Differences in Body Balance According to Body Mass Classification among Brazilian Jiu-Jitsu Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size
2.2. Participants
2.3. Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ćwirlej-Sozańska, A.; Wilmowska-Pietruszyńska, A.; Wiśniowska, A.; Guzik, A.; Drużbicki, M.; Sozański, B. Assessment of mobility, body balance and risk of fractures in the elderly. Med. Rev. 2016, 14, 134–147. [Google Scholar] [CrossRef]
- Kenville, R.; Maudrich, T.; Körner, S.; Zimmer, J.; Ragert, P. Effects of Short-Term Dynamic Balance Training on Postural Stability in School-Aged Football Players and Gymnasts. Front. Psychol. 2021, 12, 767036. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.A.; Badache, M.; Cale, S.; Behera, L.; Zhang, N. Balance Performance as Observed by Center-of-Pressure Parameter Characteristics in Male Soccer Athletes and Non-Athletes. Sports 2017, 5, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adolph, K.E.; Franchak, J.M. The development of motor behavior. Wiley Interdiscip. Rev. Cogn. Sci. 2017, 8, e1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dusing, S.C. Postural variability and sensorimotor development in infancy. Dev. Med. Child Neurol. 2016, 58, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Chateau-Degat, M.-L.; Papouin, G.; Saint-Val, P.; Lopez, A. Effect of adapted karate training on quality of life and body balance in 50-year-old men. Open Access J. Sports Med. 2010, 1, 143–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholson, V.; McKean, M.; Burkett, B. Twelve weeks of BodyBalance® training improved balance and functional task performance in middle-aged and older adults. Clin. Interv. Aging 2014, 9, 1895–1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesinski, M.; Hortobágyi, T.; Muehlbauer, T.; Gollhofer, A.; Granacher, U. Effects of balance training on balance performance in healthy older adults: A Systematic Review and Meta-analysis. Sports Med. 2015, 45, 1721–1738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mickle, K.J.; Munro, B.J.; Steele, J. Gender and age affect balance performance in primary school-aged children. J. Sci. Med. Sport 2011, 14, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Biswajit, B. Ages and Balance Ability. Int. J. Appl. Soc. Sci. 2019, 6, 2182–2184. [Google Scholar]
- Halabchi, F.; Ali, S.M.; Sahraian, M.A.; Abolhasani, M. Exercise prescription for patients with multiple sclerosis; potential benefits and practical recommendations. BMC Neurol. 2017, 17, 185. [Google Scholar] [CrossRef] [PubMed]
- Dunlap, P.M.; Holmberg, J.M.; Whitney, S.L. Vestibular rehabilitation: Advances in peripheral and central vestibular disorders. Curr. Opin. Neurol. 2019, 32, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Jo, D.; Pannetier, M.; Drouin, S.; Bassil, S.; Matte, C.; Bilodeau, M. Sex differences in the effect of muscle fatigue on static postural control under different vision and task conditions. PLoS ONE 2022, 17, e0269705. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Li, Y.; Wang, B.; Zhao, C.; Wu, T.; Liu, T.; Sun, F. Objectively Measured Physical Activity Is Associated with Static Balance in Young Adults. Int. J. Environ. Res. Public Health 2021, 18, 10787. [Google Scholar] [CrossRef] [PubMed]
