Analyst Site Visits and Corporate Environmental Information Disclosure: Evidence from China
Abstract
:1. Introduction
2. Literature Review
2.1. Research on Analyst Site Visits
2.2. Research on Corporate Environmental Information Disclosure
3. Hypotheses Development
4. Research Design
4.1. Sample Selection and Data Sources
4.2. Measure of CEID
4.3. Measure of Analyst Site Visits
4.4. Measure of Other Control Variables
4.5. Baseline Model Design
5. Empirical Analysis
5.1. Descriptive Statistics
5.2. Baseline Regressions
5.3. The Influence of Macroscopic and Microscopic Factors
5.4. Mechanism Analysis
5.5. Robustness Check
5.5.1. Redefinition of the Dependent Variable
5.5.2. Endogenous Test
5.5.3. Propensity Scores Matching Test
5.5.4. The Impact of COVID-19 on the Relationship between Analyst Site Visits and CEID in Wuhan
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Definitions of Variables
Variables | Definition |
Explanatory variable | |
EID | EID is scored according to 10 items about environmental information from a listed corporation’s annual report. Monetary information is awarded 3 points, specific non-monetary information is awarded 2 points, general non-monetary information is awarded 1 point, and no information is awarded 0 points (see Equation (1) in detail). |
EID_Soft | Soft information includes three categories: vision and strategy, environmental measures, and public welfare activities related to the environment. The method for calculation is the same as for EID. |
EID_Hard | Hard information includes environmental management systems, the reliability and credibility of environmental information, expenditure on environmental technology and investments, resource consumption and pollution control, important environmental problems and types of influence, and improvement in environmental performance. The method for calculation is the same as for EID. |
Independent variable | |
Visit_dum | Dummy variable that equals 1 if the corporation receives at least one site visit in the current year and is otherwise 0. |
Visit_nmb | The natural logarithm of the total number of analyst site visits received by the corporation of the year plus one. |
Firm-level variables | |
Instshr | The shareholding ratio of institutional investors. |
ROA | Income before extraordinary items is scaled by average total assets at the end of the period. |
Age | The number of years since IPO/10. |
Big4 | Dummy variable that equals 1 if the firm is audited by a Big 4 accounting firm and is otherwise 0. |
TobinQ | The ratio of the market value of a corporation’s equity and liabilities to its corresponding book values. |
Growth | Sales growth equals the increase in the rate of the main business revenue. (Current operating income—Previous period’s operating income)/Previous period’s operating income. |
Meet_nmb | Number of board meetings. |
Leverage | The ratio of liabilities to assets. |
MSP | The proportion of the total number of shares held by the board of directors, the board of supervisors, and senior executives in the total number of shares of the corporation. |
Duality | Dummy variable that equals 1 if the chairman and general manager holding a concurrent post and otherwise it is 0. |
Shrcr10 | Sum of the top 10 major shareholders’ holding ratios of the corporation. |
Agent | Agency cost is calculated as management expenses divided by operating income. |
Media | The natural logarithm of the total number of news reports in the “Financial News Database of Chinese Listed Companies” of CNRDS plus one. |
State-level variables | |
GDP_dum | Regional per capita gross domestic product compiled by the CSMAR database. Dummy variable that equals 1 if the GDP is more than the median and is otherwise 0. |
Market | Market level score for the place where the sample is located as determined by the Chinese Marketization Report [86]. |
Creative | The comprehensive utility value of regional innovation capability is obtained from the annual report of Regional Innovation Capacity of China. |
AQI | Dummy variable that equals 1 if the analyst from a high air quality area visits a corporation from a low air quality area and is otherwise 0. |
Distance | The geographical linear distance between the location of the visited corporations and the analyst’s institution. The geographical linear distance is calculated by latitude and longitude. Unit: 1000 km. |
Year | Year dummy variable. |
Industry | Industry dummy variable. |
Province | Province dummy variable. |
References
- Economy, E.C. The Great Leap Backward—The Costs of China’s Environmental Crisis. Foreign Aff. 2007, 86, 38–59. Available online: https://www.jstor.org/stable/20032433 (accessed on 3 May 2022).
