The Spatio-Temporal Patterns and Driving Forces of Land Use in the Context of Urbanization in China: Evidence from Nanchang City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Areas
2.2. Materials
2.3. Methods
2.3.1. Land Use Classification
2.3.2. Land Use Comprehensive Index
2.3.3. Relative Change Rate of Land Use
2.3.4. Landscape Index Analysis
3. Results and Discussion
3.1. Land Use Change
3.2. Characteristics of Land Use Pattern Change
3.3. Uncertainty
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nasiri, V.; Deljouei, A.; Moradi, F.; Sadeghi, S.M.M.; Borz, S.A. Land use and land cover mapping using sentinel-2, landsat-8 satellite images, and google earth engine: A comparison of two composition methods. Remote Sens. 2022, 14, 1977. [Google Scholar] [CrossRef]
- Aquilué, N.; De Cáceres, M.; Fortin, M.; Fall, A.; Brotons, L. A spatial allocation procedure to model land-use/land-cover changes: Accounting for occurrence and spread processes. Ecol. Modell. 2017, 344, 73–86. [Google Scholar] [CrossRef]
- Vlad Sandru, M.I.; Iatu, C.; Andru, D.; Cimbru, D. Approaching land cover-land use changes using statistical data validation for urban policies improvement. J. Settl. Spat. Plan. 2017, 8, 119–129. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H.; Chang, R.; Zeng, H.; Bai, X. Dynamic simulation patterns and spatiotemporal analysis of land-use/land-cover changes in the Wuhan metropolitan area, China. Ecol. Model. 2022, 464, 109850. [Google Scholar] [CrossRef]
- Purvaja, R.; Ramesh, R.; Glavovic, B.; Ittekkot, V.; Samseth, J. Regional initiatives for interlinking global coastal scientific research projects. Environ. Dev. 2015, 14, 66–68. [Google Scholar] [CrossRef]
- Wang, S.; Huang, S.; Budd, W.W. Integrated ecosystem model for simulating land use allocation. Ecol. Model. 2012, 227, 46–55. [Google Scholar] [CrossRef]
- Tarawally, M.; Wenbo, X.; Weiming, H.; Mushore, T.D.; Kursah, M.B. Land use/land cover change evaluation using land change modeller: A comparative analysis between two main cities in Sierra Leone. Remote Sens. Appl. Soc. Environ. 2019, 16, 100262. [Google Scholar] [CrossRef]
- Lagrosa, J.J.; Zipperer, W.C.; Andreu, M.G. Projecting land-use and land cover change in a subtropical urban watershed. Urban Sci. 2018, 2, 11. [Google Scholar] [CrossRef] [Green Version]
- Sİyavuş, A.E. Changes in land use and land cover of Düzce province (1990–2018). Coğraf. Derg. 2021, 42, 121–138. [Google Scholar] [CrossRef]
- Alberti, M.; Marzluff, J.M.; Musacchio, L.R.; Wu, J. Ecological resilience in urban ecosystems: Linking urban patterns to human and ecological functions. Urban Ecosyst. 2004, 7, 241–265. [Google Scholar] [CrossRef]
- Zhang, L.; Lei, J.; Li, X.; Gao, C.; Zeng, W. The features and influencing factors of urban expansion in China during 1997–2007. Prog. Geogr. 2011, 30, 607–614. [Google Scholar] [CrossRef]
- Ah Koo, K.; Uk Park, S. The effect of interplays among climate change, land-use change, and dispersal capacity on plant redistribution. Ecol. Indic. 2022, 142, 109192. [Google Scholar] [CrossRef]
- Barlow, C.M.; Pellatt, M.G.; Kohfeld, K.E. Garry oak ecosystem stand history in southwest British Columbia, Canada: Implications of environmental change and indigenous land use for ecological restoration and population recovery. Biodivers. Conserv. 2021, 30, 1655–1672. [Google Scholar] [CrossRef]