- Collins, K.H.; Herzog, W.; Macdonald, G.Z.; Reimer, R.A.; Rios, J.L.; Smith, I.C.; Zernicke, R.F.; Hart, D.A. Obesity, Metabolic Syndrome, and Musculoskeletal Disease: Common Inflammatory Pathways Suggest a Central Role for Loss of Muscle Integrity. Front. Physiol. 2018, 9, 112. [Google Scholar] [CrossRef] [PubMed]
- Bunc, V. Effect of Physical Exercise on Adiposity and Physical Fitness in Middle Age Men with Different Body Mass. Phys. Act. Rev. 2022, 10, 23–31. [Google Scholar] [CrossRef]
- Bunc, V. Obesity—Causes and remedies. Phys. Act. Rev. 2016, 4, 50–56. [Google Scholar] [CrossRef]
- Ku, P.; Abu Osman, N.; Yusof, A.; Abas, W.W. Biomechanical evaluation of the relationship between postural control and body mass index. J. Biomech. 2012, 45, 1638–1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janiszewska, K.; Przybyłowicz, K. Pre-competition weight loss among Polish taekwondo competitors—Occurrence, methods and health consequences. Arch Budo 2015, 11, 41–45. [Google Scholar]
- Moghanlou, A.E.; Gursoy, R.; Aggon, E. Examining the relationship between body composition values and performance indicators in wrestlers at the World Cup, Ido Movement for Culture. J. Martial Arts Anthropol. 2021, 21, 23–28. [Google Scholar] [CrossRef]
- Sengeis, M.; Müller, W.; Störchle, P.; Führhapter-Rieger, A. Body weight and subcutaneous fat patterning in elite judokas. Scand. J. Med. Sci. Sports 2019, 29, 1774–1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Handayani, M.; Sayuti, M.; Nadira, C.S. Relationship between body mass index and postural balance among student of the martial arts club malikussaleh university. J. Kedokt. Diponegoro (Diponegoro Med. J.) 2022, 11, 131–137. [Google Scholar] [CrossRef]
- Rusek, W.; Adamczyk, M.; Baran, J.; Leszczak, J.; Inglot, G.; Baran, R.; Pop, T. Is There a Link between Balance and Body Mass Composition in Children and Adolescents? Int. J. Environ. Res. Public Health 2021, 18, 10449. [Google Scholar] [CrossRef] [PubMed]
- Cupryś, K.W.; Skalska-Izdebska, R.; Drzał-Grabiec, J.; Sołek, A. Correlation between body posture and postural stability of school children. Adv. Rehabil. 2013, 27, 47. [Google Scholar] [CrossRef]
- Krawczyk-Suszek, M.; Martowska, B.; Sapuła, R. Analysis of the Stability of the Body in a Standing Position When Shooting at a Stationary Target―A Randomized Controlled Trial. Sensors 2022, 22, 368. [Google Scholar] [CrossRef] [PubMed]
- Derlich, M.; Kręcisz, K.; Kuczyński, M. Attention demand and postural control in children with hearing deficit. Res. Dev. Disabil. 2011, 32, 1808–1813. [Google Scholar] [CrossRef] [PubMed]
- Lima, P.O.D.P.; Lima, A.A.; Coelho, A.C.S.; Lima, Y.L.; Almeida, G.P.L.; Bezerra, M.A.; De Oliveira, R.R. Biomechanical differences in Brazilian Jiu-Jitsu athletes: The role of combat style. Int. J. Sports Phys. Ther. 2017, 12, 67–74. [Google Scholar] [PubMed]