- Zeng, S.; Liu, H.; Tam, C.; Shao, Y. Cluster analysis for studying industrial sustainability: An empirical study in Shanghai. J. Clean. Prod. 2008, 16, 1090–1097. [Google Scholar] [CrossRef]
- Du, X. Does Religion Matter to Owner-Manager Agency Costs? Evidence from China. J. Bus. Ethics 2013, 118, 319–347. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, G.; Song, S.; Su, B. Spatial Heterogeneity Influences of Environmental Control and Informal Regulation on Air Pollutant Emissions in China. Int. J. Environ. Res. Public Health 2020, 17, 4857. [Google Scholar] [CrossRef] [PubMed]
- Criado-Jiménez, I.; Fernández-Chulián, M.; Larrinaga-González, C.; Husillos-Carqués, F.J. Compliance with Mandatory Environmental Reporting in Financial Statements: The Case of Spain (2001–2003). J. Bus. Ethics 2008, 79, 245–262. [Google Scholar] [CrossRef]
- Evans, M.F.; Gilpatric, S.M.; Liu, L. Regulation with direct benefits of information disclosure and imperfect monitoring. J. Environ. Econ. Manag. 2009, 57, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Bi, J.; Wheeler, D.; Wang, J.; Cao, D.; Lu, G.; Wang, Y. Environmental performance rating and disclosure: China’s GreenWatch program. J. Environ. Manag. 2004, 71, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.X.; Xu, X.D.; Yin, H.T.; Tam, C.M. Factors that Drive Chinese Listed Companies in Voluntary Disclosure of Environmental Information. J. Bus. Ethics 2012, 109, 309–321. [Google Scholar] [CrossRef]
- Zhu, Q.; Cordeiro, J.; Sarkis, J. Institutional pressures, dynamic capabilities and environmental management systems: Investigating the ISO 9000—Environmental management system implementation linkage. J. Environ. Manag. 2013, 114, 232–242. [Google Scholar] [CrossRef]
- Bowen, F. After Greenwashing: Symbolic Corporate Environmentalism and Society; Cambridge University Press: London, UK, 2014. [Google Scholar]
- Yao, S.; Li, S. Distance and government resource allocation: From the perspective of environmental information disclosure policy change. Appl. Econ. 2018, 50, 5893–5902. [Google Scholar] [CrossRef]
- Ji, Z.; Yu, X.; Yang, J. Environmental information disclosure in capital raising. Aust. Econ. Pap. 2020, 59, 183–214. [Google Scholar] [CrossRef]
- Zheng, Y.; Ge, C.; Li, X.; Duan, X.; Yu, T. Configurational analysis of environmental information disclosure: Evidence from China’s key pollutant-discharge listed companies. J. Environ. Manag. 2020, 270, 110671. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Anbumozhi, V. Determinant factors of corporate environmental information disclosure: An empirical study of Chinese listed companies. J. Clean. Prod. 2009, 17, 593–600. [Google Scholar] [CrossRef]
- Wang, H.; Cao, D.; Wang, J.; Lu, G. Environmental Information Disclosure: Theory and Practice; China Environment Press: Beijing, China, 2002. [Google Scholar]
- Hutton, A.P.; Lee, L.F.; Shu, S.Z. Do Managers Always Know Better? The Relative Accuracy of Management and Analyst Forecasts. J. Account. Res. 2012, 50, 1217–1244. [Google Scholar] [CrossRef]
- Cheng, Q.; Du, F.; Wang, X.; Wang, Y. Seeing is believing: Analysts’ corporate site visits. Rev. Account. Stud. 2016, 21, 1245–1286. [Google Scholar] [CrossRef] [Green Version]
- Han, B.; Kong, D.; Liu, S. Do Analysts Gain an Informational Advantage by Visiting Listed Companies? Contemp. Account. Res. 2018, 35, 1843–1867. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, C.S.A.; Xie, J.; Yang, H. Private communication and management forecasts: Evidence from corporate site visits. Corp. Gov. Int. Rev. 2022, 30, 482–497. [Google Scholar] [CrossRef]
- Yu, F. Analyst coverage and earnings management. J. Financ. Econ. 2008, 88, 245–271. [Google Scholar] [CrossRef]
- Huang, C.-L.; Kung, F.-H. Drivers of Environmental Disclosure and Stakeholder Expectation: Evidence from Taiwan. J. Bus. Ethics 2010, 96, 435–451. [Google Scholar] [CrossRef]
- Brown, L.D.; Call, A.C.; Clement, M.B.; Sharp, N.Y. Inside the “Black Box” of Sell-Side Financial Analysts. J. Account. Res. 2015, 53, 1–47. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, W. Brand Equity and Firm Sustainable Performance: The Mediating Role of Analysts’ Recommendations. Sustainability 2019, 11, 1086. [Google Scholar] [CrossRef]
- Bushee, B.J.; Jung, M.J.; Miller, G.S.; Ross, S.M.; Sandberg, J. Conference Presentations and the Disclosure Milieu. J. Account. Res. 2011, 49, 1163–1192. [Google Scholar] [CrossRef] [Green Version]