- Vojvodikova, B.; Ticha, I.; Fojtik, R.; Jupova, K. Land use changes and effects on heat islands in the city. IOP Conf. Ser. Earth Environ. Sci. 2020, 444, 12056. [Google Scholar] [CrossRef]
- Chen, L.; Yang, X.; Kang, J. A Case Study of Land Use Planning Environmental Assessment Based On the Air Pollution Analysis; Lee, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 319–328. [Google Scholar]
- Gomes, E.; Inácio, M.; Bogdzevič, K.; Kalinauskas, M.; Karnauskaitė, D.; Pereira, P. Future scenarios impact on land use change and habitat quality in Lithuania. Environ. Res. 2021, 197, 111101. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Li, H.; Tang, Z.; Chen, C.; Berry, J. How cropland losses shaped by unbalanced urbanization process? Land Use Policy 2020, 96, 104715. [Google Scholar] [CrossRef]
- Liu, Y.; Zou, R.; Dong, Y. Analysis of temporal and spatial characteristics of urban expansion in Xiaonan district from 1990 to 2020 using time series landsat imagery. Remote Sens. 2021, 13, 4299. [Google Scholar] [CrossRef]
- Dai, M. A review of urban spatial expansion at home and abroad. Mark. Res. 2020, 5, 16–18. [Google Scholar] [CrossRef]
- Liu, J.; Zhan, J.; Deng, X. Spatio-temporal patterns and driving forces of urban land expansion in china during the economic reform era. AMBIO J. Hum. Environ. 2005, 34, 450–455. [Google Scholar] [CrossRef]
- Godone, D.; Garbarino, M.; Sibona, E.; Garnero, G.; Godone, F. Progressive fragmentation of a traditional Mediterranean landscape by hazelnut plantations: The impact of cap over time in the Langhe region (nw Italy). Land Use Policy 2014, 36, 259–266. [Google Scholar] [CrossRef]
- Xie, Y.; Weng, Q. Updating urban extents with nighttime light imagery by using an object-based thresholding method. Remote Sens. Environ. 2016, 187, 1–13. [Google Scholar] [CrossRef]
- Huang, C.; Zhuang, Q.; Meng, X.; Guo, H.; Han, J. An improved nightlight threshold method for revealing the spatiotemporal dynamics and driving forces of urban expansion in China. J. Environ. Manag. 2021, 289, 112574. [Google Scholar] [CrossRef] [PubMed]
- Stathakis, D.; Tselios, V.; Faraslis, I. Urbanization in European regions based on night lights. Remote Sens. Appl. Soc. Environ. 2015, 2, 26–34. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.; Thomson, A.; Imhoff, M. A cluster-based method to map urban area from DMSP/OLS nightlights. Remote Sens. Environ. 2014, 147, 173–185. [Google Scholar] [CrossRef]
- Oszczak, B.; Matuszak, J.; Cwiklak, J. Decoding of GPS data for single point positioning computation by using python programming language. Int. Multidiscip. Sci. GeoConf. SGEM 2017, 17, 193–202. [Google Scholar] [CrossRef]
- Hanberry, B.B. Classifying large wildfires in the united states by land cover. Remote Sens. 2020, 12, 2966. [Google Scholar] [CrossRef]
- Inman, V.L.; Lyons, M.B. Automated inundation mapping over large areas using landsat data and google earth engine. Remote Sens. 2020, 12, 1348. [Google Scholar] [CrossRef] [Green Version]
- Owen, H.J.F.; Duncan, C.; Pettorelli, N. Testing the water: Detecting artificial water points using freely available satellite data and open source software. Remote Sens. Ecol. Conserv. 2015, 1, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, J.; Zhang, J.; Liu, C.; He, S.; Liu, L. Growing-season vegetation coverage patterns and driving factors in the China-Myanmar economic corridor based on Google Earth engine and geographic detector. Ecol. Indic. 2022, 136, 108620. [Google Scholar] [CrossRef]