- Sterkowicz, S.; Lech, G.; Jaworski, J.; Ambroży, T. Coordination motor abilities of judo contestants at different age. J. Combat Sports Martial Arts 2012, 3, 5–10. [Google Scholar] [CrossRef]
- das Graças, D.; Nakamura, L.; Barbosa, F.S.S.; Martinez, P.F.; Reis, F.A.; Oliveira-Junior, S.A.D. Could current factors be associated with retrospective sports injuries in Brazilian jiu-jitsu? A cross-sectional study. BMC Sports Sci. Med. Rehabil. 2017, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Lech, G.; Palka, T.; Tyka, A.; Jaworski, J.; Chwala, W.; Sterkowicz, S.; Ambrozy, T. Effect of motor abilities on the course of fight and achievement level in judokas at different age. Arch Budo Sci. Martial Arts Extrem. Sports 2015, 11, 169–179. [Google Scholar]
- Witkowski, K.; Maśliński, J.; Remiarz, A. Static and dynamic balance in 14-15 year old boys training judo and in their non-active peers. Arch Budo 2014, 10, 323–331. [Google Scholar]
- Podbielska, M.L.; Senhadri, H.; Kuczyński, M. Static and dynamic test of postural control in Taekwondo contenders. Acta Bio-Opt. Inform. Med. 2013, 19, 79–84. [Google Scholar]
- Truszczynska, A.; Drzal-Grabiec, J.; Snela, S.; Rachwal, M. Postural stability of children undergoing training in karate. Arch Budo 2015, 11, 53–60. [Google Scholar]
- Ambrosio, A.; Hoffer, A.N.; Hoffer, M. Does Combat Hearing Preservation Equipment Affect Balance? Mil. Med. 2017, 182 (Suppl. S1), 230–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bednarczuk, G.; Wiszomirska, I.; Rutkowska, I.; Skowroński, W. Effects of sport on static balance in athletes with visual impairments. J. Sports Med. Phys. Fit. 2019, 59, 1319–1327. [Google Scholar] [CrossRef]
- Andreato, L.V.; Lara, F.J.D.; Andrade, A.; Branco, B.H.M. Physical and Physiological Profiles of Brazilian Jiu-Jitsu Athletes: A Systematic Review. Sports Med. Open 2017, 3, 9. [Google Scholar] [CrossRef]
- Bertini, I.; Pujia, A.; Giampietro, M. A follow-up study of the variations in the body composition of karate athletes. Acta Diabetol. 2003, 40, s142–s144. [Google Scholar] [CrossRef] [Green Version]
- Barley, O.R.; Chapman, D.W.; Abbiss, C.R. Weight Loss Strategies in Combat Sports and Concerning Habits in Mixed Martial Arts. Int. J. Sports Physiol. Perform. 2018, 13, 933–939. [Google Scholar] [CrossRef] [Green Version]
- Greve, J.; Alonso, A.; Bordini, A.C.P.; Camanho, G.L. Correlation between body mass index and postural balance. Clinics 2007, 62, 717–720. [Google Scholar] [CrossRef] [Green Version]