- Mayew, W.J.; Sharp, N.Y.; Venkatachalam, M. Using earnings conference calls to identify analysts with superior private information. Rev. Account. Stud. 2013, 18, 386–413. [Google Scholar] [CrossRef]
- Green, T.C.; Jame, R.; Markov, S.; Subasi, M. Access to management and the informativeness of analyst research. J. Financ. Econ. 2014, 114, 239–255. [Google Scholar] [CrossRef]
- Solomon, D.; Soltes, E. What Are We Meeting For? The Consequences of Private Meetings with Investors. J. Law Econ. 2015, 58, 325–355. [Google Scholar] [CrossRef]
- Bushee, B.J.; Jung, M.J.; Miller, G.S. Do Investors Benefit from Selective Access to Management? J. Financ. Rep. 2017, 2, 31–61. [Google Scholar] [CrossRef]
- Chung, K.H.; Jo, H. The Impact of Security Analysts’ Monitoring and Marketing Functions on the Market Value of Firms. J. Financ. Quant. Anal. 1996, 31, 493–512. [Google Scholar] [CrossRef]
- Bae, K.-H.; Stulz, R.M.; Tan, H. Do local analysts know more? A cross-country study of the performance of local analysts and foreign analysts. J. Financ. Econ. 2008, 88, 581–606. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Yuan, Q. Institutional investors’ corporate site visits and corporate innovation. J. Corp. Financ. 2018, 48, 148–168. [Google Scholar] [CrossRef]
- Bowen, R.M.; Dutta, S.; Tang, S.; Zhu, P.C. Inside the “Black Box” of Private In-House Meetings. Rev. Account. Stud. 2018, 23, 487–527. [Google Scholar] [CrossRef]
- Yang, Y.; Shen, L.; Li, Y.; Li, Y. The Impact of Environmental Information Disclosure on Environmental Governance Satisfaction. Sustainability 2022, 14, 7888. [Google Scholar] [CrossRef]
- Darrell, W.; Schwartz, B.N. Environmental disclosures and public policy pressure. J. Account. Public Policy 1997, 16, 125–154. [Google Scholar] [CrossRef]
- Cho, C.H.; Patten, D.M. The role of environmental disclosures as tools of legitimacy: A research note. Account. Organ. Soc. 2007, 32, 639–647. [Google Scholar] [CrossRef]
- Patten, D.M. Media exposure, public policy pressure, and environmental disclosure: An examination of the impact of tri data availability. Account. Forum 2002, 26, 152–171. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Li, Y.; Richardson, G.D.; Vasvari, F.P. Revisiting the relation between environmental performance and environmental disclosure: An empirical analysis. Account. Organ. Soc. 2008, 33, 303–327. [Google Scholar] [CrossRef]
- Ahmad, N.N.N.; Mohamad, N.A. Environmental Disclosures by the Malaysian Construction Sector: Exploring Extent and Quality. Corp. Soc. Responsib. Environ. Manag. 2014, 21, 240–252. [Google Scholar] [CrossRef]
- Meng, X.; Zeng, S.; Shi, J.J.; Qi, G.; Zhang, Z. The relationship between corporate environmental performance and environmental disclosure: An empirical study in China. J. Environ. Manag. 2014, 145, 357–367. [Google Scholar] [CrossRef]
- Fan, L.; Yang, K.; Liu, L. New media environment, environmental information disclosure and firm valuation: Evidence from high-polluting enterprises in China. J. Clean. Prod. 2020, 277, 123253. [Google Scholar] [CrossRef]
- Yao, S.; Liang, H. Firm location, political geography and environmental information disclosure. Appl. Econ. 2017, 49, 251–262. [Google Scholar] [CrossRef]
- Iatridis, G.E. Environmental disclosure quality: Evidence on environmental performance, corporate governance and value relevance. Emerg. Mark. Rev. 2013, 14, 55–75. [Google Scholar] [CrossRef]
- Hackston, D.; Milne, M.J. Some determinants of social and environmental disclosures in New Zealand companies. Account. Audit. Account. J. 1996, 9, 77–108. [Google Scholar] [CrossRef]
- Yao, S. Price pressure effects of short selling on environmental disclosure. Asia-Pac. J. Account. Econ. 2020, 29, 916–938. [Google Scholar] [CrossRef]
- Brammer, S.; Pavelin, S. Voluntary Environmental Disclosures by Large UK Companies. J. Bus. Financ. Account. 2006, 33, 1168–1188. [Google Scholar] [CrossRef]
- de Villiers, C.; Naiker, V.; Van Staden, C.J. The Effect of Board Characteristics on Firm Environmental Performance. J. Manag. 2011, 37, 1636–1663. [Google Scholar] [CrossRef]
- Du, X.; Jian, W.; Zeng, Q.; Du, Y. Corporate Environmental Responsibility in Polluting Industries: Does Religion Matter? J. Bus. Ethics 2014, 124, 485–507. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Goldar, B. Do stock markets penalize environment-unfriendly behaviour? Evidence from India. Ecol. Econ. 2005, 52, 81–95. [Google Scholar] [CrossRef]