- Becker, W.R.; Ló, T.B.; Johann, J.A.; Mercante, E. Statistical features for land use and land cover classification in Google Earth engine. Remote Sens. Appl. Soc. Environ. 2021, 21, 100459. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Zhuang, D.; Liu, J. Study on the model of regional differentiation of land use degree in China. J. Nat. Resour. 1997, 12, 10–16. [Google Scholar] [CrossRef]
- Zhu, H.; Li, X.; He, S.; Zhang, M. Spatial-temporal change of land use in Bohai rim. Acta Geogr. Sin. 2001, 56, 253–260. [Google Scholar] [CrossRef]
- Zhu, H.; Li, X. Discussion on the index method of regional land use change. Acta Geogr. Sin. 2003, 58, 643–650. [Google Scholar] [CrossRef]
- Mahtta, R.; Fragkias, M.; Güneralp, B.; Mahendra, A.; Reba, M.; Wentz, E.A.; Seto, K.C. Urban land expansion: The role of population and economic growth for 300+ cities. Npj Urban Sustain. 2022, 2, 5. [Google Scholar] [CrossRef]
- Nong, D.H.; Lepczyk, C.A.; Miura, T.; Fox, J.M.; Wilson, R.K. Quantifying urban growth patterns in Hanoi using landscape expansion modes and time series spatial metrics. PLoS ONE 2018, 13, e196940. [Google Scholar] [CrossRef]
Type of Land Use | Barren | Forest, Grassland, Water | Cropland | Urban |
---|---|---|---|---|
Classification index | 1 | 2 | 3 | 4 |
2020 | Cropland | Forest | Grassland | Water | Barren | Urban | |
---|---|---|---|---|---|---|---|
2000 | |||||||
Cropland | 4320.89 | 122.25 | 1.96 | 266.18 | 0.96 | 9.90 | |
Forest | 178.63 | 654.66 | 0.13 | 8.87 | 0.00 | 0.37 | |
Grassland | 1.10 | 1.27 | 0.65 | 0.80 | 0.91 | 0.07 | |
Water | 118.48 | 8.10 | 3.50 | 952.10 | 4.93 | 11.26 | |
Barren | 2.02 | 4.63 | 0.33 | 1.39 | 2.06 | 0.09 | |
Urban | 318.62 | 11.33 | 2.81 | 29.54 | 2.90 | 357.46 |
Regression Coefficient | Standard Error | Significance | |
---|---|---|---|
GDP | −2.06 | 2.06 | 0.00 |
GDP per capita | 3.26 | 1.19 | 0.00 |
POP | 0.39 | 0.54 | 0.00 |
Fixed investment | −0.77 | 0.98 | 0.00 |
Intercept | 0.08 | 0.05 | 0.01 |
Regression Coefficient | Standard Error | Significance | |
---|---|---|---|
Intercept | 0.01 | 0.02 | 0.43 |
GDP | −3.79 | 0.67 | 0.00 |
GDP per capita | 3.50 | 0.39 | 0.00 |
POP | 0.66 | 0.18 | 0.00 |
Fixed investment | 0.61 | 0.32 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Huang, C.; Zhang, L. The Spatio-Temporal Patterns and Driving Forces of Land Use in the Context of Urbanization in China: Evidence from Nanchang City. Int. J. Environ. Res. Public Health 2023, 20, 2330. https://doi.org/10.3390/ijerph20032330
Liu Y, Huang C, Zhang L. The Spatio-Temporal Patterns and Driving Forces of Land Use in the Context of Urbanization in China: Evidence from Nanchang City. International Journal of Environmental Research and Public Health. 2023; 20(3):2330. https://doi.org/10.3390/ijerph20032330
Chicago/Turabian StyleLiu, Yuxi, Cheng Huang, and Lvshui Zhang. 2023. "The Spatio-Temporal Patterns and Driving Forces of Land Use in the Context of Urbanization in China: Evidence from Nanchang City" International Journal of Environmental Research and Public Health 20, no. 3: 2330. https://doi.org/10.3390/ijerph20032330
APA StyleLiu, Y., Huang, C., & Zhang, L. (2023). The Spatio-Temporal Patterns and Driving Forces of Land Use in the Context of Urbanization in China: Evidence from Nanchang City. International Journal of Environmental Research and Public Health, 20(3), 2330. https://doi.org/10.3390/ijerph20032330