- Do Nascimento, J.A.; Silva, C.C.; Dos Santos, H.H.; de Almeida Ferreira, J.J.; De Andrade, P.R. A preliminary study of static and dynamic balance in sedentary obese young adults: The relationship between BMI, posture and postural balance. Clin. Obes. 2017, 7, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wang, L.; Shen, F.; Ma, Y.; Fan, Y.; Niu, H. Dynamic walking stability of elderly people with various BMIs. Gait Posture 2018, 68, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Etchison, W.C.; Bloodgood, E.A.; Minton, C.P.; Thompson, N.J.; Collins, M.A.; Hunter, S.C.; Dai, H. Body mass index and percentage of body fat as indicators for obesity in an adolescent athletic population. Sports Health 2011, 3, 249–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benetti, F.A.; Bacha, I.L.; Garrido Junior, A.B.; D’Andréa Greve, J.M. Analyses of balance and flexibility of obese patients undergoing bariatric surgery. Clinics 2016, 71, 78–81. [Google Scholar] [CrossRef]
- Alonso, A.C.; Luna, N.M.S.; Mochizuki, L.; Barbieri, F.; Santos, S.; Greve, J.M.D. The influence of anthropometric factors on postural balance: The relationship between body composition and posturographic measurements in young adults. Clinics 2012, 67, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Wąsacz, W.; Rydzik, Ł.; Ouergui, I.; Koteja, A.; Ambroży, D.; Ambroży, T.; Ruzbarsky, P.; Rzepko, M. Comparison of the Physical Fitness Profile of Muay Thai and Brazilian Jiu-Jitsu Athletes with Reference to Training Experience. Int. J. Environ. Res. Public Health 2022, 19, 8451. [Google Scholar] [CrossRef] [PubMed]
- Øvretveit, K. Anthropometric and Physiological Characteristics of Brazilian Jiu-Jitsu Athletes. J. Strength Cond. Res. 2018, 4, 997–1004. [Google Scholar] [CrossRef]
- Zemková, E. Sport-specific balance. Sports Med. 2014, 44, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Dunsky, A.; Barzilay, I.; Fox, O. Effect of a specialized injury prevention program on static balance, dynamic balance and kicking accuracy of young soccer players. World J. Orthop. 2017, 8, 317–321. [Google Scholar] [CrossRef]
Variables | |||||||
---|---|---|---|---|---|---|---|
SD | Me | Q1 | Q3 | IQR | 95% CI | ||
Study group (n = 69) | |||||||
Age (years) | 23.26 | 3.53 | 23.00 | 20.00 | 26.00 | 6.00 | 22.41; 24.11 |
Body mass (kg) | 75.22 | 11.04 | 74.80 | 67.00 | 82.80 | 15.80 | 72.57; 77.88 |
Height (cm) | 175.52 | 22.06 | 180.00 | 175.00 | 183.00 | 8.00 | 170.22; 180.82 |
BMI (kg/m2) | 23.68 | 2.75 | 23.40 | 21.80 | 25.50 | 3.70 | 23.02; 24.34 |
BFP | 10.59 | 5.06 | 9.60 | 7.20 | 12.90 | 5.70 | 9.38; 11.81 |
Training period (months) | 40.99 | 51.54 | 24.00 | 12.00 | 36.00 | 24.00 | 28.60; 53.37 |
Control group (n = 93) | |||||||
Age (years) | 21.73 | 2.32 | 21.00 | 20.00 | 22.00 | 2.00 | 21.25; 22.21 |
Body mass (kg) | 60.81 | 13.25 | 57.60 | 51.90 | 67.70 | 15.80 | 58.08; 63.54 |
Height (cm) | 168.70 | 7.81 | 168.00 | 164.00 | 173.00 | 9.00 | 167.09; 170.31 |
BMI (kg/m2) | 21.40 | 3.45 | 20.60 | 19.20 | 23.00 | 3.80 | 20.69; 22.11 |
BFP | 19.30 | 7.11 | 18.40 | 13.80 | 25.00 | 11.20 | 17.84; 20.77 |
Training period (months) | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Study Group | |||||||||
COP TTL (mm) | COP HD (mm) | COP VD (mm) | |||||||
Open Eyes | |||||||||
n | Me | IQR | n | Me | IQR | n | Me | IQR | |
Total | 69 | 957.60 | 289.50 | 69 | 2.80 | 1.40 | 69 | 4.20 | 3.30 |
18–24 years | 44 | 949.45 | 269.10 | 44 | 2.95 | 1.75 | 44 | 4.45 | 3.85 |