- Du, X. How the Market Values Greenwashing? Evidence from China. J. Bus. Ethics 2015, 128, 547–574. [Google Scholar] [CrossRef]
- Dasgupta, S.; Laplante, B.; Wang, H.; Wheeler, D. Confronting the Environmental Kuznets Curve. J. Econ. Perspect. 2002, 16, 147–168. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, P.C.; Bhushan, R. Analyst Following and Institutional Ownership. J. Account. Res. 1990, 28, 55–76. [Google Scholar] [CrossRef]
- Chen, J.; Ding, R.; Hou, W.; Johan, S. Do Financial Analysts Perform a Monitoring Role in China? Evidence from Modified Audit Opinions. Abacus 2016, 52, 473–500. [Google Scholar] [CrossRef]
- Dyck, A.; Volchkova, N.; Zingales, L. The Corporate Governance Role of the Media: Evidence from Russia. J. Financ. 2008, 63, 1093–1135. [Google Scholar] [CrossRef]
- Patten, D.M. The relation between environmental performance and environmental disclosure: A research note. Account. Organ. Soc. 2002, 27, 763–773. [Google Scholar] [CrossRef]
- Cormier, D.; Magnan, M. Environmental reporting management: A continental European perspective. J. Account. Public Policy 2003, 22, 43–62. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Hong, J.Q.; Cao, X.W. The Characteristic of Listed Companies of China and Securities Analysts’ Field Studies. Rev. Invest. Stud. 2015, 1, 121–136. (In Chinese) [Google Scholar]
- Qi, F.; Li, T. Study of Environmental Information Disclosure under the Hypothesis of Political Cost-Based on PM2.5 Burst Event. J. Financ. Econ. 2018, 6, 178–185. [Google Scholar] [CrossRef]
- Dong, R.; Fisman, R.; Wang, Y.; Xu, N. Air pollution, affect, and forecasting bias: Evidence from Chinese financial analysts. J. Financ. Econ. 2021, 139, 971–984. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, G.; Su, B. The spatial impacts of air pollution and socio-economic status on public health: Empirical evidence from China. Socio-Econ. Plan. Sci. 2022, 83, 101167. [Google Scholar] [CrossRef]
- Jensen, M.C.; Meckling, W.H. Theory of the Firm: Managerial Behavior, Agency Costs, and Ownership Structure. J. Financ. Econ. 1976, 3, 305–360. [Google Scholar] [CrossRef]
- Wiseman, J. An evaluation of environmental disclosures made in corporate annual reports. Account. Organ. Soc. 1982, 7, 53–63. [Google Scholar] [CrossRef]
- Al-Tuwaijri, S.A.; Christensen, T.E.; Hughes, K.E. The relations among environmental disclosure, environmental performance, and economic performance: A simultaneous equations approach. Account. Organ. Soc. 2004, 29, 447–471. [Google Scholar] [CrossRef]
- Cormier, D.; Magnan, M.; Van Velthoven, B. Environmental disclosure quality in large German companies: Economic incentives, public pressures or institutional conditions? Eur. Account. Rev. 2005, 14, 3–39. [Google Scholar] [CrossRef]
- Zeng, S.; Xu, X.; Dong, Z.; Tam, V.W. Towards corporate environmental information disclosure: An empirical study in China. J. Clean. Prod. 2010, 18, 1142–1148. [Google Scholar] [CrossRef]
- Patten, D.M. Intra-industry environmental disclosures in response to the Alaskan oil spill: A note on legitimacy theory. Account. Organ. Soc. 1992, 17, 471–475. [Google Scholar] [CrossRef]
- Solomon, J.F.; Solomon, A. Private social, ethical and environmental disclosure. Account. Audit. Account. J. 2006, 19, 564–591. [Google Scholar] [CrossRef]
- Xu, X.D.; Zeng, S.X.; Tam, C.M. Stock Market’s Reaction to Disclosure of Environmental Violations: Evidence from China. J. Bus. Ethics 2012, 107, 227–237. [Google Scholar] [CrossRef]
- Li, B.; Gao, F.; Zeng, Y.T. Impact of Air Pollution on Corporate Environmental Information Disclosure: Evidence from China. J. Environ. Prot. Ecol. 2020, 21, 1628–1638. Available online: https://www.researchgate.net/publication/348352417 (accessed on 28 April 2022).
- Zhang, Z.; Zhang, G.; Li, L. The spatial impact of atmospheric environmental policy on public health based on the mediation effect of air pollution in China. Environ. Sci. Pollut. Res. 2022, 1–17. [Google Scholar] [CrossRef]
- Zheng, S.; Cao, C.-X.; Singh, R.P. Comparison of ground based indices (API and AQI) with satellite based aerosol products. Sci. Total Environ. 2014, 488–489, 398–412. [Google Scholar] [CrossRef]
- Joe, J.R.; Louis, H.; Robinson, D. Managers’ and Investors’ Responses to Media Exposure of Board Ineffectiveness. J. Financ. Quant. Anal. 2009, 44, 579–605. [Google Scholar] [CrossRef]
