Public Health, 19(23), 16007. https://doi.org/10.3390/ijerph192316007