25–34 years | 25 | 957.60 | 314.70 | 25 | 2.30 | 1.40 | 25 | 3.80 | 2.30 |
p | U = 510.50 p = 0.622 *** | U = 323.50 p = 0.005 *** | U = 455.00 p = 0.236 *** | ||||||
Closed Eyes | |||||||||
n | Me | IQR | n | Me | IQR | n | Me | IQR | |
Total | 69 | 939.10 | 298.00 | 69 | 2.40 | 1.20 | 69 | 4.70 | 2.50 |
18–24 years | 44 | 960.95 | 272.65 | 44 | 2.50 | 1.45 | 44 | 5.10 | 2.10 |
25–34 years | 25 | 932.70 | 376.20 | 25 | 2.20 | 0.80 | 25 | 4.50 | 2.20 |
p | U = 495.00 p = 0.492 *** | U = 370.00 p = 0.025 *** | U = 394.00 p = 0.051 *** | ||||||
Control Group | |||||||||
COP TTL (mm) | COP HD (mm) | COP VD (mm) | |||||||
Open eyes | |||||||||
n | Me | IQR | n | Me | IQR | n | Me | IQR | |
Total | 93 | 1152.40 | 457.10 | 93 | 2.40 | 1.10 | 93 | 3.80 | 1.80 |
18–24 years | 82 | 1194.20 | 451.00 | 82 | 2.40 | 1.40 | 82 | 3.70 | 1.80 |
25–34 years | 11 | 1074.30 | 199.0 | 11 | 1.90 | 1.10 | 11 | 4.40 | 2.70 |
p | U = 351.00 p = 0.237 *** | U = 283.00 p = 0.046 *** | U = 388.00 p = 0.457 *** | ||||||
Closed Eyes | |||||||||
n | SD | n | Me | IQR | n | Me | IQR | ||
Total | 93 | 1227.06 | 289.21 | 93 | 2.00 | 1.20 | 93 | 4.00 | 1.60 |
18–24 years | 82 | 1234.45 | 284.77 | 82 | 2.00 | 1.30 | 82 | 3.85 | 1.80 |
25–34 years | 11 | 1171.95 | 329.97 | 11 | 2.30 | 0.80 | 11 | 4.40 | 1.70 |
p | T = 0.686 p = 0.495 * | U = 404.00 p = 0.580 *** | U = 340.00 p = 0.189 *** |
Study Group | Control Group | p | |||||
---|---|---|---|---|---|---|---|
n | Me | IQR | n | Me | IQR | ||
COP TTL (mm)—Open Eyes | |||||||
Total | 69 | 957.60 | 289.50 | 93 | 1152.40 | 457.10 | U = 1865.00 p < 0.001 *** |
18–24 years | 44 | 949.45 | 269.10 | 82 | 1194.20 | 451.00 | U = 1039.00 p < 0.001 *** |
25–34 years | 25 | 957.60 | 314.70 | 11 | 1074.30 | 199.0 | U = 101.00 p = 0.216 *** |
COP TTL (mm)—Closed Eyes | |||||||
n | Me | IQR | n | Me | IQR | ||
Total | 69 | 939.10 | 298.00 | 93 | 1226.80 | 481.60 | U = 1771.00 p < 0.001 *** |
18–24 years | 44 | 960.95 | 272.65 | 82 | 1252.95 | 481.60 | U = 1003.00 p < 0.001 *** |
25–34 years | 25 | 932.70 | 376.20 | 11 | 1131.60 | 613.60 | U = 93.00 p = 0.131 *** |
COP HD (mm)—Open Eyes | |||||||
n | Me | IQR | n | Me | IQR | ||
Total | 69 | 2.80 | 1.40 | 93 | 2.40 | 1.10 | U = 2497.00 p = 0.016 *** |
18–24 years | 44 | 2.95 | 1.75 | 82 | 2.40 | 1.40 | U = 1204.50 p < 0.001 *** |
25–34 years | 25 | 2.30 | 1.40 | 11 | 1.90 | 1.10 | U = 89.50 p = 0.103 *** |
COP HD (mm)—Closed Eyes | |||||||
n | Me | IQR | n | Me | IQR | ||
Total | 69 | 2.40 | 1.20 | 93 | 2.00 | 1.20 | U = 2314.50 p = 0.003 *** |
18–24 years | 44 | 2.50 | 1.45 | 82 | 2.00 | 1.30 | U = 1093.50 p < 0.001 *** |
25–34 years | 25 | 2.20 | 0.80 | 11 | 2.30 | 0.80 | U = 136.50 p = 0.986 *** |
COP VD (mm)—Open Eyes | |||||||
n | Me | IQR | n | Me | IQR | ||
Total | 69 | 4.20 | 3.30 | 93 | 3.80 | 1.80 | U = 2602.00 p = 0.040 *** |
18–24 years | 44 | 4.45 | 3.85 | 82 | 3.70 | 1.80 | U = 1323.50 p = 0.014 *** |
25–34 years | 25 | 3.80 | 2.30 | 11 | 4.40 | 2.70 | U = 132.50 p = 0.877 *** |
COP VD (mm)—Closed Eyes | |||||||