- Bushee, B.J.; Core, J.E.; Guay, W.; Hamm, S.J. The Role of the Business Press as an Information Intermediary. J. Account. Res. 2010, 48, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Barber, B.; Lehavy, R.; McNichols, M.; Trueman, B. Can Investors Profit from the Prophets? Security Analyst Recommendations and Stock Returns. J. Financ. 2001, 56, 531–563. [Google Scholar] [CrossRef]
- Xue, J.; He, Y.; Liu, M.; Tang, Y.; Xu, H. Incentives for Corporate Environmental Information Disclosure in China: Public Media Pressure, Local Government Supervision and Interactive Effects. Sustainability 2021, 13, 10016. [Google Scholar] [CrossRef]
- Brammer, S.; Pavelin, S. Voluntary social disclosures by large UK companies. Bus. Ethics 2004, 13, 86–99. [Google Scholar] [CrossRef]
- Porter, M.E.; Kramer, M.R. The Link Between Competitive Advantage and Corporate Social Responsibility. Harvard. Bus. Rev. 2006, 84, 78–92. [Google Scholar] [CrossRef] [Green Version]
- Aerts, W.; Cormier, D. Media legitimacy and corporate environmental communication. Account. Organ. Soc. 2009, 34, 1–27. [Google Scholar] [CrossRef]
- Patten, D.M.; Trompeter, G. Corporate responses to political costs: An examination of the relation between environmental disclosure and earnings management. J. Account. Public Policy 2003, 22, 83–94. [Google Scholar] [CrossRef]
- Wen, Z.; Ye, B. Analyses of Mediating Effects: The Development of Methods and Models. Adv. Psychol. Sci. 2014, 22, 731–745. [Google Scholar] [CrossRef]
- Fang, L.; Peress, J. Media Coverage and the Cross-section of Stock Returns. J. Financ. 2009, 64, 2023–2052. [Google Scholar] [CrossRef]
- Chahine, S.; Mansi, S.; Mazboudi, M. Media news and earnings management prior to equity offerings. J. Corp. Financ. 2015, 35, 177–195. [Google Scholar] [CrossRef]
- Tsileponis, N.; Stathopoulos, K.; Walker, M. Do corporate press releases drive media coverage? Br. Account. Rev. 2020, 52, 100881. [Google Scholar] [CrossRef]
- Shi, C.; Xu, T.; Ying, Z.; Li, H. How Policy Mix Choices Affect the COVID-19 Pandemic Response Outcomes in Chinese Cities: An Empirical Analysis. Int. J. Environ. Res. Public Health 2022, 19, 8094. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Wang, L.; Yang, Y. Human Mobility Restrictions and the Spread of the Novel Coronavirus (2019-nCoV) in China. J. Public Econ. 2020, 191, 104272. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Zhou, C.; Zhang, Z. Analyzing the Characteristics of Policies and Political Institutions for the Prevention and Control Governance of the COVID-19 Pandemic: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 10980. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Wang, X.L.; Zhu, H.P. China’s Marketization Index: A Report on the Relative Progress of Marketization in Different Regions; Economic Science Press: Beijing, China, 2014. [Google Scholar]
Panel A: Distribution across years | |||||||||
---|---|---|---|---|---|---|---|---|---|
Year | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Total |
Obs. | 211 | 299 | 303 | 316 | 344 | 351 | 340 | 316 | 2480 |
Percent | 8.51% | 12.06% | 12.22% | 12.74% | 13.87% | 14.15% | 13.71% | 12.74% | 100% |
Panel B: Distribution across industries | |||||||||
Obs. | Percent | Obs. | Percent | ||||||
Ferrous metals mining and dressing | 6 | 0.24% | Manufacturers of clothes and other fibers products | 73 | 2.94% | ||||
Extraction of petroleum and natural gas | 8 | 0.32% | Building decoration and other construction industry | 92 | 3.71% | ||||
Oil processing and refining | 13 | 0.52% | Foodstuff manufacturing | 95 | 3.83% | ||||
Manufacturing of leather, fur, feather, and other products | 15 | 0.60% | Power and heat production and supply industries | 107 | 4.31% | ||||
Mining and washing of coal industry | 19 | 0.77% | Metal products | 167 | 6.73% | ||||
Non-ferrous metals mining and dressing | 30 | 1.21% | Non-ferrous metals foundries and presses | 184 | 7.42% | ||||
Mining auxiliary activity | 38 | 1.53% | Non-metal products | 217 | 8.75% | ||||
Ferrous metal foundries and presses | 65 | 2.62% | Chemical material and products manufacturing | 581 | 23.43% | ||||
Paper making and paper products | 66 | 2.66% | Pharmaceutical manufacturing | 632 | 25.48% | ||||
Beverage manufacturing | 72 | 2.90% | Total | 2480 | 100% |
Panel A: Full sample | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Mean | Std. Dev. | Minimum | P25 | Median | P75 | Maximum | ||||