n | Me | IQR | n | Me | IQR | ||
Total | 69 | 4.70 | 2.50 | 93 | 4.00 | 1.60 | U = 2055.00 p < 0.001 *** |
18–24 years | 44 | 5.10 | 2.10 | 82 | 3.85 | 1.80 | U = 964.50 p < 0.001 *** |
25–34 years | 25 | 4.50 | 2.20 | 11 | 4.40 | 1.70 | U = 129.00 p = 0.784 *** |
Study Group | |||||||||
---|---|---|---|---|---|---|---|---|---|
COP TTL (mm) | COP HD (mm) | COP VD (mm) | |||||||
Open Eyes | |||||||||
n | Me | IQR | n | Me | IQR | n | Me | IQR | |
UW/NW | 49 | 987.40 | 307.70 | 49 | 2.80 | 1.40 | 49 | 4.00 | 3.60 |
OW/OB | 20 | 786.55 | 199.55 | 20 | 2.80 | 1.65 | 20 | 4.50 | 3.00 |
Total | 69 | 957.60 | 289.50 | 69 | 2.80 | 1.40 | 69 | 4.20 | 3.30 |
p | U = 182.50 p < 0.001 *** | U = 480.50 p = 0.905 *** | U = 482.00 p = 0.921 *** | ||||||
Closed Eyes | |||||||||
n | SD | n | Me | IQR | n | SD | |||
UW/NW | 49 | 1080.59 | 234.94 | 49 | 2.40 | 1.20 | 49 | 4.94 | 1.54 |
OW/OB | 20 | 834.06 | 102.53 | 20 | 2.25 | 1.20 | 20 | 5.05 | 1.61 |
Total | 69 | 1009.13 | 233.66 | 69 | 2.40 | 1.20 | 69 | 4.97 | 1.55 |
p | t = 6.065 p < 0.001 ** | U = 463.50 p = 0.731 *** | t = −0.261 p = 0.795 * | ||||||
Control Group | |||||||||
COP TTL (mm) | COP HD (mm) | COP VD (mm) | |||||||
Open eyes | |||||||||
n | Me | IQR | n | Me | IQR | n | Me | IQR | |
UW/NW | 80 | 1238.50 | 376.40 | 80 | 2.40 | 1.25 | 80 | 3.70 | 1.85 |
OW/OB | 13 | 907.10 | 278.70 | 13 | 2.20 | 1.30 | 13 | 4.30 | 2.30 |
Total | 93 | 1152.40 | 457.10 | 93 | 2.40 | 1.10 | 93 | 3.80 | 1.80 |
p | U = 157.50 p < 0.001 *** | U = 452.50 p = 0.458 *** | U = 434.00 p = 0.343 *** | ||||||
Closed Eyes | |||||||||
n | SD | n | Me | IQR | n | Me | IQR | ||
UW/NW | 80 | 1280.70 | 269.86 | 80 | 2.00 | 1.20 | 80 | 3.85 | 1.65 |
OW/OB | 13 | 896.99 | 156.91 | 13 | 2.10 | 1.20 | 13 | 5.00 | 1.60 |
Total | 93 | 1227.06 | 289.21 | 93 | 2.00 | 1.20 | 93 | 4.00 | 1.60 |
p | t = 7.246 p < 0.001 * | U = 483.50 p = 0.690 *** | U = 328.50 p = 0.034 *** |
Study Group | Control Group | p | |||||
Body Mass Category | n | Me a xb | IQR a SD b | n | Me a xb | IQR a SD b | |
COP TTL (mm)—Open Eyes | |||||||
UW/NW | 49 | 987.40 a | 307.70 a | 80 | 1238.50 a | 376.40 a | U = 1197.00 p < 0.001 *** |
OW/OB | 20 | 807.08 b | 112.09 b | 13 | 880.54 b | 157.04 b | t = −1.570 p = 0.127 * |
COP TTL (mm)—Closed Eyes | |||||||
n | Me a xb | IQR a SD b | n | Me a xb | IQR a SD b | ||
UW/NW | 49 | 1080.59 b | 234.94 b | 80 | 1280.70 b | 269.86 b | t = −4.289 p < 0.001 * |
OW/OB | 20 | 834.06 b | 102.53 b | 13 | 896.99 b | 156.91 b | T = −1.398 p = 0.172 * |
COP HD (mm)—Open Eyes | |||||||
n | Me a xb | IQR a SD b | n | Me a xb | IQR a SD b | ||
UW/NW | 49 | 2.80 a | 1.40 a | 80 | 2.40 a | 1.25 a | U = 1550.50 p = 0.047 *** |
OW/OB | 20 | 2.88 b | 1.03 b | 13 | 2.27 b | 1.01 b | t = 1.666 p = 0.106 * |
COP HD (mm)—Closed Eyes | |||||||
n | Me | IQR | n | Me | IQR | ||
UW/NW | 49 | 2.40 | 1.20 | 80 | 2.00 | 1.20 | U = 1413.00 p = 0.008 *** |
OW/OB | 20 | 2.57 | 1.00 | 13 | 2.04 | 1.00 | U = 92.00 p = 0.167 *** |
COP VD (mm)—Open Eyes | |||||||
n | Me | IQR | n | Me | IQR | ||
UW/NW | 49 | 4.00 | 3.60 | 80 | 3.70 | 1.85 | U = 1564.00 p = 0.055 *** |
OW/OB | 20 | 4.50 | 3.00 | 13 | 4.30 | 2.30 | U = 120.50 p = 0.740 *** |
COP VD (mm)—Closed Eyes | |||||||
n | Me a xb | IQR a SD b | n | Me a xb | IQR a SD b | ||
UW/NW | 49 | 4.70 a | 2.40 a | 80 | 3.85 a | 1.65 a | U = 1184.50 p < 0.001 *** |
OW/OB | 20 | 5.05 b | 1.61 b | 13 | 4.69 b | 1.16 b | t = 0.683 p = 0.500 * |
Study Group | Control Group | |||||
Variables | COP TTL (mm) | COP HD (mm) | COP VD (mm) | COP TTL (mm) | COP HD (mm) | COP VD (mm) |
Open Eyes | ||||||
Age | −0.08 (p = 0.511) | −0.33 (p = 0.005) | −0.25 (p = 0.034) | −0.24 (p = 0.018) | −0.22 (p = 0.035) | −0.10 (p = 0.359) |
Body height (cm) | −0.07 (p = 0.591) | 0.10 (p = 0.434) | 0.02 (p = 0.887) | −0.12 (p = 0.266) | 0.02 (p = 0.829) | 0.11 (p = 0.275) |
Training period (months) | −0.05 (p = 0.691) | −0.09 (p = 0.481) | −0.17 (p = 0.152) | - | - | - |
BFP | −0.41 (p < 0.001) | −0.01 (p = 0.943) | 0.06 (p = 0.647) | −0.41 (p < 0.001) | −0.05 (p = 0.639) | 0.02 (p = 0.876) |
Age | −0.11 (p = 0.371) | −0.27 (p = 0.026) | −0.27 (p = 0.024) | −0.13 (p = 0.225) | −0.01 (p = 0.892) | 0.23 (p = 0.027) |
Body height (cm) | −0.11 (p = 0.375) | −0.11 (p = 0.353) | −0.10 (p = 0.415) | −0.08 (p = 0.452) | 0.03 (p = 0.750) | 0.10 (p = 0.365) |
Training period (months) | −0.01 (p = 0.950) | −0.10 (p = 0.395) | −0.11 (p = 0.349) | - | - | - |
BFP | −0.41 (p < 0.001) | 0.02 (p = 0.858) | 0.01 (p = 0.921) | −0.38 (p < 0.001) | −0.11 (p = 0.276) | −0.10 (p = 0.362) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leszczak, J.; Czenczek-Lewandowska, E.; Wyszyńska, J.; Podgórska-Bednarz, J.; Weres, A.; Baran, R.; Niewczas, M.; Pop, T.; Baran, J. Differences in Body Balance According to Body Mass Classification among Brazilian Jiu-Jitsu Athletes. Int. J. Environ. Res. Public Health 2022, 19, 16116. https://doi.org/10.3390/ijerph192316116
Leszczak J, Czenczek-Lewandowska E, Wyszyńska J, Podgórska-Bednarz J, Weres A, Baran R, Niewczas M, Pop T, Baran J. Differences in Body Balance According to Body Mass Classification among Brazilian Jiu-Jitsu Athletes. International Journal of Environmental Research and Public Health. 2022; 19(23):16116. https://doi.org/10.3390/ijerph192316116
Chicago/Turabian StyleLeszczak, Justyna, Ewelina Czenczek-Lewandowska, Justyna Wyszyńska, Justyna Podgórska-Bednarz, Aneta Weres, Rafał Baran, Marta Niewczas, Teresa Pop, and Joanna Baran. 2022. "Differences in Body Balance According to Body Mass Classification among Brazilian Jiu-Jitsu Athletes" International Journal of Environmental Research and Public Health 19, no. 23: 16116. https://doi.org/10.3390/ijerph192316116
APA StyleLeszczak, J., Czenczek-Lewandowska, E., Wyszyńska, J., Podgórska-Bednarz, J., Weres, A., Baran, R., Niewczas, M., Pop, T., & Baran, J. (2022). Differences in Body Balance According to Body Mass Classification among Brazilian Jiu-Jitsu Athletes. International Journal of Environmental Research and Public Health, 19(23), 16116. https://doi.org/10.3390/ijerph192316116