EID | 6.7259 | 4.8750 | 0.0000 | 3.0000 | 6.0000 | 10.0000 | 19.0000 | ||||
EID_Soft | 1.5242 | 1.5442 | 0.0000 | 0.0000 | 1.0000 | 2.0000 | 6.0000 | ||||
EID_Hard | 5.2013 | 3.9898 | 0.0000 | 2.0000 | 5.0000 | 8.0000 | 15.0000 | ||||
Visit_dum | 0.3618 | 0.4806 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | ||||
Visit_nmb | 0.5671 | 0.8595 | 0.0000 | 0.0000 | 0.0000 | 1.0986 | 3.0445 | ||||
Instshr | 0.3413 | 0.2624 | 0.0000 | 0.0719 | 0.3440 | 0.5536 | 0.8930 | ||||
ROA | 0.0427 | 0.0610 | −0.1654 | 0.0079 | 0.0345 | 0.0727 | 0.2351 | ||||
Age | 1.5748 | 0.7283 | 0.3000 | 1.0000 | 1.5000 | 2.2000 | 2.8000 | ||||
Big4 | 0.0598 | 0.2372 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.0000 | ||||
TobinQ | 2.0208 | 1.4191 | 0.5990 | 1.0768 | 1.5604 | 2.4266 | 8.1710 | ||||
Growth | 0.1402 | 0.3606 | −0.4926 | −0.0147 | 0.0767 | 0.2195 | 2.3539 | ||||
Meet_nmb | 9.3380 | 3.6167 | 4.0000 | 7.0000 | 9.0000 | 11.0000 | 22.0000 | ||||
Leverage | 0.4157 | 0.2136 | 0.0465 | 0.2414 | 0.4033 | 0.5740 | 0.9518 | ||||
MSP | 0.1233 | 0.1950 | 0.0000 | 0.0003 | 0.0011 | 0.2234 | 0.6722 | ||||
Market | 7.7091 | 1.9137 | 0.6200 | 6.6200 | 7.9300 | 9.3500 | 9.7800 | ||||
GDP_dum | 0.5013 | 0.5000 | 0.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | ||||
Creative | 30.2818 | 9.2481 | 15.7800 | 25.0700 | 28.3500 | 30.8700 | 62.1400 | ||||
Panel B: Test for differences | |||||||||||
Variable | Group | Obs. | Means | T-test of diff. in means | Medians | Wilcoxon test of diff. in medians | |||||
EID | Non site visit | 7352 | 4.184 | 2.113 *** (18.196) | 2.000 | 4.000 *** (23.223) | |||||
Site visit | 2480 | 6.297 | 6.000 | ||||||||
Less site visit | 7896 | 4.340 | 1.912 *** (14.993) | 2.000 | 4.000 *** (19.566) | ||||||
More site visit | 1936 | 6.252 | 6.000 |
Dep. EID | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Visit_dum | 0.336 *** | 0.329 *** | ||
(3.060) | (2.997) | |||
Visit_nmb | 0.147 ** | 0.157 ** | ||
(2.419) | (2.569) | |||
Instshr | 2.955 *** | 2.915 *** | 2.968 *** | 2.921 *** |
(13.471) | (13.223) | (13.505) | (13.227) | |
ROA | 6.421 *** | 5.709 *** | 6.450 *** | 5.702 *** |
(6.946) | (6.164) | (6.955) | (6.134) | |
Age | 1.017 *** | 1.009 *** | 1.011 *** | 1.005 *** |
(15.046) | (14.773) | (14.971) | (14.718) | |
Big4 | −0.031 | 0.258 | −0.040 | 0.251 |
(−0.155) | (1.259) | (−0.199) | (1.224) | |
TobinQ | −0.301 *** | −0.289 *** | −0.298 *** | −0.286 *** |
(−8.295) | (−7.991) | (−8.211) | (−7.912) | |
Growth | −0.280 * | −0.246 | −0.277 * | −0.244 |
(−1.762) | (−1.557) | (−1.744) | (−1.545) | |
Meet_nmb | 0.269 *** | 0.274 *** | 0.271 *** | 0.275 *** |
(23.683) | (23.929) | (23.852) | (24.084) | |
Leverage | −0.384 * | −0.363 * | −0.306 | −0.300 |
(−1.838) | (−1.732) | (−1.493) | (−1.457) | |
MSP | 2.627 *** | 2.567 *** | 2.680 *** | 2.607 *** |
(9.177) | (8.960) | (9.399) | (9.138) | |
Market | −0.068 ** | −0.042 | −0.067 ** | −0.041 |
(−2.202) | (−0.874) | (−2.176) | (−0.856) | |
GDP_dum | 0.061 | 0.014 | 0.057 | 0.013 |
(0.527) | (0.084) | (0.487) | (0.082) | |
Creative | 0.002 ** | 0.002 * | 0.002 ** | 0.002 * |
(2.106) | (1.710) | (2.120) | (1.716) | |
Constant | 3.469 *** | 2.356 *** | 3.464 *** | 2.346 *** |
(8.468) | (4.392) | (8.444) | (4.372) | |
Year fixed effect | Yes | Yes | Yes | Yes |
Industry fixed effect | Yes | Yes | Yes | Yes |
Province fixed effect | No | Yes | No | Yes |
Observations | 9824 | 9824 | 9824 | 9824 |
Adj.R2 | 0.426 | 0.436 | 0.426 | 0.436 |
Panel A: The moderating effect of macroscopical influencing factors | ||||||
---|---|---|---|---|---|---|
Dep. EID | GDP_dum | Market | AQI | |||
Visit_nmb | 0.120 | 0.068 | −0.165 | |||
(1.397) | (0.226) | (−1.305) | ||||
GDP_dum | −0.066 | |||||
(−0.368) | ||||||
Visit_nmb×GDP_dum | 0.216 ** | |||||
(1.970) | ||||||
Market | −0.124 | |||||
(0.561) | ||||||
Visit_nmb×Market | 0.055 * | |||||
(2.192) | ||||||
AQI_dum | −0.119 | |||||
(−0.260) | ||||||
Visit_nmb×AQI | 0.566 * | |||||
(2.028) | ||||||
Controls | Yes | Yes | Yes | |||
Year fixed effect | Yes | Yes | Yes | |||
Industry fixed effect | Yes | Yes | Yes | |||
Province fixed effect | Yes | Yes | Yes | |||
Observations | 9824 | 9824 | 9824 | |||
Adj.R2 | 0.362 | 0.384 | 0.487 | |||
Panel B: The moderating effect of microcosmic influencing factors | ||||||
Dep. EID | Duality | Shrcr10 | Agent | |||
Visit_nmb | 0.350 *** | 2.284 *** | 0.503 *** | |||
(5.030) | (10.665) | (4.756) | ||||
Duality | 0.729 *** | |||||
(5.316) | ||||||
Visit_nmb×Duality | −0.719 *** | |||||
(−5.857) | ||||||
Shrcr10 | 0.071 *** | |||||
(29.354) | ||||||
Visit_nmb×Shrcr10 | −0.036 *** | |||||
(−10.622) | ||||||
Agent | 8.006 *** | |||||
(7.635) | ||||||
Visit_nmb×Agent | −4.616 *** | |||||
(−4.384) | ||||||
Controls | Yes | Yes | Yes | |||
Year fixed effect | Yes | Yes | Yes | |||
Industry fixed effect | Yes | Yes | Yes | |||
Province fixed effect | Yes | Yes | Yes | |||
Observations | 9824 | 9824 | 9824 | |||
Adj.R2 | 0.438 | 0.482 | 0.439 |
Dep. | (1) | (2) | (3) |
---|---|---|---|
EID | Media | EID | |
Visit_nmb | 0.157 ** | 0.379 *** | 0.112 * |
(2.569) | (14.214) | (1.818) | |
Media | 0.118 *** | ||
(5.111) | |||
Instshr | 2.921 *** | 1.605 *** | 2.731 *** |
(13.227) | (16.652) | (12.210) | |
ROA | 5.702 *** | −0.861 ** | 5.804 *** |
(6.134) | (−2.123) | (6.250) | |
Age | 1.005 *** | 1.280 *** | 0.853 *** |
(14.718) | (42.981) | (11.473) | |
Big4 | 0.251 | −0.156 * | 0.270 |
(1.224) | (−1.744) | (1.316) | |
TobinQ | −0.286 *** | 0.229 *** | −0.313 *** |
(−7.912) | (14.523) | (−8.581) | |
Growth | −0.244 | 0.077 | −0.253 |
(−1.545) | (1.113) | (−1.604) | |
Meet_nmb | 0.275 *** | 0.102 *** | 0.263 *** |
(24.084) | (20.491) | (22.574) | |
Leverage | −0.300 | 0.101 | −0.312 |
(−1.457) | (1.120) | (−1.517) | |
MSP | 2.607 *** | 2.563 *** | 2.304 *** |
(9.138) | (20.583) | (7.914) | |
Market | −0.041 | 0.019 | −0.057 |
(−0.856) | (0.725) | (−0.949) | |
GDP_dum | 0.013 | 0.099 | 0.001 |
(0.082) | (1.409) | (0.009) | |
Creative | 0.002 * | −4.872 × 10−4 | 0.002 * |
(1.716) | (−1.255) | (1.783) | |
Constant | 2.346 *** | 0.241 | −0.396 |
(4.372) | (0.524) | (−0.376) | |
Sobel test | 0.045 *** | ||
(4.810) | |||
Year fixed effect | Yes | Yes | Yes |
Industry fixed effect | Yes | Yes | Yes |
Province fixed effect | Yes | Yes | Yes |
Observations | 9824 | 9824 | 9824 |
Adj.R2 | 0.436 | 0.624 | 0.437 |
Dep. | EID_Soft | EID_Hard | ||
---|---|---|---|---|
(1) | (2) | (1) | (2) | |
Visit_dum | 0.099 *** | 0.235 *** | ||
(2.786) | (2.609) | |||
Visit_nmb | 0.060 *** | 0.100 ** | ||
(3.015) | (1.999) | |||
Controls | Yes | Yes | Yes | Yes |
Year fixed effect | Yes | Yes | Yes | Yes |
Industry fixed effect | Yes | Yes | Yes | Yes |
Province fixed effect | Yes | Yes | Yes | Yes |
Observations fixed effect | 9824 | 9824 | 9824 | 9824 |
Adj.R2 | 0.291 | 0.291 | 0.412 | 0.412 |
Dep. | First Stage | Second Stage |
---|---|---|
Visit_nmb | EID | |
Visit_nmb | 6.422 *** | |
(4.800) | ||
Distance | −0.245 *** | |
(−6.488) | ||
Instshr | 0.548 *** | −0.319 |
(13.96) | (−0.397) | |
ROA | 2.437 *** | −8.475 ** |
(14.92) | (−2.378) | |
Age | −0.0932 *** | 1.594 *** |
(−7.708) | (9.416) | |
Big4 | −0.186 *** | 1.484 *** |
(−5.088) | (3.649) | |
TobinQ | 0.0176 *** | −0.411 *** |
(2.743) | (−6.763) | |
Growth | 0.0641 ** | −0.696 *** |
(2.246) | (−2.630) | |
Meet_nmb | 0.0202 *** | 0.156 *** |
(10.03) | (4.693) | |
Leverage | 0.975 *** | −6.690 *** |
(27.17) | (−4.831) | |
MSP | 0.806 *** | −2.282 * |
(15.95) | (−1.948) | |
Market | 0.0843 *** | −1.056 *** |
(3.382) | (−4.359) | |
GDP_dum | −0.0558 * | 0.161 |
(−1.752) | (0.569) | |
Creative | 0.000165 | 0.000359 |
(1.018) | (0.251) | |
Constant | −0.882 *** | 18.79 *** |
(−3.629) | (7.157) | |
Year fixed effect | Yes | Yes |
Industry fixed effect | Yes | Yes |
Province fixed effect | Yes | Yes |
Observations | 8593 | 8593 |
Adj.R2 | 0.310 | 0.388 |
Panel A: Propensity score matching balance test results. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Var. | Unmatched | Mean | Bias (%) | t-test | ||||||
Matched | Treated | Control | t | P > T | ||||||
Instshr | U | 0.322 | 0.210 | 42.8 | 18.28 | 0.000 | ||||
M | 0.322 | 0.329 | −2.7 | −0.95 | 0.341 | |||||
Big4 | U | 0.036 | 0.044 | −4.0 | −1.67 | 0.094 | ||||
M | 0.036 | 0.032 | −2.1 | 0.78 | 0.433 | |||||
Growth | U | 0.172 | 0.066 | 38.1 | 17.19 | 0.000 | ||||
M | 0.172 | 0.170 | 0.7 | 0.20 | 0.842 | |||||
Leverage | U | 0.274 | 0.103 | 84.1 | 37.66 | 0.000 | ||||
M | 0.274 | 0.279 | −2.7 | −0.80 | 0.425 | |||||
MSP | U | 0.191 | 0.054 | 75.0 | 36.16 | 0.000 | ||||
M | 0.191 | 0.186 | 2.9 | 0.83 | 0.407 | |||||
Market | U | 8.014 | 7.915 | 5.4 | 2.27 | 0.024 | ||||
M | 8.014 | 7.865 | 8.1 | 2.87 | 0.004 | |||||
Panel B: Regression results of analyst site visits and EID using matched sample. | ||||||||||
Dep. EID | (1) | (2) | (3) | (4) | ||||||
Visit_dum | 0.548 *** | 0.460 *** | ||||||||
(3.777) | (3.158) | |||||||||
Visit_nmb | 0.284 *** | 0.258 *** | ||||||||
(3.722) | (3.355) | |||||||||
Instshr | 2.074 *** | 1.703 *** | 2.030 *** | 1.652 *** | ||||||
(6.051) | (4.914) | (5.906) | (4.752) | |||||||
ROA | 5.659 *** | 4.978 *** | 5.450 *** | 4.717 *** | ||||||
(4.035) | (3.562) | (3.859) | (3.349) | |||||||
Age | 1.243 *** | 1.141 *** | 1.248 *** | 1.146 *** | ||||||
(9.990) | (8.972) | (10.025) | (9.008) | |||||||
Big4 | −0.354 | −0.060 | −0.363 | −0.066 | ||||||
(−1.002) | (−0.169) | (−1.027) | (−0.186) | |||||||
TobinQ | −0.466 *** | −0.457 *** | −0.457 *** | −0.449 *** | ||||||
(−8.322) | (−8.135) | (−8.183) | (−8.012) | |||||||
Growth | −0.455 ** | −0.385 * | −0.464 ** | −0.392 * | ||||||
(−2.010) | (−1.717) | (−2.048) | (−1.747) | |||||||
Meet_nmb | 0.157 *** | 0.154 *** | 0.158 *** | 0.155 *** | ||||||
(8.502) | (8.307) | (8.629) | (8.411) | |||||||
Leverage | −0.227 | −0.320 | −0.166 | −0.281 | ||||||
(−0.735) | (−1.029) | (−0.541) | (−0.908) | |||||||
MSP | 1.762 *** | 1.210 *** | 1.768 *** | 1.206 *** | ||||||
(4.485) | (3.027) | (4.502) | (3.018) | |||||||
Market | −0.073 | −0.171 * | −0.077 | −0.174 * | ||||||
(−1.341) | (−1.868) | (−1.399) | (−1.901) | |||||||
GDP_dum | −0.123 | 0.126 | −0.133 | 0.129 | ||||||
(−0.622) | (0.470) | (−0.671) | (0.483) | |||||||
Creative | 0.002 | 0.001 | 0.002 | 0.001 | ||||||
(1.270) | (0.493) | (1.284) | (0.477) | |||||||
Constant | 4.384 *** | 4.837 *** | 4.479 *** | 4.903 *** | ||||||
(5.921) | (4.701) | (6.033) | (4.761) | |||||||
Year fixed effect | Yes | Yes | Yes | Yes | ||||||
Industry fixed effect | Yes | Yes | Yes | Yes | ||||||
Province fixed effect | No | Yes | No | Yes | ||||||
Observations | 4137 | 4137 | 4137 | 4137 | ||||||
Adj.R2 | 0.310 | 0.328 | 0.310 | 0.329 |
Dep. EID | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Treatment | −0.455 ** | −0.238 | −0.113 | −0.243 |
(−2.354) | (−1.497) | (−0.348) | (−0.579) | |
Post | 4.073 *** | 8.088 *** | 8.033 *** | 8.013 *** |
(21.844) | (33.420) | (33.218) | (32.623) | |
Treatment×Post | −1.618 *** | −2.360 *** | −2.187 *** | −1.738 *** |
(−8.657) | (−10.797) | (−10.986) | (−5.909) | |
Instshr | 2.565 *** | 2.912 *** | 2.967 *** | |
(5.028) | (5.616) | (5.265) | ||
ROA | 4.203 ** | 2.440 * | 1.615 | |
(2.672) | (1.779) | (1.173) | ||
Age | 0.211 | 0.200 | 0.193 | |
(1.611) | (1.456) | (1.335) | ||
Big4 | −0.455 | −0.451 | −0.169 | |
(−1.184) | (−1.100) | (−0.457) | ||
TobinQ | −0.100 *** | −0.084 *** | −0.087 *** | |
(−7.844) | (−6.590) | (−6.676) | ||
Growth | 0.016 | −0.008 | −0.023 | |
(0.100) | (−0.056) | (−0.164) | ||
Meet_nmb | 0.194 *** | 0.189 *** | 0.195 *** | |
(9.630) | (9.983) | (9.629) | ||
Leverage | −0.346 | −0.282 | −0.410 | |
(−1.095) | (−0.816) | (−1.166) | ||
MSP | 1.573 *** | 1.549 *** | 1.529 *** | |
(3.356) | (3.070) | (3.178) | ||
Market | 0.122 | 0.083 | −0.122 | |
(0.956) | (0.682) | (−1.679) | ||
GDP_dum | −0.651 | −0.418 | 0.376 | |
(−1.478) | (−1.089) | (0.575) | ||
Creative | 0.002 | 0.007 | 0.026 * | |
(0.116) | (0.526) | (1.994) | ||
Constant | 3.909 *** | −2.764 *** | −1.616 | −2.251 ** |
(28.193) | (−3.983) | (−1.526) | (−2.719) | |
Year fixed effect | No | Yes | Yes | Yes |
Industry fixed effect | No | No | Yes | Yes |
Province fixed effect | No | No | No | Yes |
Observations | 3584 | 3584 | 3584 | 3584 |
Adj.R2 | 0.107 | 0.467 | 0.490 | 0.497 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, L.; Yao, S. Analyst Site Visits and Corporate Environmental Information Disclosure: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 16223. https://doi.org/10.3390/ijerph192316223
Fan L, Yao S. Analyst Site Visits and Corporate Environmental Information Disclosure: Evidence from China. International Journal of Environmental Research and Public Health. 2022; 19(23):16223. https://doi.org/10.3390/ijerph192316223
Chicago/Turabian StyleFan, Linyan, and Sheng Yao. 2022. "Analyst Site Visits and Corporate Environmental Information Disclosure: Evidence from China" International Journal of Environmental Research and Public Health 19, no. 23: 16223. https://doi.org/10.3390/ijerph192316223
APA StyleFan, L., & Yao, S. (2022). Analyst Site Visits and Corporate Environmental Information Disclosure: Evidence from China. International Journal of Environmental Research and Public Health, 19(23), 16223. https://doi.org/10.3390/ijerph192316223